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Abstract. We consider the equation

x
′′ + a

2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, for k = 1, 2, . . . ,

where {ak} is a given increasing sequence of positive numbers, and {tk} is
chosen at random so that {tk − tk−1} are totally independent random vari-
ables uniformly distributed on interval [0, 1]. We determine the probability
of the event that all solutions of the equation tend to zero as t → ∞.
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1 Introduction

The linear second order differential equation

x′′ + a2(t)x = 0 (1)

describes the oscillation of a material point of unit mass under the action of the
restoring force −a2(t)x; function a : [0,∞) → (0,∞) is the square root of the
varying elasticity coefficient a2.

⋆ The author was supported by the Grant FKFP 1201/1997 and Hungarian National
Foundation for Scientific Research with grant number T/016367
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Definition 1 (Ph. Hartman [8]). A function t 7→ x0(t) existing and satisfying
equation (1) on the interval [0,∞) is called a small solution of (1) if

lim
t→∞

x0(t) = 0 (2)

holds. The zero solution is called the trivial small solution of (1).

It is easy to see [10, p. 510] that if a is nondecreasing, then every solution of
(1) is oscillatory and the successive amplitudes of the oscillation are decreasing.
M. Biernacki [2] raised the question of the existence of a (nontrivial) solution whose
amplitudes tend to zero, i.e., a small solution. H. Milloux answered this question
by proving

Theorem A (H. Milloux [15]). If a : [0,∞) → (0,∞) is differentiable, nonde-
creasing, and satisfies

lim
t→∞

a(t) = ∞, (3)

then equation (1) has a non-trivial small solution.

Milloux also provided an example of a step function a to show that one cannot
conclude that all solutions are small.

Biernacki [2] raised also the following question: what additional conditions
on a function a monotonously tending to infinity as t goes to infinity guarantee
that all solutions are small? The first answer to this question was the famous
Armellini-Tonelli-Sansone theorem (see, e.g., in [10]). It has been followed by many
generalizations and improvements in the literature [3,9,10,13,14,16,17]. All of them
require of the coefficient a to tend to infinity regularly. Roughly speaking this
means that the growth of a cannot be located to a set with a small measure.

In this paper we are concerned with the case when the damping coefficient
a in equation (1) is a step function. As is known such equations often serve as
mathematical models in applications.

For example, let us consider the motion of the mathematical plain pendulum
whose length changes by a given law ℓ = ℓ(t). The position of the material point
in the plain is described by the length ℓ(t) of the thread and the angle ϕ between
the axis directed vertically downward and the thread. It is known [1,11] that the
equation of the motion is

ϕ′′ +
g

ℓ(t)
sinϕ = 0, (4)

where g denotes the constant of gravity. (No friction, the force of gravity acts only.)
The “small oscillations” [1] are described by the linear second order differential
equation

ϕ′′ +
g

ℓ(t)
ϕ = 0. (5)
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Consider the case when ℓ is a step function and ℓ(t) → 0 monotonously as t → ∞.
This is the situation when one has to lift a weight by a pulley and rope through a
gape. The purpose is to guarantee limt→∞ ϕ(t) = 0.

In [12] the first author showed that the Milloux theorem can be generalized
to step function coefficients, thus the existence of at least one solution with the
desired property is guaranteed. However, this knowledge is useless from practical
point of view. We would need a theorem guaranteeing all solutions to tend to zero
as t goes to infinity. The Armellini-Tonelli-Sansone theorem cannot be applied be-
cause any step function can increase only irregularly: the growth of the function
is located to a countable set, the function increases with jumps. Very recently the
Armellini-Tonelli-Sansone theorem was generalized to impulsive systems [7] and
step functions [5,6]. These theorems contain sophisticated conditions with requests
of certain connections between different parameters of the step function coefficient.
It is almost impossible to use these conditions for controlling the motions even if
one can observe and measure the state variables during the motions, what, in gen-
eral, cannot be assumed. (It is enough to mention the problem of pulling out used
up graphit bars from a nuclear reactor, which can be modelled by equations simi-
lar to (5).) For this reason the first author [12] formulated the following practical
problem: How many solutions are small if we do not require any additional con-
dition on ℓ(t) beyond limt→∞ ℓ(t) = 0? In other words, how often does it happen
that limt→∞ ϕ(t) = 0?

To be more precise, let us suppose that the length ℓ(t) is of the form

ℓ(t) := ℓk, if tk−1 ≤ t < tk, k = 1, 2, . . . ,

where {ℓk}
∞

k=1
is given, limk→∞ ℓk = 0, and the sequence {tk}

∞

k=0
of the mo-

ments of pulling the rope is chosen “at random” such that limk→∞ tk = ∞.
For an arbitrarily fixed pair of initial data ϕ0, ϕ′

0, what is the probability, that
limt→∞ ϕ(t) = 0?

In this paper we give an answer to this problem in the case when the differences
tk − tk−1 (k = 1, 2, . . . ) are independent random variables uniformly distributed
on interval [0, 1]. Namely, we prove that in this case limt→∞ ϕ(t) = 0 is almost
sure (it is an event of probability 1).

2 Preliminaries and Results

Let {tk}
∞

k=1
be an increasing sequence of positive numbers tending to infinity as k

goes to infinity, and define t0 := 0. Let {ak}
∞

k=1
be a sequence of positive numbers

such that
0 < a0 ≤ a1 ≤ . . . ≤ ak ≤ ak+1 ≤ . . . ,

and consider the equation

x′′ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, for k = 1, 2, . . . . (6)

A function x : [0,∞) → (−∞,∞) is a solution of (6) if it is continuously differen-
tiable on [0,∞) and it solves the equation on every (tk−1, tk) for k = 1, 2, . . . .
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Write (6) as a system of first order differential equations for a 2-dimensional
vector (x, y), where y := x′/ak. The resulting system is

x′ = aky, y′ = −akx (tk−1 ≤ t < tk; k = 1, 2, . . . ). (7)

One has to be careful defining what it means that a function t 7→ (x(t), y(t)) is a
solution of (7) on the interval [0,∞). The function t 7→ x′(t) = aky(t) has to be
continuous, so we require that the function t 7→ y(t) is continuous to the right for
all t ≥ 0 and satisfies aky(tk − 0) = ak+1y(tk) for k = 1, 2, . . . , where y(tk − 0)
denotes the left-hand side limit of y at tk. Accordingly, the system of first order
differential equations for (x, y) equivalent with (6) is

x′ = aky, y′ = −akx (tk−1 ≤ t < tk)

y(tk) =
ak

ak+1

y(tk − 0), k = 1, 2, . . . .
(8)

It is easy to see that introducing the polar coordinates (r, ϕ) by the equations
x = r cosϕ, y = r sin ϕ, we can rewrite system (7) into the form

r′ = 0, ϕ′ = −ak (tk−1 ≤ t < tk, k = 1, 2, . . . ).

So, system (8) turns the plane uniformly around the origin for t ∈ [tk−1, tk), and
then contracts it along the y-axis by ak/ak+1 at t = tk. Introduce the notations

τk := tk − tk−1, ϕk := akτk, αk :=
ak

ak+1

,

Tk :=

(

1 0
0 αk

)(

cosϕk sin ϕk

− sinϕk cosϕk

)

, k = 1, 2, . . . ; T0 :=

(

1 0
0 1

)

.

Then from (8) we obtain

ξk :=

(

x(tk)

y(tk)

)

= TkTk−1 . . . T2T1

(

x(0)

y(0)

)

∈ R
2, k = 0, 1, 2, . . . . (9)

Since αk ≤ 1, k = 1, 2 . . . , for every solution t 7→ (x(t), y(t)) the limit

ω := lim
t→∞

(x2(t) + y2(t)) = lim
k→∞

‖ξk‖
2 (10)

exists and is finite, where ‖ · ‖ denotes the Euclidean norm in R
2.

Suppose that τ1, τ2, . . . , τk, . . . are totally independent random variables uni-
formly distributed on interval [0, 1]. Limit ω is a function of the sequqnce {τk}

∞

k=1
,

so it is also random. Now we introduce the probability space where ω can be
defined as a random variable.

For every natural number n, let Pn = (Ωn,An, µn) be the probability space
with Ωn :=

∏n

k=1
[0, 1], the class An of Lebesgue measurable subsets of Ωn, and

the Lebesgue measure µn in Ωn. By the Fundamental Theorem of Kolmogorov [4]
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there exists the infinite product probability space P = (Ω :=
∏

∞

k=1
[0, 1],A, µ),

having the following property:

µ

(

H ×

∞
∏

k=n+1

[0, 1]

)

= µn(H) for every H ∈ An. (11)

Limit ω defined by (10) is a random variable on probability space P . Our purpose
is to determine the probability

P(ω = 0 for all ξ0 ∈ R
2).

Obviously, the event (ω = 0 for all ξ0 ∈ R
2) is independent of the choices {τk}

n
k=1

for every finite n. By Kolmogorov’s Zero-Or-One Law, the probability of such an
event equals either zero or one. The following theorems are in accordance with this
law.

Theorem 2. If limk→∞ ak = ∞, then it is almost sure (i.e., it is an event of
probability 1 in probability space P) that

lim
t→∞

(

x2(t) +
(x′(t))2

a2(t)

)

= 0

for all solutions of equation (6).

Corollary 3. If limk→∞ ak = ∞, then it is almost sure (i.e., it is an event of
probability 1 in probability space P) that

lim
t→∞

x(t) = 0

for all solutions of equation (6).

Theorem 4. If limk→∞ ak < ∞, then

lim
t→∞

(

x2(t) +
(x′(t))2

a2(t)

)

> 0

for every non-trivial solution x of equation (6).

Corollary 5. If limk→∞ ak < ∞, then it is an impossible event in probability
space P that there exists a non-trivial solution x of equation (6) with

lim
t→∞

x(t) = 0.
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3 Proofs

3.1 Proof of Theorem 2

Let (x(0), y(0)) ∈ R
2 be fixed, and consider the solution of equation (8) starting

from this point. If 〈·, ·〉 denotes the scalar product in R
2, then for a fixed k ≥ 1 we

have

‖ξk‖
2 = 〈ξk, ξk〉 = 〈Tkξk−1, Tkξk−1〉 = 〈T ∗

k Tkξk−1, ξk−1〉 ≤ Λk‖ξk−1‖
2,

where T ∗

k denotes the transposed of matrix Tk, and Λk denotes the greater eigen-
value of the symmetric matrix T ∗

k Tk. The random variables ξ1, ξ2, . . . , ξk are in-
dependent; consequently, for the expected values we obtain the inequality

E(‖ξk‖
2) ≤ E(Λk)E(‖ξk−1‖

2). (12)

Now we compute E(Λk). First we determine the expected value of matrix T ∗

k Tk:

E(T ∗

k Tk) =

∫ 1

0

(

cos akτ − sinakτ
sin akτ cos akτ

) (

1 0
0 α2

k

) (

cos akτ sin akτ
− sinakτ cos akτ

)

dτ

=

∫ 1

0

cos2 akτdτ

(

1 0
0 α2

k

)

+

∫ 1

0

sin2 akτdτ

(

α2
k 0
0 1

)

+

∫ 1

0

sin akτ cos akτdτ

(

0 α2
k − 1

α2
k − 1 0

)

=
1 + α2

k

2

(

1 0
0 1

)

+
sin 2ak

4ak

(1 − α2
k)

(

1 0
0 −1

)

+
sin2 ak

2ak

(α2
k − 1)

(

0 1
1 0

)

.

It is easy to check that the greater eigenvalue of a symmetric matrix (dik)2i,k=1

is determined by the formula

d11 + d22 +
√

(d11 − d22)2 + (2d12)2

2
.

Λk is the greater eigenvalue of matrix E(T ∗

k Tk); therefore,

Λk =
1

2

(

1 + α2
k + (1 − α2

k)
∣

∣

∣

sin ak

ak

∣

∣

∣

)

. (13)

Applying inequality (12) for k = 1, 2, . . . we obtain the estimate

E(‖ξn‖
2) ≤

( n
∏

k=1

Λk

)

‖ξ0‖
2. (14)
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Now we prove
∞
∏

k=1

Λk = 0. (15)

This assertion is equivalent with
∞
∑

k=1

ln

[

1 −
1 − α2

k

2

(

1 −
∣

∣

∣

sin ak

ak

∣

∣

∣

)]

= −∞.

This is obviously satisfied if lim infk→∞ αk < 1. If limk→∞ αk = 1, then it is
enough to show that

∞
∑

k=1

(1 − α2
k)

(

1 −
∣

∣

∣

sinak

ak

∣

∣

∣

)

= ∞,

i.e.,
∑

∞

k=1
(1 − αk) = ∞. But this is equivalent with

∑

∞

k=1
lnαk = −∞, i.e.,

lim
n→∞

n
∏

k=1

αk = lim
n→∞

a0

an+1

= 0,

which was assumed.
From (14) and (15) it follows that limn→∞ E(‖ξn‖

2) = 0. Then by Fatou’s
Lemma [4] and property (11) we have

E(ω) = E( lim
n→∞

(‖ξn‖
2) =

∫

Ω

lim
n→∞

(‖ξn‖
2 dµ ≤ lim

n→∞

∫

Ω

‖ξn‖
2 dµ

= lim
n→∞

∫

Ωn

‖ξn‖
2 dµn = lim

n→∞

E(‖ξn‖
2) = 0.

We have proved that for every fixed individual solution of (6) there holds
P(ω = 0). Since all solutions of the linear equation (6) can be represented as
linear combinations of two fixed linearly independent solutions of the equation,
this implies that

P(ω = 0 for all solutions of (6)) = 0,

which completes the proof of Theorem 2.

3.2 Proof of Theorem 4

Suppose that limn→∞ an =: a∞ < ∞. From the representation (9) and the defini-
tion of Tk we have

‖ξk‖
2 = 〈ξk, ξk〉 = 〈Tkξk−1, Tkξk−1〉 = 〈T ∗

k Tkξk−1, ξk−1〉 ≥ α2
k‖ξk‖

2.

Iterating this estimate we obtain the inequality

ω = lim
n→∞

‖ξn‖
2 ≥

(

lim
n→∞

n
∏

k=1

α2
k

)

‖ξ0‖
2 =

(

lim
n→∞

a2
0

a2
n+1

)

‖ξ0‖
2 =

a2
0

a2
∞

‖ξ0‖
2 > 0,

whenever ‖ξ0‖
2 > 0. This completes the proof.

The proofs of Corollaries 3 and 5 are trivial, so they are omitted.
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