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ON–LINE PACKING REGULAR BOXES IN THE UNIT CUBE

Janusz Januszewski

We describe a class of boxes such that every sequence of boxes from
this class of total volume smaller than or equal to 1 can be on-line packed in the
unit cube.

Let C be a subset of Euclidean d-space Ed and let (Cn) be a finite or infinite
sequence of d-dimensional convex bodies. We say that (Cn) can be packed in C if
there exist rigid motions σi such that sets σiCi, where i = 1, 2, . . . , have pairwise
disjoint interiors and are subsets of C. By an on-line packing we mean a packing
in which we are given every Ci, where i > 1, only after the motion σi−1 has been
provided. We are given C1 at the beginning. In other words, in the on-line packing
each set must be irreversibly put before the next set appears. A survey of results
about packing (respectively: on-line packing) sequences of convex bodies is given
in [1] (respectively: in [5]).

By a box we understand any set of the form

{(x1, . . . , xd); tj ≤ xj ≤ uj for j = 1, . . . , d} ,

where tj < uj for j = 1, . . . , d. The number wj = uj − tj is called the j-th
width of this box. By the unit cube Id we mean the set

{(x1, . . . , xd); 0 ≤ xj ≤ 1 for j = 1, . . . , d} .

The aim of this paper is to present a class of boxes such that each sequence
of boxes from this class of total volume smaller than or equal to 1 can be on-line
packed in the unit cube.

Let q ≥ 2 be a positive integer. By a q-regular box we mean a box of the j-th
widths of the form wj = q−m−1 for j ≤ k and wj = q−m for j = k+ 1, . . . , d,
where k ∈ {0, . . . , d− 1}, and where m ∈ {0, 1, . . .}. If k = 0 in this formula,
then such a q-regular box is called a q-regular cube.

In the paper [4] it is shown that every sequence of q-regular cubes of total
volume not greater than 1 can be on-line packed in the unit cube. In Theorems 1
and 2 we generalize this result.
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Theorem 1. Let q ≥ 2 be a fixed integer. Every sequence of q-regular boxes of
total volume smaller than or equal to 1 can be on-line packed in the unit cube Id.

Proof. Let (Rn) be a sequence of q-regular boxes of total volume not greater than
1. Let m be a non-negative integer and let k ∈ {0, . . . , d− 1}. By a subbox of
type (m, k) (or by a subbox, for short) we mean the set

{(x1, . . . , xd); ajq−m−1 ≤ xj ≤ (aj + 1)q−m−1 for j ≤ k

and ajq
−m ≤ xj ≤ (aj + 1)q−m for j = k + 1, . . .d} ,

where aj ∈ {0, . . . , qm+1 − 1} for j ≤ k and aj ∈ {0, . . . , qm − 1} for j =
k+ 1, . . . , d (see Fig. 1, where d = 3, q = 3). Obviously, each subbox is a q-regular
box.

all subboxes three subboxes three subboxes
of type (0,1) of type (0,2) of type (1,0)

Fig. 1

We enumerate all the subboxes of type (m, k) by integers 1, . . . , qmd+k in such
a way that:

(i) for k ∈ {1, . . . , d − 1} the integers (λ − 1)q + 1, . . . , (λ − 1)q + q are
given to the subboxes of type (m, k) being subsets of the subbox of type
(m, k − 1) whose number is λ,

(ii) for m ≥ 1 the integers (µ − 1)q + 1, . . . , (µ− 1)q + q are given to the
subboxes of type (m, 0) being subsets of the subbox of type (m− 1, d− 1)
whose number is µ.

Now, we describe the packing method. We pack R1 in the first subbox congruent
to it. Let k > 1. By a k-free subbox we mean a subbox whose interior has an
empty intersection with σ1R1 ∪ · · · ∪ σk−1Rk−1. We pack each box Rk from our
sequence in the congruent k-free subbox with the smallest possible number.

We will show that (Rn) can be on-line packed in Id by this method. Assume
the opposite; let Ri be a box from (Rn) which cannot be packed in Id. Obviously,
there exists no i-free subbox congruent to Ri. Consider the family R of all i-free
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subboxes of maximal volume. (In other words, S ∈ R if and only if S is i-free
and if there does not exist an i-free subbox S1 such that S ⊂ S1 and S 6= S1.)
Subboxes from R have the volumes of the form q−1 Vol(Ri), q−2 Vol(Ri), . . . .

We show that there are at most q − 1 subboxes of a fixed type in R. Assume
the opposite: there are at least q subboxes of type (m, k) in R. Let us denote these
subboxes by Q1, . . . , Qz. Consider the case when k ≥ 1. From the description
of the packing method we conclude that q subboxes from among Q1, . . . , Qz are
contained in an i-free subbox of type (m, k − 1). Consider the case when k = 0.
We can assume that m ≥ 1, because the box of type (0, 0) is nothing else but Id.
In this case q subboxes from among Q1, . . . , Qz are contained in an i-free subbox
of type (m− 1, d− 1). From the above consideration we conclude that q subboxes
from among Q1, . . . , Qz do not belong to R because they are not maximal, a
contradiction.

A finite number of boxes has been packed in Id. Consequently, there exists a
finite number of subboxes in R. This means that the total volume of subboxes in
R is smaller than

Vol(Ri)
[
(q − 1)q−1 + (q − 1)q−2 + . . .

]
.

This value is equal to Vol(Ri). Hence, the total volume of boxes R1, . . . , Ri−1

is greater than 1 − Vol(Ri). Consequently, the total volume of boxes in (Rn) is
greater than 1, a contradiction. �

Remark. Let (Sn) be a sequence of boxes. The method of packing of (Sn) is
called q-adic (see [2-4]), if for each positive integer n, σnSn has edges parallel to
the axes of the coordinate system and if for each j ∈ {1, . . . , d} the projection
of σnSn on the j-th axis is a segment whose both endpoints are multiples of the
j-th width of Sn. Observe, that the packing method from Theorem 1 is q-adic.

Obviously, the estimate 1 in Theorem 1 cannot be improved. It is an open
question how to extend our class of q-regular boxes. For example, we cannot add
the cube of the width 1

2 to the class of 4-regular boxes. The reason is that one cube
of the width 1

2 and three boxes of the widths w1 = 1
4 and w2 = · · · = wd = 1

cannot be packed in Id. We show in Propositions 1 and 2 that some extensions
are possible. Probably, the class of q-regular boxes is however the best possible in
the sense given in Conjecture.

Proposition 1. Let q ≥ 2 be an integer. Moreover, let F be the family of boxes
such that each box B ∈ F is either q-regular or the widths of B are of the form
w1 = nq−1, w2 = · · · = wd = 1, where n ∈ {2, . . . , q}. Then each sequence of
boxes from F of total volume smaller than or equal to 1 can be on-line packed in
Id.

Proof. We proceed analogously as in the proof of Theorem 1. We can regard a
box B with w1 = nq−1, w2 = · · · = wd = 1 as the union of n q-regular boxes
with w1 = q−1, w2 = · · · = wd = 1. We pack such a box B in Id similarly
like in the method from Theorem 1. Just in the first free place. If such a box
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B cannot be packed, then the total volume of boxes preceding B is greater than
1− nq−1 = 1− Vol (B). �

Let q ≥ 2 and let p1, . . . , pd be positive integers. By a (q, p1, . . . , pd)-regular
box we mean a box of the widths of the form wj = p−1

j q−m−1 for j ≤ k

and wj = p−1
j q−m for j = k + 1, . . . , d, where k ∈ {0, . . . , d− 1}, and where

m ∈ {0, 1, . . .}. Denote by Bp the box

{(x1, . . . , xd); 0 ≤ xj ≤ p−1
j for j = 1, . . . , d}.

Obviously, there is an affine image T (Id) equal to Bp. Observe that if a box B is q-
regular, then the affine image T (B) is (q, p1, . . . , pd)-regular. Thus, from Theorem
1 we conclude that each sequence of (q, p1, . . . , pd)-regular boxes of total volume
smaller than or equal to

∏d
i=1 p

−1
i can be on-line packed in Bp. Consequently,

we obtain the following result.

Proposition 2. Every sequence of (q, p1, . . . , pd)-regular boxes of total volume
smaller than or equal to 1 can be on-line packed in the unit cube.

Denote by w(B) the greatest width of a box B.

Conjecture. Let F be a family of boxes such that: (i) F contains a cube; (ii)
for each ε > 0 and for each box B ∈ F there exists a homotetic copy k1B of B
such that k1B ∈ F and w(k1B) < ε; (iii) for each box B ∈ F there exists a
homotetic copy k2B such that k2B ∈ F and w(k2B) = 1, (iv) each sequence
of boxes from F of total volume not greater than 1 can be on-line packed in Id.
Then there exists an integer q ≥ 2 such that all the boxes from F are q-regular.

Another interesting question is about the conection between usual packing and
on-line packing in the unit cube sequences of boxes of total volume not greater
than 1.

Problem 1. Let F be a family of boxes such that the conditions (i)− (iii) from
Conjecture are satisfied and such that each sequence of boxes from F of total
volume not greater than 1 can be packed in Id. Does there exist an integer q ≥ 2
such that all the boxes from F are q-regular?

Problem 2. Let F be a family of boxes such that each sequence of boxes from
F of total volume not greater than 1 can be packed in Id. Let (Sn) be a sequence
of boxes from F of total volume smaller than or equal to 1. Can (Sn) be on-line
packed in Id?

Finally, we present a theorem about packing another class of boxes. Let p1,
. . . , pd and q1, . . . , qd be positive integers. Let m ∈ {0, 1, . . .}. By (p1, q1,
. . . , pd, qd)-regular box we mean a box of the j-th widths of the form wj = p−1

j q−mj ,
for j = 1, . . . , d.
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Theorem 2. Every sequence of (p1, q1, . . . , pd, qd)-regular boxes of total volume
not greater than 1 can be on-line packed in the unit cube.

Proof. The proof is similar to the proof of Theorem 1. We can divide the unit
cube into regular subboxes. Let m ∈ {0, 1, . . .}. By a regular subbox of size m we
mean the set

{(x1, . . . , xd); ajp−1
j q−mj ≤ xj ≤ (aj + 1)p−1

j q−mj for j = 1, . . . , d},

where aj ∈ {0, . . . , pjqmj − 1}. We enumerate all the subboxes. The subboxes of

size 0 are enumerated from 1 to
∏d
i=1 pj . We enumerate other subboxes in such a

way that the integers (λ− 1)
∏d
i=1 qi+ 1, . . . , λ

∏d
i=1 qi are given to the subboxes

of size m ≥ 1 being subsets of the subbox of size m − 1 whose number is λ.
Let (Sn) be a sequence of (p1, q1, . . . , pd, qd)-regular boxes of total volume

smaller than or equal to 1. We pack S1 in the first subbox congruent to it. Let
k > 1. By a k-free subbox we mean a subbox with such a property that no interior
point of it is covered by σ1S1 ∪ · · · ∪ σk−1Sk−1. We pack each box Sk from our
sequence in the congruent k-free subbox with the smallest possible number. We
can now proceed analogously to the proof of Theorem 1. Consequently, (Sn) can
be on-line packed in Id. �
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