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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 36 (2000), 45 – 60

ON CONNECTIONS BETWEEN HYPERGRAPHS AND
ALGEBRAS

KONRAD PIÓRO

Abstract. The aim of the present paper is to translate some algebraic con-

cepts to hypergraphs. Thus we obtain a new language, very useful in the
investigation of subalgebra lattices of partial, and also total, algebras. In

this paper we solve three such problems on subalgebra lattices, other will
be solved in [19]. First, we show that for two arbitrary partial algebras,

if their directed hypergraphs are isomorphic, then their weak, relative and
strong subalgebra lattices are isomorphic. Secondly, we prove that two par-

tial algebras have isomorphic weak subalgebra lattices iff their hypergraphs
are isomorphic. Thirdly, for an arbitrary lattice L and a partial algebra A

we describe (necessary and sufficient conditions) when the weak subalgebra
lattice of A is isomorphic to L.

1.

Investigations of relationships between (total) algebras or varieties of algebras
and their lattices of (also total) subalgebras are an important part of universal
algebra. For example, the full characterization of the subalgebra lattice of a (to-
tal) algebra is given in [5]; moreover, there are many results which characterize
subalgebra lattices for algebras which belong to a given variety or a given type (see
e.g. [12]). Other papers investigate algebras with special subalgebra lattices (e.g.
distributive, modular, etc.) or varieties containing algebras such that their subal-
gebra lattices satisfy given conditions (see e.g. [7], [13], [15], [21], [22]). Note that
several such results concern also classical algebras — Boolean algebras, groups,
modules (see e.g. [10], [11], [14], [20]).

The theory of partial algebras provides additional tools for such investigations,
because at least four structures may be considered in this case: weak, relative,
strong subalgebra and initial segment lattices (see e.g. [3], [6]). It seems that they
yield a lot of interesting information on an algebra, also total. Therefore lattices
of partial subalgebras may play also an important role in the theory of partial
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(thus also total) algebras. Several results describing connections between a partial
algebra and its subalgebra lattices are already known. A characterization of the
weak subalgebra lattice is given in [1]. [2] describes monounary partial algebras
uniquely determined in the class of all monounary partial algebras of the same type
by their weak subalgebra lattices. Moreover, it is shown in [1] that every unary
partial algebra can be represented by a graph which uniquely determines its weak
subalgebra lattice. Generalizing this idea we introduced in [16] a graph–algebraic
language which is very useful in investigations of subalgebra lattices of a unary
partial algebra. For instance, in [17] we described all pairs 〈A,L〉, where A is a
unary partial algebra and L a lattice, such that the strong subalgebra lattice of
A is isomorphic to L. Of course, if A is total, then this lattice is the usual lattice
of (total) subalgebras. We also found in [17] necessary and sufficient conditions
for two arbitrary unary partial algebras (which can be even of different types)
to have isomorphic strong subalgebra lattices. Moreover, applying this language,
[18] shows that for total and locally finite unary algebras of finite type, the weak
subalgebra lattice uniquely determines the strong subalgebra lattice.

These results mainly concern subalgebra lattices of unary partial algebras. The
aim of the paper is to generalize this graph–algebraic language (using experiences
and ideas from [16]) onto arbitrary partial algebras. More precisely, we translate
some algebraic concepts (e.g. algebra types, four kinds of subalgebras, lattices of
subalgebras, etc.) into a hypergraph language. Next, we prove some connections
between hypergraphs and partial algebras. This language turned out to be very
useful in solutions of some problems on subalgebra lattices of partial algebras.
Now we solve three such problems. First, we show that if two partial algebras
have isomorphic directed hypergraphs, then their lattices of weak, relative, strong
subalgebras and initial segments are isomorphic. Secondly, we prove the inverse
result for the weak subalgebra lattice. More precisely, two partial algebras have
isomorphic weak subalgebra lattices iff their (undirected) hypergraphs are isomor-
phic. Of course, the result from [1] is a particular case of this theorem. Thirdly,
we solve the following: Let L be a lattice and A a partial algebra. When is the
weak subalgebra lattice of A isomorphic to L?

Applying results from this paper we will characterize in a subsequent paper
[19] pairs

〈
L, 〈K,κ〉

〉
, where L is a lattice and 〈K,κ〉 an algebra type, such that

there is a partial algebra A of the type 〈K,κ〉 with the weak subalgebra lattice
isomorphic to L. Such a characterization for algebraic lattices and types in the
case of total algebras is an important problem of universal algebra (see e.g. [12])
which is not completely solved yet. But for weak subalgebra lattices we will give
a complete solution.

The cardinality of a set A is denoted by |A|, N is the set of all non–negative
integers, Card is the class of all cardinal numbers and ℵ0 = |N|. CardN is the
class of all infinite sequences τ = (τ0, τ1, τ2, . . . ) of cardinal numbers. NN is the
set of all infinite sequences of natural numbers and NNf ⊆ NN is the set of all
infinite sequences in which almost all terms are equal zero. Moreover, P (A) is
the family of all subsets of A, Pk(A) = {C ∈ P (A) : |C| = k} for k ∈ N (of
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course, P0(A) = {∅}), Pfin(A) =
⋃
k∈N Pk(A) and

∏
fin(A) =

⋃
k∈NA

k, where
Ak = A× A . . .× A︸ ︷︷ ︸

k

(note that A0 = {∅}).

2.

An (undirected) hypergraph H = 〈VH, EH, IH〉 is an ordered triple such that
VH and EH are arbitrary sets (of vertices and hyperedges respectively), and IH is
a function from EH into Pfin(V H) \ {∅}. For each e ∈ EH, the elements of IH(e)
will be called terminal vertices of e. A directed hypergraph H = 〈VH, EH, IH〉 is
an ordered triple such that VH and EH are sets, and IH = 〈IH

1 , I
H
2 〉 is a function

from EH into Pfin(V H)× VH. An algebraic hypergraph H = 〈VH, EH, IH〉 is an
ordered triple such that VH and EH are sets, and IH = 〈IH

1 , I
H
2 〉 is a function from

EH into
∏
fin(V H)× V H. For each e ∈ EH of a directed (algebraic) hypergraph

H, IH
1 (e) will be called the initial set (sequence) of e and IH2 (e) will be called the

final vertex of e. Moreover, e ∈ EH is a k–edge (where k ∈ N) iff IH
1 (e) ∈ Pk(V H)(

IH
1 (e) ∈ (V H)k

)
. The initial sets (sequences) of 0–edges are empty, so 0–edges

can be identified with their final vertices. The set of all k–edges of H will be
denoted by EH(k).
The classes of all undirected, directed and algebraic hypergraphs are denoted by
UH, DH and AH.

The above definitions are simple modifications of the concept of hypergraph
from [4]. Note that directed graphs are the special case of directed and algebraic
hypergraphs simultaneously. Analogously, (undirected) graphs are the special case
of hypergraphs. Moreover, since we want to represent partial algebras by hyper-
graphs, we do not restrict the cardinality of vertex and hyperedge sets.

Observe that with every directed hypergraph we can associate the hypergraph
by omitting the orientation of all hyperedges. More formally, ({v1, . . . , v0} and
〈v1, . . . , v0〉 denote the empty set),

Definition 2.1.

(a) Let H ∈ DH. Then H∗ is a hypergraph such that VH∗ = VH, EH∗ = EH

and for each e ∈ EH∗ , IH∗(e)= IH1 (e) ∪ {IH
2 (e)}.

(b) Let H ∈ AH. Then H∗ is the directed hypergraph such that VH∗ = VH,
EH∗ = EH and for each e ∈ EH∗, IH∗(e) =

〈
{v1, . . . , vn}, IH

2 (e)
〉
, where

IH
1 (e) = 〈v1, . . . , vn〉.

(c) Let H ∈ AH. Then H∗∗ = (H∗)∗

The axiom of choice easily implies that for each H ∈ UH, there is D ∈ DH
(A ∈ AH) such that D∗ = H (A∗∗ = H). Analogously for D ∈ DH, there is
A ∈ AH such that A∗ = D.

For each algebraic (directed) hypergraph H and v ∈
∏
fin(V H)

(
v ∈ Pfin(V H)

)
we can define the set EH

s (v) = {e ∈ EH : IH
1 (e) = v} and the cardinal number

sH(v) = |EH
s (v)|. Note that sH(v) may be an arbitrary cardinal number, because

we consider, in general, infinite hypergraphs. Observe also EH
s (∅) = EH(0), so

sH(∅) = |EH(0)|.
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Having the above definition we can generalize the concept of algebra types onto
hypergraphs.

Definition 2.2. Let H ∈ AH
(
H ∈ DH

)
and τ = (τ0, τ1, τ2, . . . ) ∈ CardN. Then

H is of type τ iff
sH(v) ≤ τk for all v = 〈v1, . . . , vk〉 ∈

∏
fin(V H)(

v = {v1, . . . , vk} ∈ Pfin(V H)
)
.

The class of all algebraic (directed) hypergraphs of type τ will be denoted by
AH(τ )

(
DH(τ )

)
.

τ is a totally finite type iff τ ∈ NNf ; it is finite iff τ ∈ NN; and it is infinite iff
τ ∈ CardN \NN.

Note first, that AH(0) and DH(0), where 0 = (0, 0, 0, . . .), are the class of all
discrete hypergraphs (i.e. hypergraphs without hyperedges). Secondly, for τ1 =
(τ1

0 , τ
1
1 , . . . ), τ 2 = (τ2

0 , τ
2
1 , . . .) ∈ CardN, if τ 1

i ≤ τ2
i for all i ∈ N, then AH(τ 1) ⊆

AH(τ2) and DH(τ1) ⊆ DH(τ2). Thirdly, for every H ∈ AH(τ )
(
H ∈ DH(τ )

)
,

|EH(0)| = sH(∅) ≤ τ0. Moreover, the following two facts hold:
H∈DH of finite type τ ∈NN is totally finite (i.e. V H, EH are finite) iff H is

finite (i.e. V H is finite).
⇒ is trivial. ⇐ : Let N = |V H| < ℵ0. Then Pk(V H) = ∅ for k ≥ N + 1 and
|Pk(V H)| < ℵ0 for k ≤ N . Hence, |Pfin(VH)| < ℵ0. Since τ ∈ NN, sH(V ) < ℵ0

for V ∈ Pfin(V H). Moreover, it is easy to see EH =
⋃
V ∈Pfin(VH)E

H
s (V ). Thus

EH is a finite sum of finite sets, so EH is also finite.
an algebraic hypergraph H of totally finite type τ ∈ NNf is totally finite iff H is

finite.
⇒ is trivial. ⇐ : Since τ ∈ NNf , there is N ∈ N such that τk = 0 for k ≥ N + 1.
Then sH(v) = 0 for v ∈

⋃
m≥N+1(VH)m and sH(v) < ℵ0 for v ∈

⋃m=N
m=0 (V H)m,

so EH =
⋃
v∈ fin(V H)E

H
s (v) =

⋃
v∈ m=N

m=0 (V H)m E
H
s (v). |

⋃m=N
m=0 (V H)m| < ℵ0,

because VH<ℵ0. Thus EH is a finite sum of finite sets,

We want to represent partial algebras by hypergraphs, so we define various
kinds of subhypergraphs.

Definition 2.3. Let G,H ∈ UH. Then
(a) We say that G is a weak subhypergraph of H

(
G ≤w H

)
iff V G ⊆ VH,

EG ⊆ EH, IG ⊆ IH.
(b) We say that G is a relative subhypergraph of H

(
G ≤r H

)
iff G ≤w H and

for each e ∈ EH, if IH(e) ⊆ VG, then e ∈ EG.

For each H ∈ UH, Sw(H)
(
Sr(H)

)
is the family of all weak (relative) subhyper-

graphs of H. Note also that the empty hypergraph is simultaneously a weak and
relative subhypergraph of H.

Definition 2.4. Let G,H ∈ AH
(
G,H ∈ DH

)
. Then
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(a) We say that G is a weak subhypergraph of H
(
G ≤w H

)
iff V G ⊆ VH,

EG ⊆ EH, IG = IH|EG .
(b) We say that G is a relative subhypergraph of H

(
G ≤r H

)
iff G ≤w H and

for each e ∈ EH, if IH(e) ∈
∏
fin(V G) × V G

(
IH(e) ∈ Pfin(V G) × VG

)
,

then e ∈ EG

(c) We say that G is a strong subhypergraph of H
(
G ≤s H

)
iff G ≤r H and for

each e ∈ EH, if IH
1 (e) ∈

∏
fin(V G)

(
IH
1 (e) ∈ Pfin(VG)

)
, then IH

2 (e) ∈ VG.
(d) We say that G is a dually strong subhypergraph of H

(
G ≤d H

)
iff G ≤r H

and for each e ∈ EH, if IH
2 (e) ∈ V G, then IH

1 (e) ∈
∏
fin(V G)

(
IH
1 (e) ∈

Pfin(V G)
)
.

For each H ∈ AH
(
H ∈ DH

)
, Sw(H), Sr(H), Ss(H) and Sd(H) are the families of

all weak, relative, strong and dually strong subhypergraphs of H respectively. Note
that the empty hypergraph is simultaneously a weak, relative and dually strong
subhypergraph of H. Moreover, if EH(0) = ∅, then the empty hypergraph is also
a strong subhypergraph of H. In general, for every G ≤s H, IH

2

(
EH(0)

)
⊆ V G

and EH(0) ⊆ EG, because IH1 (e) = ∅ ∈
∏
fin(VG) for each e ∈ EH(0).

Now we give a few simple facts (easy proofs are omitted).

Proposition 2.5. Let H ∈ UH or H ∈ DH or H ∈ AH. Then
(a) If G ≤w H

(
G ≤r H

)
, then Sw(G) ⊆ Sw(H)

(
Sr(G) ⊆ Sr(H)

)
.

(b) If G ≤s H
(
G ≤d H

)
, then Ss(G) ⊆ Ss(H)

(
Sd(G) ⊆ Sd(H)

)
.

(c) For G1,G2 ≤w H,
G1 ≤w G2

(
G1 = G2

)
iff VG1 ⊆ V G2 , EG1 ⊆ EG2

(
VG1 = V G2,

EG1 = EG2
)
.

(d) For G1,G2 ≤r H, G1 ≤r G2

(
G1 = G2

)
iff VG1 ⊆ V G2

(
VG1 = V G2

)
.

(e) For G1,G2 ≤s H
(
G1,G2 ≤d H

)
, G1 ≤s G2

(
G1 ≤d G2

)
iff V G1 ⊆

VG2
(
VG1 ⊆ VG2

)
.

Of course, for hypergraphs only points (a), (c) and (d) hold.

By the above facts we obtain that for any algebraic or directed (undirected) hyper-
graph H, the relations ≤w, ≤r , ≤s and ≤d (≤w and ≤r) are partial orders. Now
we show that the families of all subhypergraphs with these orders form complete
(and algebraic) lattices.

Proposition 2.6. Let H be an undirected or directed or algebraic hypergraph.
Then

(a) Sw(H) = 〈Sw(H),≤w〉 is a complete (and algebraic) lattice, where the op-
erations of infimum

∧
and supremum

∨
are defined as follows:

∧
i∈I Hi =〈⋂

i∈I V
Hi ,
⋂
i∈I E

Hi ,
⋂
i∈I I

Hi
〉
,
∨
i∈I Hi =

〈⋃
i∈I V

Hi ,
⋃
i∈I E

Hi ,
⋃
i∈I I

Hi
〉
,

for each non–empty {Hi}i∈I ⊆ Sw(H).
(b) Sr(H) = 〈Sr(H),≤r〉 is a complete lattice, where the operation of infimum∧

is defined as above and
∨
i∈I Hi is the exactly one relative subhypergraph

of H such that V i∈I Hi =
⋃
i∈I V

Hi for each non–empty family {Hi}i∈I ⊆
Sr(H).
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Moreover, Sr(H) is isomorphic to the lattice of all subsets of VH, so it is
also algebraic.

Proof. (a): For a non–empty family {H i}i∈I ⊆ Sw(H) it can be easily verified
that

∧
i∈I Hi and

∨
i∈I Hi are indeed hypergraphs and weak subhypergraphs of

H, and moreover, that they are the infimum and the supremum of {Hi}i∈I in
〈Sw(H),≤w〉 respectively. Hence, 〈Sw(H),≤w〉 is a complete lattice. These facts
also imply that the family F of subsets of V H × EH which correspond to weak
subhypergraphs of H (i.e. W ×F ∈ F iff the triple 〈W,F, I|F〉 is a hypergraph and
a weak subhypergraph of H) forms an algebraic closure system, because F is even
closed under arbitrary unions. Moreover, 〈Sw(H),≤w〉 is isomorphic to 〈F ,⊆〉 by
Proposition 2.5(c). Thus Sw(H) is algebraic.

(b): First, we know by (a) that for every non–empty family {Hi}i∈I ⊆ Sr(H),∧
i∈I Hi is a well–defined weak subhypergraph of H. Secondly, it can be easily

verified that
∧
i∈I Hi is also a relative subhypergraph of H, and moreover, that it

is the infimum of this family in the partially ordered set 〈Sr(H),≤r〉. Thus Sr(H)
is a complete lattice, because H ∈ Sr(H) is its greatest element.

Secondly, by Proposition 2.5(d) each subset W ⊆ VH induces a unique relative
subhypergraph of H, i.e. there is exactly one G ≤r H such that VG = W ; then
EG = {e ∈ EH : IH(e) ∈ W}. Hence and by Proposition 2.5(d) we infer that
Sr(H) is isomorphic to the lattice of all subsets of VH. 2

Proposition 2.7. Let H ∈ AH or H ∈ DH. Then
(a) Ss(H) = 〈Ss(H),≤s〉 is an algebraic lattice, where

∧
is defined as in Propo-

sition 2.6(a).
(b) Sd(H) = 〈Sd(H),≤d〉 is an algebraic lattice, where

∧
and

∨
are defined as

in Proposition 2.6(b). Moreover, Sd(H) is a complete sublattice of Sr(H).

Remark. Let H ∈ AH or H ∈ DH. For each W ⊆ VH, the least (with respect
to ≤s) strong subhypergraph of H containing W will be here denoted by [W ]sH.
Proof. First, by Proposition 2.6(a) the intersection

∧
i∈I Hi of any non–empty

family {Hi}i∈I of strong (dually strong) subhypergraphs is a well–defined weak
subhypergraph. Secondly, it is easy to see that it is also a strong (dually strong)
subhypergraph. Hence,

∧
i∈I Hi is the infimum of {Hi}i∈I in 〈Ss(H),≤s〉(

〈Sd(H),≤d〉
)
, because by Proposition 2.6(a) it is the infimum in Sw(H) and

≤s=≤w|Ss(H)

(
≤d=≤w|Sd(H)

)
. These facts imply that Ss(H)

(
Sd(H)

)
is a com-

plete lattice.
Now take an arbitrary non–empty directed family {Hi}i∈I of strong subhyper-

graphs of H (i.e. for each i1, i2 ∈ I, there is i3 ∈ I such that Hi1 ,Hi2 ≤s Hi3).
Then it is easily shown that the ordered triple

〈⋃
i∈I V

Hi ,
⋃
i∈I E

Hi ,
⋃
i∈I I

Hi
〉

is
a strong subhypergraph of H. Hence, the family F of subsets of VH correspond-
ing to strong subhypergraphs (i.e. W ∈F iff the relative subhypergraph induced
by W is also a strong subhypergraph) is closed under arbitrary intersections and
unions of directed families, so it is an algebraic closure system. Moreover, Propo-
sition 2.5(d),(e) implies that 〈Ss(H),≤s〉 is isomorphic to 〈F ,⊆〉. Thus Ss(H) is
algebraic.



ON CONNECTIONS BETWEEN HYPERGRAPHS AND ALGEBRAS 51

Finally, take a non–empty family {H i}i∈I of dually strong subhypergraphs of
H. Then it is not difficult to see that the relative subhypergraph induced by⋃
i∈I V

Hi is also a dually strong subhypergraph. Hence, the family F of subsets
of V H corresponding to dually strong subhypergraphs of H (i.e. W ∈ F iff the
relative subhypergraph induced by W is also a dually strong subhypergraph) is
closed under arbitrary intersections and unions, so it is an algebraic closure system.
Moreover, Proposition 2.5(d),(e) implies that 〈Sd(H),≤d〉 is isomorphic to 〈F ,⊆〉.
Thus Sd(H) is algebraic. 2

Remark. Propositions 2.5, 2.6 and 2.7 easily imply that for H ∈ UH and its weak
(relative) subhypergraph G, Sw(G)

(
Sr(G)

)
is a complete sublattice of Sw(H)(

Sr(H)
)
. Analogously, for each directed (algebraic) hypergraph H and its weak,

relative, strong or dually strong subhypergraph G, Sw(G), Sr(G), Ss(G) and
Sd(G) are complete sublattices of Sw(H), Sr(H), Ss(H) and Sd(H) respectively.
Now we prove two less trivial results which will be needed in the next section. We
start with a hypergraph generalization of the classical result on the generation of
(strong) subalgebras.

Proposition 2.8. Let H ∈ AH
(
H ∈ DH

)
and W ⊆ VH. Then V [W ]sH =⋃

n∈NXn, where X0 = W and for each n ∈ N, Xn+1 = {v ∈ VH : ∃e∈EH IH
1 (e) ∈∏

fin(Xn) and IH2 (e) = v} ∪Xn
(
Xn+1 = {v ∈ V H : ∃e∈EH IH

1 (e) ∈ Pfin(Xn)
and IH2 (e) = v} ∪Xn

)
.

Proof. Let G be the relative subhypergraph of H with VG =
⋃
n∈NXn and

take a hyperedge e ∈ EG such that IH1 (e) ∈
∏
fin(VG)

(
IH
1 (e) ∈ Pfin(VG)

)
.

Then IH
1 (e) ∈

∏
fin(Xm)

(
IH
1 (e) ∈ Pfin(Xm)

)
for some m ∈ N, because IH

1 (e)
is a finite sequence (set) and moreover, Xn ⊆ Xn+1 for each n ∈ N. Hence,
IH
2 (e) ∈ Xm+1 ⊆ VG. Thus G is a strong subhypergraph of H containing W ,

because G ≤r H and X0 = W . This fact and the definition of [W ]sH imply
V [W ]sH ⊆ V G. On the other hand, by a simple induction on n ∈ N and by
the definition of strong subhypergraphs we obtain Xn ⊆ V [W ]sH for each n ∈ N
(because W = X0 ⊆ V G). Thus V G ⊆ V [W ]sH , which completes the proof. 2

Corollary 2.9. For each H ∈ AH and W ⊆ VH,
(
[W ]sH

)∗ = [W ]sH∗.

Proof. It is not difficult to show, using Proposition 2.8, that V ([W ]sH )∗ = V [W ]sH∗ .
Hence and by Proposition 2.5(d) we obtain the equality of hypergraphs. 2

Now we show that for each algebraic (directed) hypergraph H the function ∗

induces isomorphisms between lattices of subhypergraphs of a given kind of H
and H∗.

Theorem 2.10. Let H ∈ AH
(
H ∈ DH

)
. Then Sw(H) ' Sw(H∗) ' Sw(H∗∗),

Sr(H) ' Sr(H∗) ' Sr(H∗∗), Ss(H) ' Ss(H∗), Sd(H) ' Sd(H∗)
(
Sw(H) '

Sw(H∗), Sr(H)'Sr(H∗)
)
.

Proof. Let ϕ : Sw(H) −→ Sw(H∗) be a function such that ϕ(G) = G∗ for each
G ≤w H. (We assume that H is algebraic or directed). First, ϕ is well-defined,
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because G∗ is, of course, a weak subhypergraph of H∗. Secondly, ϕ is injective,
because if ϕ(G1) = ϕ(G2), then VG1 = V G2 and EG1 = EG2 , so G1 = G2 by
Proposition 2.5(c). Thirdly, let K ≤w H∗ be a weak subhypergraph and take the
triple G = 〈V K, EK, IH|EK〉. Then obviously G is a weak subhypergraph of H
and ϕ(H) = K. Hence, ϕ is a bijection. Thus, since Sw(H) and Sw(H∗) are total
algebras, it is sufficient to show

(1) (H1 ∧H2)∗ = H∗1 ∧H∗2 and (H1 ∨H2)∗ = H∗1 ∨H∗2
for each H1,H2 ∈ Sw(H)

By the definition of the operations ∧ and ∨ we have the following equalities:

V (H1∧H2)∗ = V H1∧H2 = VH1 ∩ V H2 = V H∗1 ∩ V H∗2 = VH∗1∧H∗2 ,
E(H1∧H2)∗ = EH1∧H2 = EH1 ∩EH2 = EH∗1 ∩EH∗2 = EH∗1∧H∗2 ,

V (H1∨H2)∗ = V H1∨H2 = VH1 ∪ V H2 = V H∗1 ∪ V H∗2 = VH∗1∨H∗2 ,
E(H1∨H2)∗ = EH1∨H2 = EH1 ∪EH2 = EH∗1 ∪EH∗2 = EH∗1∨H∗2 .

Thus by Proposition2.5(c), since (H1 ∧H2)∗, (H1 ∨ H2)∗,H∗1 ∧H∗2,H
∗
1 ∨H∗2 ∈

Sw(H∗), we obtain (1).
Now take G ≤s H (we assume that H ∈ AH). Then by a simple verifi-

cation we obtain that G∗ is a strong subhypergraph of H∗. Hence, ϕ|Ss(H) is
an injection of Ss(H) into Ss(H∗). It is also not difficult to see that for any
K ≤s H∗, the weak subhypergraph G = 〈VK, EK, IH|EK〉 of H is a strong subhy-
pergraph. Thus ϕ|Ss(H) is bijective. Moreover, it satisfies the first equality of (1)
(for H1,H2 ≤s H), because the lattices of weak and strong subhypergraphs have
the same operation ∧. Thus we must only show the second. By Corollary 2.9 we
infer

V (H1∨H2)∗ = V H1∨H2 = V [V H1∪VH2 ]sH = V ([V H1∪VH2 ]sH)∗ = V [VH1∪VH2 ]sH∗ =
VH∗1∨H∗2 .

Hence and by Proposition 2.6(d), since (H1 ∨H2)∗,H∗1 ∨H∗2 ∈ Ss(H), we obtain
(H1 ∨H2)∗ = H∗1 ∨H∗2.

In a similar way we can show that ϕ|Sr(H) (for algebraic and directed hyper-
graphs) and ϕ|Sd(H) (only for algebraic) are isomorphisms of Sr(H)
and Sd(H) onto Sr(H∗) and Sd(H∗) respectively. Hence and by the above proof,
Sw(H) ' Sw(H∗∗) and Sr(H) ' Sr(H∗∗) (for algebraic), and these isomorphisms
are provided by ψ : Sw(H) −→ Sw(H∗∗) such that ψ(G) = G∗∗ for G ≤w H and
ψ|Sr(H). 2

Of course, isomorphic algebraic (directed) hypergraphs have isomorphic lattices
of subhypergraphs. Now Theorem 2.10 implies the following stronger results:

Corollary 2.11. (a) For each G,H ∈ DH, if G∗'H∗, then Sw(G)' Sw(H)
and Sr(G)'Sr(H).

(b) For each G,H ∈ AH, if G∗ ' H∗
(
G∗∗ ' H∗∗

)
, then Sw(G) ' Sw(H),

Sr(G)'Sr(H), Ss(G)' Ss(H) and Sd(G)'Sd(H)
(
Sw(G)'Sw(H) and

Sr(G)'Sr(H)
)
.
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Observe that in the case of the relative subhypergraph lattice the above results
are trivial. Because Sr(H) is just the powerset lattice of VH (see Proposition
2.6(b)) and V H∗∗ = VH, V H∗ = V H, and moreover, the assumptions G∗ ' H∗

and G∗∗ 'H∗∗ imply, of course, that |V G| = |V H|.

3.

We assume knowledge of basic concepts and facts from the theory of partial
and total algebras, and also from lattice theory (see e.g. [3], [6], [8] and [9]).
Recall only that the type of algebras is a pair 〈K,κ〉, where K is a set of operation
symbols and κ is a map of K into N (for k ∈ K, κ(k) is the arity of k). Note that
κ−1(i) is the set of all i–ary operation symbols in K for each i ∈ N. The class of
all partial algebras (of type 〈K,κ〉) will be denoted by PAlg

(
PAlg(K,κ)

)
Let A = 〈A, (kA)k∈K〉,B = 〈B, (kB)k∈K〉 ∈ PAlg(K,κ). Recall that B is a

weak subalgebra of A (B ≤w A) iff B ⊆ A and kB ⊆ kA for all k ∈ K. B is
a relative subalgebra of A (B ≤r A) iff B ⊆ A and kB = kA ∩ (Bκ(k) × B),
for all k ∈ K. B is a strong subalgebra of A (B ≤s A) iff B ⊆ A and kB =
kA ∩ (Bκ(k) × A), for all k ∈ K. B is an initial segment of A (B ≤d A) iff
B ⊆ A and kB = kA ∩ (Aκ(k) × B), for all k ∈ K. The sets Sw(A), Sr(A),
Ss(A) and Sd(A) of all weak, relative, strong subalgebras and initial segments
of A respectively, with the relations ≤w, ≤r, ≤s and ≤d form complete lattices
Sw(A), Sr(A), Ss(A) and Sd(A).

Definition 3.1. Let A = 〈A, (kA)k∈K〉 ∈ PAlg(K,κ). Then
(a) H(A) is the algebraic hypergraph such that VH(A) = A,EH(A) = {〈a, k, b〉 ∈∏

fin(A) × K × A : 〈a, b〉 ∈ kA} and IH(A)
(
〈a, k, b〉

)
= 〈a, b〉 for each

〈a, k, b〉 ∈ EH(A).
(b) H∗(A) =

(
H(A)

)∗ and H∗∗(A) =
(
H(A)

)∗∗.
Note that 0–ary operations (i.e. constants) of a partial algebra A are represented
by 0–edges in H(A) (and in H∗(A)). Note also that this representation of partial
algebras by hypergraphs is a generalization of the suitable construction from [1]
(see also [16]) for unary partial algebras.

Proposition 3.2. For A = 〈A, (kA)k∈K〉 ∈ PAlg(K,κ), H(A) ∈ AH
(
|κ−1(0)|,

|κ−1(1)|, |κ−1(2)|, . . .
)

Proof. Let v = 〈v1, . . . , vm〉 ∈
∏
fin(VH(A)) (if m = 0, then v = ∅). Then

Definition 3.1 easily implies EH(A)
s (v) = {〈a, k, b〉 ∈ Am × κ−1(m) × A : a =

v and 〈a, b〉 ∈ kA}, so we can take a function Φ : EH(A)
s (v) −→ κ−1(m) such that

Φ
(
〈v, k, b〉

)
= k for each 〈v, k, b〉 ∈ E

H(A)
s (v). Φ is an injection, since kA is a

partial function for all k ∈ K. Hence, sH(A)(v) = |EH(A)
s (v)| ≤ |κ−1(m)|. 2

The inverse result is also true. More precisely (' denotes here an isomorphism
of undirected, directed and algebraic hypergraphs; recall that the isomorphism of
hypergraphs is a pair of bijections of vertex and hyperedge sets respectively, which
preserves terminal vertices of hyperedges),
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Theorem 3.3. Let τ = (τ0, τ1, τ2, . . . ) ∈ CardN, H ∈ AH(τ ) and 〈K,κ〉 be an
algebra type such that:

(∗) |κ−1(m)| = τm for each m ∈ N.
Then there is A ∈ PAlg(K,κ) such that H(A) 'H.

Proof. Let Km := κ−1(m) for each m ∈ N. Then by (∗) there are injections
Φ(v) : EH

s (v) −→ Km for all v ∈
∏
fin(VH), note that Φ(∅) (for v = ∅) is an

injection of EH(0) into the set of all constant symbols. Now, for each k ∈ K,
let k ⊆ (V H)κ(k) × VH be a relation such that for each 〈a, b〉 ∈ (VH)κ(k) × VH:
〈a, b〉 ∈ k ⇐⇒ ∃e∈EH

s (a) Φ(a)(e) = k and IH2 (e) = b.
Since {Φ(v)}v∈ fin(V H) are injections, k is a partial function of (V H)κ(k) into

VH for k ∈ K. Thus a pair A = 〈A, (kA)k∈K〉, where A = VH and kA = k for
k∈K, is a partial algebra of type 〈K,κ〉.

Now we prove H ' H(A). Let ϕV = idV H (i.e. ϕV is the identity func-
tion on V H) and let ϕE : EH −→

∏
fin(A) × K × A be a mapping such that

ϕE(e) = 〈IH1 (e),Φ
(
IH
1 (e)

)
(e), IH

2 (e)〉 for e ∈ EH. First, it is easily shown that ϕE
is injective, because {Φ(v) : v ∈

∏
fin(V H)} is a family of injections. Secondly,

by the definition of A we obtain VH = A = VH(A) and ϕE(EH) = EH(A) and
IH(A)

(
ϕE(e)

)
= IH(e) for e ∈ EH. Hence, ϕ = 〈ϕV , ϕE〉 is an isomorphism of H

onto H(A). 2

The following result is an immediate consequence of Theorem 3.3 (because for
each directed (undirected) hypergraph H, there is D ∈ AH such that D∗ ' H
(D∗∗ ' H) ):

Corollary 3.4. Let H ∈ AH
(
H ∈ DH or H ∈ UH

)
. Then there is a partial

algebra A such that H(A) ' H
(
H∗(A) ' H) or H∗∗(A) ' H respectively

)
.

Now we prove that for any partial algebra A, its subalgebra lattices are isomorphic
to the subhypergraph lattices of H(A), and thus also of H∗(A) by Theorem 2.10.
These theorems imply, of course, that for every two partial algebras, if their al-
gebraic or directed hypergraphs are isomorphic, then their lattices of subalgebras
are isomorphic. To this purpose we have to prove some auxiliary facts.

Proposition 3.5. Let A,B ∈ PAlg(K,κ). Then
(a) B ≤w A iff H(B) ≤w H(A) iff H∗(B) ≤w H∗(A) iff H∗∗(B) ≤w

H∗∗(A).
(b) B ≤r A iff H(B) ≤r H(A) iff H∗(B) ≤r H∗(A) iff H∗∗(B) ≤r H∗∗(A).
(c) B ≤s A iff H(B) ≤s H(A) iff H∗(B) ≤s H∗(A).
(d) B ≤d A iff H(B) ≤d H(A) iff H∗(B) ≤d H∗(A).
(e) A = B iff H(A) = H(B) iff H∗(A) = H∗(B) iff H∗∗(A) = H∗∗(B).

Proof. Obviously (e) follows from (a) and Proposition 2.5(c).
(a): Assume that B ≤w A. Then V H(B) ⊆ VH(A). Moreover, for each k ∈ K,

a ∈ Bκ(k) and b ∈ B: 〈a, k, b〉 ∈ EH(B) ⇒ 〈a, b〉 ∈ kB ⇒ 〈a, b〉 ∈ kA ⇒ 〈a, k, b〉 ∈
EH(A). Now applying the definitions of IH(B) and IH(A) we get H(B) ≤w H(A).
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Assume that H(B) ≤w H(A). Then B ⊆ A. Moreover, for each k ∈ K and
a ∈ Bκ(k) and b ∈ B: 〈a, b〉 ∈ kB ⇒ 〈a, k, b〉 ∈ EH(B) ⇒ 〈a, k, b〉 ∈ EH(A) ⇒
〈a, b〉 ∈ kA. Hence, B ≤w A.

(b): Let B ≤r A and 〈a, k, b〉 ∈ EH(A). Then by Definition 3.1 and by the def-
inition of relative subalgebras IH(A)

(
〈a, k, b〉

)
∈
∏
fin(VH(B))× VH(B) ⇒ 〈a, b〉 ∈

kA, a ∈ Bκ(k), b ∈ B ⇒ 〈a, b〉 ∈ kB ⇒ 〈a, k, b〉 ∈ EH(B). Hence and by (a),
H(B) ≤r H(A).
Let H(B) ≤r H(A), k ∈ K. Then by the definition of relative subhyper-
graphs, for all a ∈ Aκ(k), b ∈ A: 〈a, b〉 ∈ kA, a ∈ Bκ(k), b ∈ B ⇒ 〈a, k, b〉 ∈
EH(A), IH(A)

(
〈a, k, b〉

)
∈
∏
fin(V H(B)) × VH(B) ⇒ 〈a, k, b〉 ∈ EH(B) ⇒ 〈a, b〉 ∈

kB. Hence and by (a), B ≤r A.
Of course, the second and the third equivalence (in the above two cases)

follows from the proof of Theorem 2.10. The analogous proofs of (c) and (d)
are omitted. 2

Proposition 3.6. Let A ∈ PAlg(K,κ). Then for each H ≤w H(A), there is
B ≤w A such that H = H(B). If H is a relative or strong or dually strong
subhypergraph, then B is a relative or strong subalgebra or an initial segment
respectively.

Proof. Take H ≤w H(A) and let B = 〈B, (kB)k∈K〉 be a pair such that B = VH,
and for each k ∈ K, a ∈ Bκ(k), b ∈ B: 〈a, b〉 ∈ kB ⇔ 〈a, k, b〉 ∈ EH. Then it is
trivial that B ⊆ A and kB ⊆ kA for each k ∈ K. Hence, B is a partial algebra
and B ≤w A. Applying once more the definition of B, it can be easily shown that
H = H(B). Of course, the second part follows from Proposition 3.5. 2

For every A ∈ PAlg and B ⊆ A, the least strong subalgebra of A containing B,
and also its carrier, will here be denoted by [B]sA.

Proposition 3.7. Let A ∈ PAlg and W ⊆ A. Then H
(
[W ]sA

)
= [W ]sH(A) and

H∗
(
[W ]sA

)
= [W ]sH∗(A).

Proof. Let H1 = H
(
[W ]sA

)
and H2 = [W ]sH(A). Then by Proposition 3.5(a),

H1 ≤s H(A), so H2 ≤s H1, because W ⊆ VH1 . Moreover, by Proposition 3.6,
there is B ≤s A such that H(B) = H2. Then [W ]sA ≤s B, since W ⊆ VH2 = B.
Hence and by Proposition 3.5(a), H1 ≤s H(B) = H2. Thus H1 ≤s H2 ≤s H1, so
H1 = H2. The second equality is obtained from the first and Corollary 2.9. 2

Theorem 3.8. Let A ∈ PAlg. Then
Sw(A) ' Sw

(
H(A)

)
, Sr(A) ' Sr

(
H(A)

)
, Ss(A) ' Ss

(
H(A)

)
, Sd(A) '

Sd
(
H(A)

)
.

Proof. Let ϕ : Sw(A) −→ Sw
(
H(A)

)
be a function such that ϕ(B) = H(B)

for each B ≤w A. By Propositions 3.5(e) and 3.6, ϕ is a well–defined bijection.
Moreover, by Proposition 3.5(a), ϕ and its inverse ϕ−1 preserve the lattice orders.
Thus for each B1,B2 ∈ Sw(A),

H(B1 ∧B2) = H(B1) ∧H(B2) and H(B1 ∨B2) = H(B1) ∨H(B2) (1)
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By Proposition 3.5(c), ϕ|Ss(A) is an injection (since ϕ is injective) of Ss(A) into
Ss
(
H(A)

)
. Hence and by Proposition 3.6, it is bijective. Moreover, by Proposi-

tion 3.5(c), ϕ|Ss(A) and (ϕ|Ss(A))−1 preserve the orders of Ss(A) and Ss
(
H(A)

)
respectively. Thus (1) also holds for each B1,B2 ∈ Ss(A).

Using Propositions 3.5(b),(d) and 3.6 we can also obtain that ϕ|Sr(A) and
ϕ|Sd(A) are lattice isomorphisms of Sr(A) and Sd(A) onto Sr

(
H(A)

)
and

Sd
(
H(A)

)
respectively. 2

Corollary 3.9. Let A ∈ PAlg. Then
(a) Sw(A) ' Sw

(
H∗(A)

)
, Sr(A) ' Sr

(
H∗(A)

)
, Ss(A) ' Ss

(
H∗(A)

)
,

Sd(A) ' Sd
(
H∗(A)

)
.

(b) Sw(A) ' Sw
(
H∗∗(A)

)
, Sr(A) ' Sr

(
H∗∗(A)

)
.

Proof. (a) and (b) follow from Theorems 2.10 and 3.8. Note that these iso-
morphisms are provided by the functions ϕ : Sw(A) −→ Sw

(
H∗(A)

)
and ψ :

Sw(A) −→ Sw
(
H∗∗(A)

)
such that ϕ(B) = H∗(B) and ψ(B) = H∗∗(B) for each

B ≤w A, and also by ϕ|Sr(A), ϕ|Ss(A), ϕ|Sd(A) and ψ|Sr(A). 2

Of course, isomorphic partial algebras have isomorphic lattices of subalgebras.
Now Corollary 3.9 implies the following stronger results (for algebras which can
even be of different types):

Corollary 3.10. Let A,B ∈ PAlg be algebras such that H∗(A) ' H∗(B)(
H∗∗(A)'H∗∗(B)

)
. Then

Sw(A) ' Sw(B), Sr(A) ' Sr(B), Ss(A) ' Ss(B), Sd(A) ' Sd(B)
(
Sw(A) '

Sw(B), Sr(A)'Sr(B)
)
.

Hence, in particular, if H(A) ' H(B), then the subalgebra lattices of A and B
are also isomorphic.

Observe that the above facts in the case of the relative subalgebra lattice are
trivial. It is implied by the classical fact that Sr(A) is isomorphic to the powerset
lattice of A (which follows from the simple observation that each subset of A
uniquely determines a relative subalgebra of A) and Proposition 2.6(b), because
A = VH(A) = VH∗(A) = VH∗∗(A), and the assumptions H∗(A) ' H∗(B) and
H∗∗(A) ' H∗∗(B) imply, of course, |A| = |B|.

We assume that the reader knows basic notions and facts concerning lattices
(see e.g. [9], [12]). For any complete lattice L = 〈L,∨,∧〉, its partial order is
denoted by ≤L, and 0 denotes the least element of L. Recall that l ∈ L \ {0} is
an atom iff for all k ∈ L, if 0 ≤L k ≤L l, then k = 0 or k = l. l ∈ L is join–
irreducible iff for all k1, k2 ∈ L, l = k1 ∨ k2 implies l = k1 or l = k2.

Definition 3.11. Let H ∈ UH, v ∈ V H and e ∈ EH. Then
(a) H(v) is the weak subhypergraph of H which has one vertex v only and no

hyperedges.
(b) H(e) is the weak subhypergraph of H which has one hyperedge e only and

its endpoints as the set of vertices.
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(c) NH
V = {H(v) ∈ Sw(H) : v ∈ VH} and NH

E = {H(e) ∈ Sw(H) : e ∈ EH}.
By a simple verification we obtain the following:

Lemma 3.12. Let H be a hypergraph. Then NH
V is the set of all atoms of Sw(H),

and NH
E is the set of all non–zero and non–atomic join–irreducible elements of

Sw(H).

Now we can show that every hypergraph is uniquely determined by its weak sub-
hypergraph lattice.

Theorem 3.13. Let G,H ∈ UH. Then: G 'H iff Sw(G) ' Sw(H).

Proof. The implication⇒ is obvious.
⇐. First, take an isomorphism Φ : Sw(G) −→ Sw(H) and let ΦV = Φ|NG

V

and ΦE = Φ|NG
E

. Then by Lemma 3.12, ΦV (ΦE) is a bijection of NG
V

(
NG
E

)
onto NH

V

(
NH
E

)
. Secondly, let ψV,G : V G −→ NG

V and ψV,H : V H −→ NH
V be

functions such that ψV,G(w) = G(w) and ψV,H(u) = H(u) for each w ∈ VG

and u ∈ V H. Thirdly, let ψE,G : EG −→ NG
E and ψE,H : EH −→ NH

E be
functions such that ψE,G(e) = G(e) and ψE,H(h) = H(h) for every e ∈ EG and
h ∈ EH. By Definition 3.11, ψV,G, ψV,H, ψE,G, ψE,H are bijections, so we can
take ϕV = ψ−1

V,H ◦ΦV ◦ ψV,G and ϕE = ψ−1
E,H ◦ΦE ◦ ψE,G.

We prove that ϕ = 〈ϕV , ϕE〉 is an isomorphism of G onto H. Observe that
ϕV (ϕE) is a bijection of VG

(
EG
)

onto V H
(
EH
)
. Thus we must only show

IH
(
ϕE(e)

)
= ϕV

(
IG(e)

)
for each e ∈ EG.

Take e ∈ EG and let w1, w2 ∈ V G, u1, u2 ∈ V H be vertices such that {w1, w2} =
IG(e) and {u1, u2} = IH(ϕE(e)). Then G(wi) ≤w G(e) and H(ui) ≤w H

(
ϕE(e)

)
for i = 1, 2. Since Φ is a lattice isomorphism, Lemma 3.12 and these facts imply
ΦV
(
G(wi)

)
≤w ΦE

(
G(e)

)
and Φ−1

V

(
H(ui)

)
≤w Φ−1

E

(
H(ϕE(e))

)
for i = 1, 2.

Hence and by the definitions of ϕV , ϕE we obtain H
(
ϕV (wi)

)
= ψV,H

(
ϕV (wi)

)
=

ΦV
(
ψV,G(wi)

)
≤w ΦE

(
ϕE,G(e)

)
= ψE,H

(
ϕE(e)

)
= H

(
ϕE(e)

)
, and analogously,

G
(
ϕ−1
V (ui)

)
≤w G(e) for i = 1, 2. Thus (see Definition 3.11) ϕV (wi) ∈ IH

(
ϕE(e)

)
and ϕ−1

V (ui) ∈ IG(e) for i = 1, 2. Hence, IH
(
ϕE(e)

)
= ϕV

(
IG(e)

)
. 2

The following algebraic result on the weak subalgebra lattice is an immediate
consequence of Corollary 3.9(b) and Theorem 3.13 (note that partial algebras in
this result can be of different types):

Corollary 3.14. Let A,B ∈ AP lg. Then: Sw(A) ' Sw(B) iff H∗∗(A) '
H∗∗(B).

Since for any unary partial algebra, its hypergraph is just a graph, the above
theorem is a generalization of the result from [1] for unary algebras (another proof,
applying the graph language, is given in [16]).

Theorems 2.10 and 3.13 imply an analogous result for algebraic (directed) hy-
pergraphs:

Corollary 3.15. Let G,H ∈ AH
(
G,H ∈ DH

)
. Then: Sw(G) ' Sw(H) iff

G∗∗ ' H∗∗
(
G∗ ' H∗

)
.
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In the last part of this section we show that the complete algebraic characteri-
zation theorem of the weak subalgebra lattice from [1] can be generalized onto
hypergraphs. Next we show that for any lattice which satisfies conditions of this
characterization the exactly one hypergraph which correspond to this lattice can
be constructed directly from this lattice. Finally, we obtain that for a lattice L and
partial algebra A, Sw(A) ' L iff the hypergraph of L is isomorphic to H∗∗(A).

Theorem 3.16. Let L = 〈L,≤L〉 be a lattice. Then the following conditions are
equivalent:

(a) There is A ∈ PAlg such that Sw(A) ' L.
(b) There is H ∈ AH

(
H ∈ DH

)
such that Sw(H) ' L.

(c) There is exactly one (up to isomorphism) H ∈ UH such that Sw(H) ' L.
(d) L satisfies the following conditions:

(d.1) L is an algebraic and distributive lattice,
(d.2) every element is a join of join–irreducible elements,
(d.3) every non–zero join–irreducible element contains only finite (and non–

empty) set of atoms,
(d.4) the set of all non–zero and non–atomic join–irreducible elements is an

antichain with respect to the lattice order ≤L.

Proof. The proof of (a) ⇔ (d) is given in [1]. The equivalence (a) ⇔ (b) is
obtained from Corollary 3.4 and Theorem 3.8 (Corollary 3.9). (b)⇔ (c) is obtained
from Theorems 2.10, 3.13, since for a directed (undirected) hypergraph H, there
is an algebraic (directed) hypergraph D such that D∗ ' H. 2

Definition 3.17. Let L = 〈L,≤L〉 satisfy (d.1)—(d.4) of Theorem 3.16. Then
U(L) is a hypergraph such that: VU(L) is the set of all atoms of L, and EU(L)

is the set of all non–zero and non–atomic join–irreducible elements of L, and
IU(L)(e) = {v ∈ V U(L) : v ≤L e} for each e ∈ EU(L).

A simple verification of this definition (that U(L) is indeed a hypergraph) is omit-
ted. It is easily shown that for any lattices L and K, L ' K implies U(L) ' U(K).
The following result is also true:

Theorem 3.18. Let a lattice L satisfy (d.1) — (d.4) of Theorem 3.16. Then
Sw
(
U(L)

)
' L.

Proof. By Theorem 3.16 there is H ∈ UH such that Sw(H) ' L, so it is sufficient
to show U(L) 'H.

Take an isomorphism Φ : Sw(H) −→ L and let (see Definition 3.11) ΦV =
Φ|NH

V
,ΦE = Φ|NH

E
. Since Φ is a lattice isomorphism, Lemma 3.12 implies that ΦV

(ΦE) is a bijection of NH
V

(
NH
E

)
onto the set of all atoms, i.e. V U(L)

(
the set of

all non–zero and non–atomic join–irreducible elements, i.e. EU(L)
)
. Moreover, let

ψV : V H −→ NH
V and ψE : EH −→ NH

E be functions such that ψV (v) = H(v)
and ψE(e) = H(e) for each v ∈ VH and e ∈ EH. Then ψV

(
ψE
)

is a bijection
of V H

(
EH
)

onto NH
V

(
NH
E

)
(see Definition 3.11). Hence we infer that ϕV =

ΦV ◦ ψV and ϕE = ΦE ◦ ψE are bijections of VH and EH onto V U(L) and EU(L)
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respectively. We want to show that ϕ = 〈ϕV , ϕE〉 is an isomorphism of H and
U(L). Of course, we must only prove ϕV

(
IH(e)

)
= IU(L)

(
ϕE(e)

)
for each e ∈ EH.

Take e ∈ EH. Then Definitions 3.11 and 3.17 imply v ∈ IH(e) ⇒ ψV (v) ≤w
ψE(e)⇒ ΦV

(
ψV (e)

)
≤L ΦE

(
ψE(e)

)
⇒ϕV (v) ≤L ϕE(e)⇒ ϕV (v) ∈ IU(L)

(
ϕE(e)

)
.

Thus ϕV
(
IH(e)

)
⊆ IU(L)

(
ϕE(e)

)
.

Now let IU(L)
(
ϕE(e)

)
= {u1, . . . , um}, i.e. u1, . . . , um ≤L ϕE(e). Since Φ

is a lattice isomorphism, we obtain Φ−1
V (ui) ≤w Φ−1

E

(
ϕE(e)

)
= ψE(e) for i =

1, 2, . . . ,m. Hence and by Definition 3.11 and by Lemma 3.12, ψ−1
V ◦ Φ−1

V (ui) ∈
IH(e) for i = 1, 2 . . . ,m. Since ϕ−1

V = ψ−1
V ◦Φ−1

V and ϕ−1
E = ψ−1

E ◦Φ−1
E , we obtain

by this fact that ϕ−1
V (ui) ∈ IH(e) for i = 1, 2, . . . ,m. Thus IU(L)

(
ϕE(e)

)
⊆

ϕV
(
IH(e)

)
.

These two inclusions imply the desired equality. 2

Corollary 3.19. Let A ∈ PAlg and let L be a lattice satisfying (d.1)—(d.4) of
Theorem 3.16. Then

(a) U
(
Sw(A)

)
' H∗∗(A).

(b) Sw(A) ' L iff H∗∗(A) ' U(L).

Proof. (a): By Corollary 3.9 and Theorem 3.18, Sw
(
H∗∗(A)

)
' Sw(A) and

Sw(A) ' Sw
(
U
(
Sw(A)

))
. Hence and by Theorem 3.13, U

(
Sw(A)

)
' H∗∗(A).

(b): If Sw(A) and L are isomorphic, then, of course, U
(
Sw(A)

)
' U(L), so

H∗∗(A) ' U(L), by (a). If H∗∗(A) and U(L) are isomorphic, then their lattices
of weak subhypergraphs are also isomorphic. Hence and by Corollary 3.9 and
Theorem 3.18 we obtain Sw(A) ' L. 2

In a similar way, using Theorem 2.10 we obtain analogous results for hypergraphs:

Corollary 3.20. Let H ∈ UH
(
H ∈ DH or H ∈ AH

)
and let L be a lattice

satisfying (d.1) — (d.4) of Theorem 3.16. Then
(a) U

(
Sw(H)

)
' H

(
U
(
Sw(H)

)
' H∗ or U

(
Sw(H)

)
' H∗∗

)
.

(b) Sw(H) ' L iff H ' U(L)
(
H∗ ' U(L), H∗∗ 'U(L) respectively

)
.

By Proposition 3.2, Theorem 3.3 and Corollary 3.19 we obtain the following simple
observation:

Proposition 3.21. Let L be a lattice satisfying (d.1)—(d.4) of Theorem 3.16 and
〈K,κ〉 an algebra type. Then there is A ∈ PAlg(K,κ) such that Sw(A) ' L iff
there is H ∈ AH(τ ) such that H∗∗ ' U(L), where τk = |κ−1(k)| for each k ∈ N.

Applying this result (and also other results from this paper) we will be able to
characterize in the subsequent paper [19] pairs

〈
L, (K,κ)

〉
, where L is a lattice and

〈K,κ〉 is an algebra type, such that there is a partial algebra A of the type 〈K,κ〉
with Sw(A) isomorphic to L. Recall that such a characterization for arbitrary
algebraic lattices and arbitrary types in the case of total algebras is an important
problem of universal algebra (see e.g. [12]) which is not completely solved yet. But
for weak subalgebra lattices of partial algebras we will be able to give a complete
solution.
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