Archivum Mathematicum

Anton Dekrét

On (1, 1)-tensor fields on symplectic manifolds

Archivum Mathematicum, Vol. 35 (1999), No. 4, 329--336

Persistent URL: http://dml.cz/dmlcz/107707

Terms of use:

© Masaryk University, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON (1,1)-TENSOR FIELDS ON SYMPLECTIC MANIFOLDS

Anton Dekrét

Abstract. Two symplectic structures on a manifold M determine a (1,1)-tensor field on M. In this paper we study some properties of this field. Conversely, if A is (1,1)-tensor field on a symplectic manifold (M, ω) then using the natural lift theory we find conditions under which $\omega^{A}, \omega^{A}(X, Y)=\omega(A X, Y)$, is symplectic.

INTRODUCTION

Let M be a manifold with two symplectic structures $\omega, \bar{\omega}$. Then the vector bundle morphisms $I_{\omega}, I_{\bar{\omega}}: T M \rightarrow T^{*} M, I_{\omega}(X)=i_{X} \omega, I_{\bar{\omega}}(X)=i_{X} \bar{\omega}$ determine a (1,1)-tensor field $A=I_{\omega}^{1} \cdot I_{\omega}$. In Proposition 1 we conclude some properties of A from the point of view of both symplectic structures.

Let A be a (1,1)-tensor field and ω be a symplectic structure on M. Using natural lifts on $T M$ and $T^{*} M$ we find conditions under which the (0,2)-tensor field $\omega^{A}, \omega^{A}(X, Y)=\omega(A X, Y)$, is symplectic in both cases when ω is closed only (Proposition 2) and when ω is exact (Proposition 3). Proposition 4 deals with the same problem in the case when $\omega=d d_{v} L$ is the basic symplectic structure on $T M$ of a Lagrangian L on $T M$.

Finally we show (Proposition 5) that if $C_{*} A$ is the complete lift of A on $T^{*} M, \varepsilon$ is the Liouville 1-form on $T^{*} M, \omega=d \varepsilon, a=\varepsilon \cdot C_{*} A$, then $\omega^{C_{*} A}=d a$.

All manifolds and maps in this paper are assumed to be infinitely differentiable.

Two symplectic structures on a manifold M

Let A be a (1,1)-tensor field on a manifold M. Denote by $A: T M \rightarrow T M$ and by $A^{*}: T^{*} M \rightarrow T^{*} M$ the corresponding vector bundle isomorphisms over $I d_{M}$. Let ω be a $(0,2)$-tensor field on M. We will use the following notations:

$$
\begin{aligned}
& I_{\omega}: T M \rightarrow T^{*} M, \quad I_{\omega}(X)=i_{X} \omega=\omega(X,-) \\
& \omega^{A}: M \rightarrow \otimes^{2} T^{*} M, \omega^{A}(X, Y)=\omega(A X, Y) \\
& \omega_{A}: M \rightarrow \otimes^{2} T^{*} M, \omega_{A}(X, Y)=\omega(X, A Y) .
\end{aligned}
$$

[^0]Evidently $I_{\omega} \cdot A: T M \rightarrow T^{*} M, I_{\omega} A(X)=i_{A X} \omega,\left[I_{\omega} A(X)\right](Y)=\omega(A X, Y)=$ $\omega^{A}(X, Y)$.

If ω is symmetric or skew-symmetric, then $\omega_{A}(X, Y)=\left(\omega^{A}\right)^{t}(X, Y)$ or $\omega_{A}(X, Y)=-\left(\omega^{A}\right)^{t}(X, Y)$, respectively, where $\left(\omega^{A}\right)^{t}$ is transposed to ω^{A}. Therefore, if ω is a 2 -form, then ω^{A} is symmetric or skew-symmetric if and only if $\omega_{A}=-\omega^{A}$ or $\omega_{A}=\omega^{A}$ respectively.

Definition 1. We will say that a $(1,1)$-tensor field A on M is ω-symmetric if $I_{\omega} A=A^{*} I_{\omega}$.

Lemma 1. Let ω be a 2-form on M. Then a (1,1)-tensor field A is ω-symmetric if and only if ω^{A} is skew-symmetric.

Proof. We have the equalities:

$$
\begin{aligned}
I_{\omega} A(X)(Y) & =\omega^{A}(X, Y) \\
{\left[A^{*} I_{\omega}(X)\right](Y) } & =I_{\omega}(X)(A Y)=\omega(X, A Y)=\omega_{A}(X, Y)
\end{aligned}
$$

Then $I_{\omega} A=A^{*} I_{\omega}$ iff $\omega^{A}=\omega_{A}$, i.e. iff ω^{A} is skew-symmetric.
Lemma 2. If both (0,2)-tensor fields ω and ω^{A} are 2-forms, then $i_{A} \omega=2 \omega^{A}$.
Proof. Recall that $i_{A} \omega(X, Y)=\omega(A X, Y)+\omega(X, A Y)$. By our assumption $\omega_{A}=$ ω^{A}. It completes our proof.

Definition 2. Let $\omega, \bar{\omega}$ be (0,2)-tensor fields on M. We will say that $\bar{\omega}$ is A-related with ω if $I_{\bar{\omega}}=I_{\omega} \cdot A$, i.e. if $\bar{\omega}=\omega^{A}$.

Let a (0,2)-tensor field be regular. Then $A:=I_{\omega}^{-1} \cdot I_{\bar{\omega}}$ is a (1,1)-tensor field on M and $\bar{\omega}$ is A-related with ω.

Lemma 3. If two (0,2)-tensor fields $\omega, \bar{\omega}$ are symmetric or skew-symmetric and ω is regular, then $\left(I_{\omega}^{-1} \cdot I_{\bar{\omega}}\right)^{*}=I_{\bar{\omega}} \cdot I_{\omega}^{-1}$.

The proof is evident when using the coordinate expressions.
Corollary of Lemma 1. If ω and $\bar{\omega}$ are 2 -forms and ω is regular then $A=I_{\omega}^{-1} \cdot I_{\bar{\omega}}$ is ω-symmetric.

Let both forms ω and $\bar{\omega}$ be symplectic. Then $A=I_{\omega}^{-1} \cdot I_{\bar{\omega}}$ is regular, $\omega^{A}=$ $\omega_{A}=\bar{\omega}, I_{\bar{\omega}}=I_{\omega} A=A^{*} I_{\omega}, A^{*}=I_{\bar{\omega}} \cdot I_{\omega}^{-1}$. As $0=\omega^{A}(X, X)=\omega(A X, X)$ therefore the vector fields X and $A X$ are ω-orthogonal for every vector field X on M.

Let $(\alpha, \beta)_{\omega}$ denote the Poisson bracket of 1-forms α and β in the symplectic manifold (M, ω). Recall that if we denote $I_{\omega}\left(X_{\gamma}\right)=\gamma$ then two forms α, β are in ω-involution if $\omega\left(X_{\alpha}, X_{\beta}\right)=0$. Further, it is said that a vector field X is a local ω-Hamiltonian or an ω-Hamiltonian if $I_{\omega}(X)$ is closed or exact, respectively, see [4].

Proposition 1. Let ω and $\bar{\omega}$ be symplectic 2-forms on M. Let $A=I_{\omega}^{-1} \cdot I_{\bar{\omega}}$. Then
a) 1-forms $I_{\bar{\omega}}(X), I_{\bar{\omega}}(Y)$ are in $\bar{\omega}$-involution if and only if the 1-forms $A^{*} I_{\omega}(X), I_{\omega}(Y)$ are in ω-involution.
b) The forms $I_{\omega}(X)$ and $A^{*} I_{\omega}(X)$ are in ω-involution.
c) A vector field X is a local $\bar{\omega}$-Hamiltonian if and only if $A X$ is a local ω-Hamiltonian.
d) We have the identities

$$
I_{\omega}(A[X, Y])=A^{*}\left(I_{\omega} X, I_{\omega}(Y)\right)_{\omega}=\left(I_{\bar{\omega}}(X), I_{\bar{\omega}}(Y)\right)_{\bar{\omega}} .
$$

Proof.

a) $\bar{\omega}(X, Y)=\omega^{A}(X, Y)=\omega(A X, Y)$. Then the equality $A^{*} I_{\omega}(X)=I_{\omega}(A X)$ yields the proof.
b) The proof is evident from $\omega(A X, X)=0$.
c) The assertion is the consequence of the identity $I_{\omega}(X)=I_{\omega}(A X)$.
d) By the definition of the Poisson bracket we get

$$
\begin{aligned}
& \left(I_{\bar{\omega}}(X), I_{\bar{\omega}}(Y)\right)_{\bar{\omega}}=I_{\bar{\omega}}[X, Y]=A^{*} I_{\omega}([X, Y])=A^{*}\left(I_{\omega} X, I_{\omega} Y\right), \\
& I_{\omega} A([X, Y])=A^{*} I_{\omega}([X, Y])=A^{*}\left(I_{\omega}(X), I_{\omega}(Y)\right) .
\end{aligned}
$$

Remark. Denote by H_{ω} or $H_{\bar{\omega}}$ the Lie algebras of all local ω - or $\bar{\omega}$-Hamiltonians, respectively. By Proposition $1, X \in H_{\bar{\omega}}$ if and only if $A X \in H_{\omega}$. It is clear that $\left.A\right|_{H_{\bar{\omega}}}: H_{\bar{\omega}} \rightarrow H_{\omega}$ is an isomorphism of linear spaces which is not the Lie algebras isomorphism in general.

(1,1)-TENSOR FIELDS ON SYMPLECTIC MANIFOLDS

We will deal with a question: Let (M, ω) be a symplectic manifold and A be a (1,1)-tensor field on M. Under what conditions the $(0,2)$-tensor field ω^{A} is symplectic?

First of all we recall some lifts of geometrical fields on M to the tangent bundle $p_{M}: T M \rightarrow M$, see [2], [3], [5].

Let $\left(x^{i}\right)$ be a local chart on M. It induces the chart $\left(x^{i}, x_{1}^{i}\right)$ on $T M$. If f or F is a function on M or on $T M$ then we will use the following shortened notations

$$
f_{i}:=\frac{\partial f}{\partial x^{i}}, \quad F_{i}:=\frac{\partial F}{\partial x^{i}}, \quad F_{i_{1}}:=\frac{\partial F}{\partial x_{1}^{i}} .
$$

The complete lift of a function $f: M \rightarrow R$ is a function $C f: T M \rightarrow R$ such that $C f(X)=X f, X \in T M$, or equivalently $C f=S\left(p_{M}^{*} f\right)$, where S is an arbitrary semispray (a second order differential equation) on $T M$ and $p_{M}^{*} f$ is the p_{M}-pullback of f. In coordinates: $C f=f_{i} x_{1}^{i}$.

The complete lift of a vector field X on M is the vector field $C X$ on $T M$ the flow of which is the tangent prolongation of the flow of $X, C X=\xi^{i} \partial / \partial x^{i}+\xi_{k}^{i} x_{1}^{k} \partial / \partial x_{1}^{i}$, where $X=\xi^{i} \partial / \partial x^{i}$.

The complete lift of a p-form ε on M is the p-form $C \varepsilon$ on $T M$ which satisfies the equality

$$
\begin{equation*}
C \varepsilon\left(C X_{1}, \ldots, C X_{p}\right)=C\left(\varepsilon\left(X_{1}, \ldots, X_{p}\right)\right) \tag{1}
\end{equation*}
$$

for any vector fields X_{1}, \ldots, X_{p} on M.
In coordinates, if $\varepsilon=\frac{1}{p!} \varepsilon_{i_{1} \ldots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$, then

$$
\begin{equation*}
C \varepsilon=\frac{1}{p!} \varepsilon_{i_{1} \ldots i_{p}, k} x_{1}^{k} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}+\frac{1}{(p-1)!} \varepsilon_{i_{1} \ldots i_{p}} d x_{1}^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{p}} \tag{2}
\end{equation*}
$$

The C_{T}-lift of a p-form ε on M is the p-form $C_{T} \varepsilon$ on $T M$ defined by

$$
C_{T} \varepsilon=d i_{S}\left(p_{M}^{*} \omega\right)
$$

where S is again a semispray on $T M$ and $p_{M}^{*} \omega$ is the pull-back of ω. Equivalently, this form can be constructed by the following procedure: Let $X \in T M$. Then the $\operatorname{map} \varepsilon_{T}: X \rightarrow i_{X} \varepsilon$ is a $(p-1)$-form on $T M$ such that

$$
C_{T} \varepsilon=d \varepsilon_{T}
$$

In coordinates,
(3) $C_{T} \varepsilon=\frac{1}{(p-1)!}\left(\varepsilon_{i_{1} \ldots i_{p-1} k, i_{p}} x_{1}^{k} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}+\varepsilon_{i_{1} \ldots i_{p}} d x_{1}^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{p}}\right)$.

Finally we recall that the complete lift of a tensor (1,1)-field A on M is a tensor field $C A$ on $T M$ such that $C A(C X)=C(A X)$ for every vector field X on M. In coordinates, if $A=a_{j}^{i} d x^{j} \otimes \partial / \partial x^{i}$, then

$$
C A=a_{j}^{i} d x^{j} \otimes \partial / \partial x^{i}+\left(a_{j k}^{i} x_{1}^{k} d x^{j}+a_{j}^{i} d x_{1}^{j}\right) \otimes \partial / \partial x_{1}^{i}
$$

There are well known the following properties of complete lifts, see [2], [3].
Lemma 4. Let ε be a p-form and A be a (1,1)-tensor field on M. Then
a) $d C \varepsilon=C d \varepsilon$
aa) $C\left(A \otimes^{S} \varepsilon\right)=C A \otimes^{S} C \varepsilon$,
where \otimes^{S} denotes a contraction of tensor products.

Corollaries.

1. If ε is closed, then $C \varepsilon$ is also closed.
2. A 2-form $\bar{\omega}$ is A-related with ω if and only if $C \bar{\omega}$ is $C A$-related with $C \omega$.

Lemma 5. Let ω be p-form on M and let $C \omega$ or $C_{T} \omega$ be its complete or C_{T}-lifts, respectively. Then ω is closed if and only if $C \omega=C_{T} \omega$.

Proof in coordinates. If $\omega=\frac{1}{p!} \omega_{i_{1} \ldots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$ then $d \omega=\frac{1}{p!} \omega_{i_{1} \ldots i_{p}, k} d x^{k} \wedge$ $d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$ and so ω is closed iff

$$
\begin{equation*}
\omega_{i_{1} \ldots i_{p}, k}-\omega_{i_{1} \ldots i_{p-1} k, i_{p}}+\omega_{i_{1} \ldots i_{p-2} i_{p} k, i_{p-1}}+\cdots+(-1)^{p} \omega_{i_{2} \ldots i_{p} k, i_{1}}=0 \tag{4}
\end{equation*}
$$

By (2) and (3) we get that $C \omega=C_{T} \omega$ if and only if

$$
\begin{equation*}
\frac{1}{p!} \omega_{i_{1} \ldots i_{p}, k} x_{1}^{k} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}=\frac{1}{(p-1)!} \omega_{i_{1} \ldots i_{p-1} k, i_{p}} x_{1}^{k} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \tag{5}
\end{equation*}
$$

For arbitrary vector fields X_{1}, \ldots, X_{p} on $T M$ we get for the left side L or for the right side R of the equality (5), respectively:

$$
\begin{aligned}
L= & \omega_{i_{1} \ldots i_{p}, k} x_{1}^{k} \xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}} \\
R= & \frac{1}{(p-1)!} \omega_{i_{1} \ldots i_{p-1} k, i_{p}} x_{1}^{k}\left[(p-1)!\xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}}-(p-1)!\xi_{1}^{i_{1}} \ldots \xi_{p-2}^{i_{p-2}} \xi_{p}^{i_{p-1}} \xi_{p-1}^{i_{p}}\right. \\
& \left.+(p-1)!\xi_{1}^{i_{1}} \ldots \xi_{p-3}^{i_{p-3}} \xi_{p-1}^{i_{p-2}} \xi_{p}^{i_{p-1}} \xi_{p-2}^{i_{p}}+\cdots+(-1)^{p-1}(p-1)!\xi_{2}^{i_{1}} \xi_{3}^{i_{2}} \ldots \xi_{p}^{i_{p-1}} \xi_{1}^{i_{p}}\right] \\
= & \omega_{i_{1} \ldots i_{p-1} k, i_{p}} x_{1}^{k} \xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}}-\omega_{i_{1} \ldots i_{p} k, i_{p-1}} x_{1}^{k} \xi_{1}^{i_{1}} \ldots \xi_{p-2}^{i_{p-2}} \xi_{p}^{i_{p}} \xi_{p-1}^{i_{p-1}} \\
& +\omega_{i_{1} \ldots i_{p-3} i_{p-1} i_{p} k, i_{p-2}} \xi_{1}^{i_{1}} \ldots \xi_{p-3}^{i_{p-3}} \xi_{p}^{i_{p}} \xi_{p-1}^{i_{p-1}} \xi_{p-2}^{i_{p-2}}+\cdots+(-1)^{p-1} \omega_{i_{2} \ldots i_{p} k, i_{1}} \xi_{2}^{i_{2}} \ldots \\
& \ldots \xi_{p}^{i_{p}} \xi_{1}^{i_{1}}=\left(\omega_{i_{1} \ldots i_{p-1} k, i_{p}}-\omega_{i_{1} \ldots i_{p-2} i_{p} k, i_{p-1}}+\omega_{i_{1} \ldots i_{p-3} i_{p-1} i_{p} k, i_{p-2}}+\ldots\right. \\
& \left.+(-1)^{p-1} \omega_{i_{2} \ldots i_{p} k, i_{1}}\right) \xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}} .
\end{aligned}
$$

So $L=R$ if and only if

$$
\begin{aligned}
\omega_{i_{1} \ldots i_{p}, k}= & \omega_{i_{1} \ldots i_{p-1} k, i p}-\omega_{i_{1} \ldots i_{p-2} i_{p} k i_{p-1}}+\omega_{i_{1} \ldots i_{p-3} i_{p-1} i_{p} k, i_{p-2}}+\ldots \\
& +(-1)^{p-1} \omega_{i_{2} \ldots i_{p} k, i_{1}} .
\end{aligned}
$$

Comparing it with (4) we complete our proof.
Now we get
Proposition 2. Let ω be a symplectic 2-form. Let ω^{A} be skew-symmetric. Then ω^{A} is symplectic if and only if A is regular and $C \omega^{A}=C_{T} \omega^{A}$.

Proof. $I_{\omega} A$ is regular iff A is regular. Then Lemma 5 completes our proof.
Remark. Let a 2 -form $\bar{\omega}$ is A-related to ω. Let X be a vector field on M. Then $A^{*} I_{\omega}(X)$ is closed if and only if $C \alpha_{X}=C_{T} \alpha_{X}, \alpha_{X}=I_{\bar{\omega}}(X)$.
(1,1)-TENSOR FIELD ON A MANIFOLD (\mathbf{M}, ω) WITH AN EXACT 2 -FORM ω
Let $\varepsilon=\varepsilon_{i} d x^{i}$ be a 1 -form on M and A be a given (1,1)-tensor field on M. Then we have the forms:

$$
\begin{aligned}
\bar{\varepsilon} & =A^{*} \varepsilon=\varepsilon_{t} a_{i}^{t} d x^{i}, \omega=d \varepsilon=\varepsilon_{i j} d x^{j} \wedge d x^{i} \\
\bar{\omega} & =d\left(A^{*} \varepsilon\right)=\left(\varepsilon_{t j} a_{i}^{t}+\varepsilon_{t} a_{i j}^{t}\right) d x^{j} \wedge d x^{i} \\
C \varepsilon & =\varepsilon_{i k} x_{1}^{k} d x^{i}+\varepsilon_{i} d x_{1}^{i}, C_{T} \varepsilon=\varepsilon_{t i} x_{1}^{t} d x^{i}+\varepsilon_{i} d x_{1}^{i}
\end{aligned}
$$

Let $X=\xi^{i} \partial / \partial x^{i}$ is a vector field on M. Then we get in coordinates:

$$
\begin{aligned}
I_{\omega}(A X) & =\left(\varepsilon_{i t}-\varepsilon_{t i}\right) a_{j}^{t} \xi^{j} d x^{i} \\
I_{\bar{\omega}}(X) & =\left(\varepsilon_{t j} a_{i}^{t}+\varepsilon_{t} a_{i j}^{t}-\varepsilon_{t i} a_{j}^{t}-\varepsilon_{t} a_{j i}^{t}\right) \xi^{j} d x^{i}
\end{aligned}
$$

So the form ω^{A} is skew-symmetric if and only if

$$
\begin{equation*}
\left(\varepsilon_{i t}-\varepsilon_{t i}\right) a_{j}^{t}=-\left(\varepsilon_{j t}-\varepsilon_{t j}\right) a_{i}^{t} \tag{6}
\end{equation*}
$$

Proposition 3. The 2-form $\bar{\omega}=d\left(A^{*} \varepsilon\right)$ is A-related to the 2 -form $\omega=d \varepsilon$ if and only if ω^{A} is skew-symmetric and the 2-form $d i_{C A} C_{T} \varepsilon$ is semibasic.
Proof. As $\bar{\omega}$ is a 2 -form, then it is A-related to ω iff ω^{A} is skew-symmetric and $I_{\omega}(A X)=I_{\bar{\omega}}(X)$, i.e. iff the equalities (6) and

$$
\begin{equation*}
\varepsilon_{t j} a_{i}^{t}+\varepsilon_{t} a_{i j}^{t}-\varepsilon_{t} a_{j i}^{t}=\varepsilon_{i t} a_{j}^{t} \tag{7}
\end{equation*}
$$

are satisfied.
We get

$$
\begin{aligned}
C A^{*} C_{T} \varepsilon= & i_{C A} C_{T} \varepsilon=\left(\varepsilon_{k u} x_{1}^{k} a_{i}^{u}+\varepsilon_{t} a_{i k}^{t} x_{1}^{k}\right) d x^{i}+\varepsilon_{t} a_{i}^{t} d x_{1}^{i}, \\
d\left(C A^{*} C_{T} \varepsilon\right)= & \left(\varepsilon_{k u j} x_{1}^{k} a_{i}^{u}+\varepsilon_{k u} x_{1}^{k} a_{i j}^{u}+\varepsilon_{t j} a_{i k}^{t} x_{1}^{k}+\varepsilon_{t} a_{i k j}^{t} x_{1}^{k}\right) d x^{j} \wedge d x^{i} \\
& +\left(\varepsilon_{t j} a_{i}^{t}-\varepsilon_{i t} a_{j}^{t}+\varepsilon_{t}\left(a_{i j}^{t}-a_{j i}^{t}\right)\right) d x^{i} \wedge d x_{1}^{j} .
\end{aligned}
$$

Comparing this with (7) we finish our proof.
Remark on a Lagrangian L of first ORDER ON M WITh A $(1,1)$-TENSOR FIELD A

Let $L: T M \rightarrow R$ be a Lagrangian on M and $v=d x^{i} \otimes \partial / \partial x_{1}^{i}$ be the canonical endomorphism (almost tangent structure). Then $\varepsilon=d_{v} L=L_{i_{1}} d x^{i}, \omega=d \varepsilon=$ $L_{i_{1} j} d x^{j} \wedge d x^{i}+L_{i_{1} j_{1}} d x_{1}^{j} \wedge d x^{i}$ are the Lagrange forms on $T M$ which are the fundamental objects of the Lagrange formalism of classical mechanics. If A is a (1,1)-tensor field on M we put $\bar{\varepsilon}=i_{C A} \varepsilon=L_{t_{1}} a_{i}^{t} d x^{i}$ and $\bar{\omega}=d \bar{\varepsilon}=\left(L_{t_{1} j} a_{i}^{t}+\right.$ $\left.L_{t_{1}} a_{i j}^{t}\right) d x^{j} \wedge d x^{i}+L_{t_{1} j_{1}} a_{i}^{t} d x_{1}^{j} \wedge d x^{i}$. It is easy to prove the following assertion.
Proposition 4. The 2-form $\bar{\omega}=d\left(i_{C A} d_{v} L\right)$ is CA-related to the Lagrange 2form $\omega=d d_{v} L$ if and only if $\omega^{C A}$ is skew-symmetric and the 2 -form $d i_{C A} d L$ is semibasic.

AN EXAMPLE OF THE CANONICAL 2 -FORM $\bar{\omega}$ WHICH IS A-RELATED TO THE LIOUVILLE 2 -FORM ON THE COTANGENT BUNDLE $T^{*} M$

Let $\left(x^{i}, z_{i}\right)$ be the induced chart on the cotangent bundle $\pi_{M}: T^{*} M \rightarrow M$. Then $\varepsilon=z_{i} d x^{i}$ is the Liouville 1-form on $T^{*} M$ and $\omega=d \varepsilon=d z_{i} \wedge d x^{i}$ is the canonical symplectic form. A tensor field $A=a_{j}^{i} d x^{j} \otimes \partial / \partial x^{i}$ on M determines some geometrical objects on $T^{*} M$ which are closely connected with the natural lifts of A to $T^{*} M$. We recall some of them, ([1], [5]):

1. Let $A^{*}: T^{*} M \rightarrow T^{*} M$ be the dual vector bundle morphism to $A: T M \rightarrow$ $T M$. Then $a=a_{i}^{j} z_{j} d x^{i}: T^{*} M \rightarrow T^{*} T^{*} M$ is a 1-form on $T^{*} M$ such that $a(z, X)=$ $A^{*} z\left(T \pi_{M} X\right)$ for every $X \in T_{z} T^{*} M$. Put

$$
\bar{\omega}=d a=a_{i j}^{k} z_{k} d x^{j} \wedge d x^{i}+a_{i}^{j} d z_{j} \wedge d x^{i} .
$$

This immediately gives
Lemma 6. The 2-form $d a$ is symplectic if and only if the (1,1)-tensor field A is regular.
2. The complete lift $C_{*} A$ of A to $T^{*} M$ is a (1,1)-tensor field on $T^{*} M$ such that

$$
\begin{equation*}
d a(Y, X)=<i_{Y} d \varepsilon, C_{*} A(X)> \tag{8}
\end{equation*}
$$

where the symbol $<>$ means the evaluation mapping.
In coordinates

$$
C_{*} A=a_{j}^{i} d x^{j} \otimes \partial / \partial x^{i}+\left[\left(a_{j i}^{k}-a_{i j}^{k}\right) z_{k} d x^{j}+a_{i}^{j} d z_{j}\right] \otimes \partial / \partial z_{i} .
$$

It is evident that $a=i_{C_{*} A} \varepsilon$.
Proposition 5. The 2 -form $\bar{\omega}=d a$ is $C_{*} A$-related to the 2 -form $d \varepsilon$.
Proof. As $<i_{Y} d \varepsilon, C_{*} A(X)>=d \varepsilon\left(Y, C_{*} A(X)\right)=-d \varepsilon\left(C_{*} A(X), Y\right)$ therefore the equality (8) can be rewritten in the form $i_{X} d a=i_{C_{*} A X} d \varepsilon$. It means that $d a$ is $C_{*} A$-related with $d \varepsilon$, i.e. $d a=(d \varepsilon)^{C_{*} A}$.
Corollary. As $d a$ is a 2-form therefore $d \varepsilon^{C_{*} A}$ is skew-symmetric and therefore $C_{*} A$ is $d \varepsilon$-symmetric, i.e. $I_{d \varepsilon}\left(C_{*} A\right)=\left(C_{*} A\right)^{*} I_{d \varepsilon}$.

Let $\alpha=\alpha_{i} d x^{i}, \alpha: M \rightarrow T^{*} M$, be a 1-form on M. Then $\alpha^{v}=\pi_{M}^{*} \alpha=\alpha_{i} d x^{i}$ is the socalled vertical lift and $X_{\alpha}^{v}=\alpha_{i} \partial / \partial x^{i}$ is the vertical vector field on $T^{*} M$, induced by the section α and by the identification $V T^{*} M=T^{*} M \times_{M} T^{*} M$. Since $I_{d \varepsilon}\left(X_{\alpha}^{v}\right)=\alpha^{v}$ therefore X_{α}^{v} is a Hamiltonian of the symplectic manifold $\left(T^{*} M, d \varepsilon\right)$ iff α is closed. It implies that the 1 -form $A^{*} \alpha$ is closed iff the vertical field $X_{A^{*} \alpha}^{v}$ is a $\mathrm{d} \varepsilon$-Hamiltonian.

Recall that the complete lift $C_{*} X=\xi^{i} \partial / \partial x^{i}-\xi_{i}^{k} z_{k} \partial / \partial z_{i}$ of a vector field $X=$ $\xi^{i} \partial / \partial x^{i}$ on M to the cotangent bundle is a $d \varepsilon$-Hamiltonian and $I_{d \varepsilon}\left(C_{*} X\right)=-d f_{X}$, where $f_{X}(z)=<z, X>=z_{i} \xi^{i}$ is a function on $T^{*} M$ determined by X. If A is regular, then $A X$ is a vector field on M and $I_{d \varepsilon}\left(C_{*} A X\right)=-d f_{A X}$. We have

$$
\begin{aligned}
C_{*} A\left(C_{*} X\right) & =a_{t}^{i} \xi^{t} \partial / \partial x^{i}+\left[\left(a_{i t}^{k}-a_{t i}^{k}\right) z_{k} \xi^{t}-a_{i}^{j} \xi_{j}^{k} z_{k}\right] \partial / \partial z_{i} \\
C_{*}(A X) & =a_{t}^{i} \xi^{t} \partial / \partial x^{i}-\left(a_{t i}^{k} \xi^{t}+a_{t}^{k} \xi_{i}^{t}\right) z_{k} \partial / \partial z_{i}
\end{aligned}
$$

Proposition 6. Let A be a regular (1,1)-tensor field. Then the vector fields $C_{*}(A X)$ and $C_{*} A\left(C_{*} X\right)$ are equal if and only if the 1 -forms $d f_{A X}$ and $i_{C_{*}} d f_{X}$ are also equal.

Proof. The field $C_{*} A$ is $d \varepsilon$-symmetric, therefore $I_{d \varepsilon}\left(C_{*} A\left(C_{*} X\right)\right)=\left(C_{*} A\right)^{*}$ $I_{d \varepsilon}\left(C_{*} X\right)=-\left(C_{*} A\right)^{*}\left(d f_{X}\right)$. Then the equality $I_{d \varepsilon}\left(C_{*} A\left(C_{*} X\right)-C_{*}(A X)\right)=$ $-\left(C_{*} A\right)^{*}\left(d f_{X}\right)+d f_{A X}$ completes our proof.

Corollary. The vector field $C_{*} A\left(C_{*} X\right)$ is a de-Hamiltonian iff $i_{C_{*} A} d f_{X}=d f_{A X}$.

References

[1] Doupovec, M., Kurek, J., Liftings of tensor fields to the cotangent bundle, Proceedings, Int. conference Diff. Geometry and Applications Brno (1996), 141-150, MU Brno.
[2] Doupovec, M., Kurek, J., Liftings of covariant (0,2)-tensor fields to the bundle of k-dimensional 1-velocities, Supplements di Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), 111-121.
[3] Gancarzewicz, J., Mikulski, W., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J..
[4] Libermann, P., Marle, Ch., Symplectic Geometry and Analytical Mechanics, D. Reider Pub. Comp., Dortrecht - Boston - Lancaster - Tokyo.
[5] Yano, K., Ishihara, S., Tangent and cotangent bundles, M. Dekker Inc. New York, 1973.

Department of Mathematics, TU Zvolen
Masarykova 24, 96053 ZVOLEN, SLOVAKIA
E-mail: dekret@vsld.tuzvo.sk

[^0]: 1991 Mathematics Subject Classification: 53C05, 58A20.
 Key words and phrases: symplectic structure, natural lifts on tangent and cotangent bundles.
 Supported by the VEGA SR No. 1/5011/98.
 Received December 10, 1998.

