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SMOOTH BUNDLES OF GENERALIZED HALF-DENSITIES

DANIEL CANARUTTO

Abstract. Smooth bundles, whose fibres are distribution spaces, are intro-

duced according to the notion of smoothness due to Frölicher. Some fundamen-
tal notions of differential geometry, such as tangent and jet spaces, Frölicher-

Nijenhuis bracket, connections and curvature, are suitably generalized. It is
also shown that a classical connection on a finite-dimensional bundle naturally

determines a connection on an associated distributional bundle.

1. Introduction

Let M be any set and CM a set of curves R→M. Then, CM determines a set
FCM of mapsM→ R according to

f ∈ FCM ⇐⇒ f ◦ c ∈ C∞(R) ∀ c ∈ CM .

Conversely, a set FM of functions M → R determines a set CFM of curves in M
according to

c ∈ CFM ⇐⇒ f ◦ c ∈ C∞(R) ∀ f ∈ FM .

Following Frölicher [Fr82], a smooth structure on M is defined to be a couple
(CM,FM) such that CM and FM determine each other, namely

FCM = FM , CFM = CM .

For clarity we call this an F-smooth structure. By abuse of language we may also
callM an F-smooth space. Note that any set C0 of curves in M, or any set F0 of
functions onM, generate an F-smooth structure by FM := FC0 or CM := CF0 .

If (N ,CN ,FN ) is another F-smooth structure, then a map Φ :M→N is called
F-smooth if Φ ◦c ∈ CN for all c ∈ CM , or equivalently if f ◦Φ ∈ FM for all f ∈ FN .
F-smoothness behaves naturally with regard to cartesian products and inclusion.

The notion of F-smoothness provides a setting for a general approach to calculus
in infinite dimensional spaces [FK88, KM97]. For Banach spaces, and manifolds
modelled on them, one recovers the usual smooth structure. It has also been ob-
served that there are important situations in which a simplified version of Frölicher’s
approach is sufficient to develop several basic ideas of differential geometry: one
has only to consider a suitable reduced set C0 of curves inM, fulfilling a few consis-
tency axioms. In this way, notions such as tangent spaces, jet spaces, connections
and curvature, have been introduced and studied for a large class of functional
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bundles [JM, MK98, CK]. Everything can be formulated in terms of smooth classi-
cal maps, without getting involved in the topologies of functional spaces and other
intricated questions (such as the characterization of the whole set of F-smooth
maps).

In this paper I’ll adhere to that same basic philosophy in studying distribu-
tional bundles, and in particular bundles of generalized half-densities (in view of
applications to covariant QFT). But now the criterium for F-smoothness has to be
introduced in a somewhat different way: a space U of ‘test’ maps is taken to be the
set F0 generating the F-smooth structure on its topological dual U′. We shall be
only slightly involved in topological questions, however.

Unless otherwise explicitely said, by ‘manifold’ or ‘classical manifold’ I shall al-
ways mean a smooth Hausdorff paracompact manifold of finite dimension. Classical
manifolds will be indicated by boldface latin capital letters: X , Y , M and so on.
Infinite dimensional spaces will be indicated by calligraphic capital letters like X ,
Y and so on.

2. Generalized half-densities

Throughout this paper, by Y we shall denote an oriented real classical manifold
of dimension n. We set VY := (∧nTY )+ (or simplyVif no confusion arises), so that
V−1 := V∗ stands for the half-vector bundle of positive densities (i.e. volume forms).
Then V−1/2 := (V1/2)∗ is the half-vector bundle of the so-called half-densities.

Let V → Y be a classical vector bundle; we denote by U(Y ,V ) the vector
space of all global smooth sections u : Y → V which have compact support.
A topology on this space can be introduced by the standard procedure [Sc66];
U(Y ,V ) is a complete countably normed space. Its topological dual will be denoted
by U ′(Y ,V ); in particular, a sufficiently regular (for instance, smooth) section
θ : Y → V ∗⊗Y V−1Y can be seen as an element of U′(Y ,V ) by the rule

〈θ, u〉 :=
∫
Y

〈θ(y), u(y)〉 .

In general if θ ∈ U ′(Y ,V ) we shall also write

θ : Y ; V ∗⊗
Y

V−1Y

and call it a generalized section. We stress that generalized sections can be naturally
restricted to any open subset of Y , and that a gluing property holds: if {Yi} is
an open covering of Y and {θi ∈ U ′(Y i ,V )} is a family of generalized sections,
such that θi and θj coincide on Yi ∩ Yj whenever this is non-empty, then there is
a unique θ ∈ Y whose restriction to Yi coincides with θi ∀ i.

We shall be particularly involved with the space of generalized complex half-
densities

Y := U ′(Y ,C ⊗ V−1/2) := Y◦′ .
Namely Y◦ , the space of smooth complex half-densities with compact support, is
a subspace of Y; it can be shown that Y◦ is dense in Y. If V is a trivial (not just
trivializable) complex bundle, then U ′(Y ,V ⊗V−1/2) ≡ V ∗⊗Y.
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Consider now an orientation-preserving diffeomorphism ϕ : Y → Z between two
oriented manifolds; it determines a linear isomorphism ϕ∗ := (ϕ−1)∗ : ∧T∗Y →
∧T∗Z (over ϕ) of the corresponding exterior algebras, whose square root, denoted
again with the same symbol, is an isomorphism of the corresponding half-density
bundles, given by

ϕ∗ : V−1/2Y → V−1/2Z : λ 7→
√
ϕ∗(λ2) .

The maps ϕ∗ , on turn, determine isomorphisms of the corresponding sheaves of
exterior algebras and half-densities, denoted by the same symbol. In particular,
ϕ∗ : Y◦ → Z◦ . Now ϕ∗ extends to generalized half-densities as

〈ϕ∗λ, ϕ∗u〉 = 〈λ, u〉 , ∀λ ∈ Y, u ∈ Y◦ .
It is easy to see that ϕ∗ : Y → Z is a continuous linear isomorphism, and that the
correspondence ϕ 7→ ϕ∗ behaves naturally with regard to compositions.

Let v : Y → TY be a smooth vector field. If λ ∈ Y is a nowhere vanishing
smooth half-density, then the Lie derivative v.λ is naturally defined as

v.λ :=
1

2λ
v.(λ2) =

1
2λ

d(v |λ2) ,

where (v |λ2) denotes standard contraction. Moreover, this naturally extends to
all smooth half-densities (consider local expressions) as v.(fλ) := (v.f)λ + f(v.λ),
where f : Y → C is any smooth function. If moreover u ∈ Y◦ then v.(λ⊗u) =
(v.λ)⊗ u+ λ⊗ (v.u), so that∫

Y

(v.λ)⊗ u =
∫
Y

d
(
v | (λ⊗u)

)
−
∫
Y

λ⊗ (v.u) .

Since the first term in the right hand-side vanishes (because u has compact support)
we obtain

〈v.λ, u〉 = −〈λ, v.u〉 ,
which can be taken as the definition of v.λ whenever λ is a generalized half-density.
Then the map λ 7→ v.λ turns out to be a continuous linear operator in Y.

Let now Y̆ ⊂ Y be an open subset, and y ≡ (yi) : Y̆ → A ⊂ Rn a coordinate
chart. Denote by A and Rn the spaces of generalized complex half-densities on A
and Rn, respectively; we have a canonical inclusion A ⊂ Rn (extend an element
in A by letting it vanish outside A) and we obtain the induced ‘coordinate’ chart
y∗ : Y̆ → A ⊂ Rn. In A we have a canonical half-density, the square root of the
canonical positive volume form of Rn, so that A can be identified with the space of
generalized maps A ; C .

For λ ∈ Y we set
λy := y∗λ ∈ A ⊂ Rn ,

which is analogous to the set of components of a vector in a finite dimensional
space.

Consider again an orientation-preserving diffeomorphism ϕ : Y → Z and a local
chart z : ϕ(Y̆ )→ B ⊂ Rn, and set

ϕzy := z ◦ ϕ ◦ y−1 : A→ B .
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Then Dϕzy : A → Rn
2
. Moreover we indicate by |ϕzy| := det(Dϕzy) : A → R+ the

Jacobian determinant of ϕzy. We write the ‘coordinate’ expression of ϕ∗ as

(ϕ∗λ)z = (λy ◦ ϕ
−1
yz )

√
|ϕ−1

yz | .

In particular, if ϕ is just the identity map of Y̆ , we obtain the coordinate trans-
formation formula

λz = λy

√
|κyz| , κyz := (11Y )yz .

Consider now the vector field ∂yi on Y̆ induced by the coordinates, 1 ≤ i ≤ n.
We write

∂iλ := ∂yi.λ ∈ Y̆ ⇒ ∂iλy = (∂iλ)y : A; C .

If v : Y → TY is a vector field then we obtain

(v.λ)y = vi∂iλy + 1
2

(∂ivi)λy .

Let L2Y be the space of all complex half-densities λ : Y → C ⊗ V−1/2 such that

‖λ‖2 :=
∫
Y

|λ|2 <∞ ,

and 0̃Y the subspace of all almost-everywhere vanishing half-densities. Then H ≡
HY := L2Y /0̃Y turns out to be a Hilbert space with the Hermitian product given
by

〈λ, µ〉 :=
∫
Y

λ̄ µ .

We have
Y◦ ⊂ H ∼= H′ ⊂ Y ,

namely the triple (Y◦,H,Y) constitutes a so-called rigged Hilbert space [BLT75].
Note that Y◦ is incomplete in the L2 toplogy and dense in H.

If the fibres of the vector bundle V → Y are smoothly endowed with a Hermitian
structure, then the above settings can be easily extended in order to describe the
rigged Hilbert space of (generalized) sections Y ; V ⊗Y V−1/2.

3. F-smoothness

We shall consider on Y the F-smooth structure generated by Y◦, seen as a set
of (linear) maps Y → C . Namely, let I⊂ R be an open interval; then a curve
α : I→ Y will be called F-smooth if the map

〈α, u〉 : I→ C : t 7→ 〈α(t), u〉
is smooth for all u ∈ Y◦.

Let CY be the set of all F-smooth curves in Y; take any p ∈ N∪{0} and consider
the following binary relation on R× CY :

(t, α)
p∼ (s, β) ⇐⇒ Dk〈α, u〉(t) = Dk〈β, u〉(s) ∀u ∈ Y◦, k = 0, . . . , p .

Then clearly p∼ is an equivalence relation; the quotient

TpY := CY
/
p∼
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will be called the tangent space of order p of Y. The equivalence class of (t, α) ∈ CY
will be denoted by ∂pα(t). Obviuosly, TpY is a fibred set over Y; the fibre over
some λ ∈ Y will be denoted by TpλY. In particular T0Y = Y.

The set TY := T1Y is called simply the tangent space of Y, and ∂α(t) := ∂1α(t)
is called the tangent vector of α at α(t). Any element in TY can be represented as
∂α(0), for a suitable curve α defined on a neighbourhood Iof 0.

Proposition 3.1. For each λ ∈ Y, TλY turns out to be a vector space by setting

r ∂α(0) := ∂[α(rt)]t=0 , r ∈ R ,
∂α(0) + ∂β(0) := ∂(α+ β − λ)(0) , α(0) = β(0) = λ .

Moreover the map
Y × Y → TY : (λ, µ) 7→ ∂[λ + tµ]t=0

is an isomorphism.

Proof. It is clear that the operations of product by numbers and of sum ‘pass to
the quotient’, so that they define a vector space structure on TλY. Next we observe
(see [Sc66], Ch.III, Th.XIII) that there is a unique α′ ∈ Y such that, for all u ∈ Y◦,

〈α′, u〉 = lim
t→0
〈1t
(
α(t)− α(0)

)
, u〉 = D〈α, u〉(0)

so that there is a natural linear injection TY ↪→ Y × Y. By considering the equiv-
alence classes of all affine curves, one sees that this map is also surjective.

�

Similarly one sees that there is a natural isomorphism

TpY ∼= Yp+1 .

The notion of F-smoothnes in TpY is now reduced to that in Yp+1.
Note that if a F-smooth curve is valued in Y◦, then its tangent vector is not

valued in Y◦ in general.
Remark. Suppose that α : I→ Y can be represented as a map α : I× Y →
C ⊗ V−1/2, so that for each t ∈ Iand u ∈ Y◦ we have

〈α(t), u〉 =
∫
Y

ᾱ(t, y)u(y) .

If α(t, y) is well-behaved enough that one can differentiate under the integral sign,
then α is F-smooth, and ∂α is represented by the map

∂α

∂t
: I× Y → C ⊗ V−1/2 .

4. Tangent prolongations

Let M be a classical manifold. A map φ : M → Y is called F-smooth if
φ ◦ c : I→ Y is F-smooth for every smooth curve c : I→M ; recalling the basic
result by Boman [Bo67], we see that the F-smoothness of φ is equivalent to the
smoothness of all of the maps φu : M → C : x 7→ 〈φ(x), u〉, u ∈ Y◦ .
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Proposition 4.1. If φ : M → Y is F-smooth, then there is a unique map

Tφ ∼= (φ ◦ π
M
, dφ) : TM → Y ×Y = TY ,

called the tangent prolongation of φ, such that Tφ ◦ ∂c = ∂(φ ◦ c) for every local
smooth curve c : R→M . Moreover Tφ is linear over φ and F-smooth.

Proof. For each u ∈ Y◦ the map φu : M → C is smooth, hence d(φu) : TM →
C is smooth and linear. Since d(φu)(∂c(0)) = D(φu ◦ c)(0) = D〈φ ◦ c, u〉(0) =
〈∂(φ ◦ c)(0), u〉 ≡ 〈dφ(∂c(0)), u〉, setting (dφ)u := d(φu) we obtain the stated map.

�
Let x = (xa) : X → Rm be a local coordinate chart, X ⊂M , and xa : R→M

any coordinate curve. We define the partial derivative ∂aφ at the point xa(0) to be
∂(φ ◦ xa)(0); we obtain a map ∂aφ : X → TY. Locally we have

Tφ = ∂aφ dxa , i.e. 〈dφ, u〉 = 〈∂aφ, u〉dxa , u ∈ Y◦ .
Next we are concerned with the tangent prolongations of F-smooth functions on

Y, which is less immediate. If N is a classical manifold, then a map f : Y → N
is called F-smooth if f ◦ α : I→ R is smooth for all F-smooth curves α : I→ Y
(we remark that the F-smoothness of f does not allow any statement about its
continuity with respect to the standard distribution space topology).

Lemma 4.1. If f : Y → R, α : I→ Y are F-smooth, and α(t) = o(t), then
D(f ◦ α)(0) = 0.

Proof. The notation α(t) = o(t) means α(t) = tβ(t), with β(t) → 0 when
t → 0. Moreover β is F-smooth, since for all u ∈ Y◦ the classical function βu
given by βu(t) = 〈β(t), u〉 = αu/t is smooth. Next, consider the map F : R2 →
C : (s, t) 7→ f(sβ(t)). If c : R→ R2 is an arbitrary smooth curve, then F ◦ c is
smooth. This implies that F is a smooth classical function. We have D(f ◦α)(0) =
D1F (0, 0) + D2F (0, 0) = 0. �

Lemma 4.2. If f : Y → R, α, β : I→ Y are F-smooth, and α(0) = β(0) = 0, then

D(f ◦ (α+ β))(0) = D(f ◦ α)(0) + D(f ◦ β)(0) .

Proof. Define F : R2→ C : (s, t) 7→ f(α(s) + β(t)), a smooth classical function.
We have D(f ◦ (α+ β))(0) = D1F (0, 0) + D2F (0, 0) = D(f ◦α)(0) + D(f ◦ β)(0).

�

Proposition 4.2. If N is a classical manifold and f : Y → N is F-smooth, then
there is a unique map Tf : TY → TN over f , called the tangent prolongation of
f , such that for any F-smooth curve α valued in Y one has

Tf(∂α(t)) = T(f ◦ α)(t) .

Moreover, Tf is linear over f and F-smooth.

Proof. Consider first the case N = R. Let α, α̃ : I→ Y be such that ∂α(0) =
∂α̃(0). We have α(t)− α̃(t) = o(t), hence

D(f ◦ α)(0)− D(f ◦ α̃)(0) = D(f ◦ (α− α̃))(0) = 0 ,
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namely the map Df : TY → R : ∂α(0) 7→ D(f ◦ α)(0) is well-defined. In order to
see that Df is R-linear over Y, consider the curve β(t) = α(rt), fulfilling ∂β(0) =
r∂α(0). We obtain

Df(r∂α(0)) = Df(∂β(0)) = D(f ◦ β)(0) = rD(f ◦ α)(0) = rDf(∂α(0)) .

In order to see that Df is F-smooth, first note that, if (λ, µ) ∈ Y × Y = TY, then
Df(λ, µ) = D[f(λ + tµ)](t = 0). If (φ, ψ) : R→ TY is any F-smooth curve, then
consider the smooth classical function F : R2 → C : (s, t) 7→ f(φ(s) + tψ(s)). We
have

Df(φ(s), ψ(s)) = D(f(φ(s) + tψ(s)))(t = 0) = D2F (s, 0)

which, as a partial derivative of a smooth function, depends smoothly on s. Finally,
we set Tf := (f ◦ pr1 , Df) : TY → R× R.

If N is any classical manifold and (zi) is a local coordinate chart on it, then by
applying the above results to each component function zi ◦f we complete the proof.

�

Corollary 4.1. Let Φ : Y → Z be an F-smooth map. Then there is a unique map

TΦ ≡ (Φ,DΦ) : TY → TZ ,
called the tangent prolongation of Φ, such that TΦ(∂α(t0)) = ∂(Φ ◦ α)(t0) for any
F-smooth curve α valued in Y. Moreover, TΦ is linear over Φ and F-smooth.

Proof. For each u ∈ Z◦ we can apply proposition 4.1 to the map Φu : Y → C :
λ 7→ 〈Φ(λ), u〉; setting

〈DΦ(∂α(t0)), u〉 := DΦu(∂α(t0)) = D〈Φ ◦ α, u〉(t0)

we obtain the stated result. �

It is not difficult to see that all tangent prolongations behave naturally in terms
of any compositions.

For any two coordinate charts y : Y̆ → A ⊂ Rn, z : Z̆ → B ⊂ Rn, we obtain the
induced charts y∗ : Y̆ → Rn, z∗ : Z̆ → Rn, and the ‘coordinate expression’ of TΦ
as

TΦzy := T(z∗ ◦Φ ◦ y−1
∗ ) = Tz∗ ◦ TΦ ◦T(y−1

∗ ) : A×Rn → B ×Rn .
In particular we may consider the transformation induced by a diffeomorphism

ϕ : Y → Z (§2). There is a bijection between local F-smooth curves R→ Y and
R → Z , given by α 7→ ϕ ∗ ◦ α ; from 〈α , u〉 = 〈ϕ∗ ◦ α , ϕ∗u〉, we see that ϕ∗ is
F-smooth. Since ϕ∗ is linear, we obtain

Tϕ∗ = ϕ∗ × ϕ∗ .
If f :M1 ×M2 → N is F-smooth, where each one of the spaces M1 , M2 and

N is either a classical manifold or a distribution space, then the partial tangent
prolongations

T1f : TM1 ×M2 → TN ,

T2f :M1 ×TM2 → TN ,
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are defined in a straightforward standard way, as well as the tangent prolongation

Tf : TM1 ×TM2 → TN .

Similarly, if f :M→N1 × N2, we have the tangent prolongation

Tf : TM→ T(N1 ×N2) ∼= TN1 × TN2 .

5. F-smooth bundles

By p : E →M we shall denote a smooth classical bundle (dimM = m, dimE =
m+n) whose fibres are smoothly oriented manifolds. This means that ∧nVE → E
is a trivializable bundle with smoothly oriented fibres, so that we also have the
smooth 2-fibred bundle VE→ E →M , where

VE := (∧nVE)+ :=
⊔
y∈E

(∧nVyE)+ =
⊔
x∈M

V(TE x) .

For each x ∈M we consider the space Ex := U ′(Ex , C ⊗ V−1/2Ex) of all com-
plex generalized half densities on Ex . Next we introduce the fibred set

℘ : E :=
⊔
x∈M

Ex →M .

Let X ⊂M be an open submanifold. A local bundle trivialization (x, y) : EX →
X × Y yields the local bundle trivialization

(x, y∗) : EX →X ×Y : λx 7→
(
x, (yx)∗λx) ,

where λx ∈ Ex and yx is the restriction of y toEx . If (x, y) and (x, z) : EX →X×Z
are smooth trivializations (for simplicity we take the base chart x to be the same),
then (x, z∗) ◦ (x, y∗)−1 : X × Y → X × Z is F-smooth. This implies that a bundle
atlas of E yields an F-smooth bundle atlas of E . We also have the subbundles
E◦ ⊂ H ⊂ E , which behave naturally in terms of bundle trivializations.

Clearly, E turns out to be an F-smooth space in a natural way: a curve α : I→ E
is defined to be F-smooth if (x, y∗) ◦ α is such for any bundle trivialization (x, y);
in other terms, x ◦ α is a classical smooth curve and y∗ ◦ α is an F-smooth curve
in the sense of §3. In general, the F-smoothness of a map can be expressed via its
trivialized expression. So, f : E → R is F-smooth iff f ◦ (x, y∗)−1 is such for every
(x, y), as one sees from

f ◦ α = f ◦ (x, y∗)−1 ◦ (x, y∗) ◦ α .

Similarly, a map φ : N → E , where N is a classical manifold, is F-smooth iff
(x, y∗) ◦ φ is such for every (x, y). Again another similar statement holds for a
morphism between F-smooth bundles.

Let CE be the set of all F-smooth curves in E ; if α ∈ CE then T((x, y∗) ◦ α) :
I× R→ TX ×TY is naturally defined as

T((x, y∗) ◦ α) =
(

T(x ◦ α) , T(y∗ ◦ α)
)
.

We say that two such curves are first-order equivalent if their trivialized expressions
are such; in this way we obtain the definition of the tangent space TE . Obviously



SMOOTH BUNDLES OF GENERALIZED HALF-DENSITIES 119

this is a fibred set over E ; a local bundle trivialization (x, y) on E yields the local
bundle trivialization

T(x, y∗) : TE → TX × TY ,
and the transition maps between two induced trivializations are F-smooth and
linear. Hence a smooth atlas of E yields an F-smooth atlas of TE , so that πE :
TE → E , the tangent bundle of E , is an F-smooth vector bundle. We have another
F-smooth bundle with the same total F-smooth space, namely

T℘ : TE → TM : ∂α 7→ ∂(p ◦ α) .

Moreover we have the vertical subbundle over E

VE := Ker T℘ ⊂ TE ;

since (VE)x = T(Ex) = Ex × Ex , we also have

VE = E ×
M

E .

Summarizing, we have the exact sequence over E

0→ VE → TE → E ×
M

TM → 0 .

The subbundle of T∗M ⊗E TE which projects over the identity of TM is called
the first jet bundle, denoted by JE → E . This is an affine bundle over E , with
‘derived’ vector bundle T∗M ⊗EVE . The restriction of T∗x⊗T(x, y∗) is a local
bundle trivialization which we denote by

J(x, y∗) : JE → J(X × Y) ∼= Y ×
(

T∗X ⊗Y
)
.

Replacing the base map x by a coordinate chart x = (xa) we have the fibred
charts

(x, y∗) : E → Rm× Y ,
(xa, y∗ , ẋ

a, ẏ∗) := T(x, y∗) : TE → Rm×Y ×Rm×Y ,
(xa, y∗ , y∗a) := J(x, y∗) : JE → Rm×Y × (Rm⊗Y) .

Possibly we may have Y ⊂ Rn so that y = (yi) is a set of fibre coordinates; then
Y ⊂ Rn.

Tangent prolongations of F-smooth maps N → E and E → N , where N is
a classical manifold, and of F-smooth maps between distributional bundles, are
easily defined in terms of the tangent prolongations of their local trivialized (chart)
expressions; all turn out to be F-smooth linear morphisms.

In particular, if σ : M → E is an F-smooth section, then Ts : TM → TE projects
over the identity of TM , so that it can be viewed as a section jσ : M → JE . Let
σy := y∗ ◦ σ : M → Y be the ‘coordinate expression’ of σ. Then the coordinate
expressions of Tσ and jσ are

(xa, y∗ , ẋ
a, ẏ∗) ◦Tσ = Tσy = (xa, σy, ẋ

a, ẋa∂aσy) ,

(xa, y∗ , y∗a) ◦ jσ = Jσy = (xa, σy , ∂aσy) .
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For maps f : E → Rwe introduce the notation

∂f

∂y∗
:= [D2(f ◦ (x, y∗)−1)] ◦ (x, y∗) : E × Y → R ,

which plays the role which, in classical bundles, is of the set of partial derivatives
with respect to fibre coordinates. We obtain the local coordinate expression

df := pr1 ◦Tf = ∂af dxa +
∂f

∂y∗
◦ dy∗ .

More generally, if f : E →N and (vk) is a coordinate chart on N , then we obtain
the local expression

v̇k ◦ Tf = ∂avk ẋa +
∂vk

∂y∗
◦ ẏ∗ .

Let F →M be another bundle over the same base manifoldM , and Φ : E → F
a fibred F-smooth morphism over M (we assume, for simplicity, that Φ is constant
on the base). Then the fibred morphisms

TΦ : TE → TF , JΦ : JE → JF

are characterized by

TΦ ◦ Tσ = T(Φ ◦ σ) , JΦ ◦ jσ = j(Φ ◦ σ)

holding for every F-smooth section σ : M → E . Let (x, z) : F → Rm×Z be a local
chart; setting Φzy := z∗ ◦ Φ ◦ (x, y∗)−1 and

∂Φz

∂y∗
:= (D2(Φzy)) ◦ (x, y) : E × Y → Z ,

i.e.
∂Φz

∂y∗
(λ) = D(z∗ ◦ Φx ◦ y−1

∗ )(λy) : Y → Z , x := p(λ) ,

we obtain the local expressions

ż∗ ◦TΦ = ∂aΦz ẋa +
∂Φz

∂y∗
◦ ẏ∗ ,

z∗a ◦ JΦ = ∂aΦz +
∂Φz

∂y∗
◦ y∗a .

In particular, let ϕ : E → F be a fibred diffeomorphism over M and
Φ ≡ ϕ∗. Then we obtain (the second line follows from the linearity of ϕ∗)

Φz(λ) =(λy ◦ ϕ
−1
x )
√
|ϕ−1
x |yz , x := p(λ) ,

∂Φz

∂y∗
= Φzy ◦ x ,

∂aΦz(λ) =T1Φz(∂xa , λ) =

=
[
(∂iλy ◦ ϕ

−1)∂a(ϕ−1)i + 1
2(λy ◦ ϕ

−1)
(
(∂iϕj ◦ ϕ−1)∂a∂j(ϕ−1)i

)]√
|ϕ−1
x |yz .
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If Φ is the identity map of E , then we obtain the transition maps under fibred
coordinate transformations (with fixed base coordinates) respectively on TE and
JE . We set

κzy := [z ◦ (x, y)−1] ◦ x : E × Y → Z ,

Kzy := (κzy)∗ = [z∗ ◦ (x, y∗)−1] ◦ x : E × Y → Z ,

⇒ λz = Kzyλy = (λy ◦ κyz)
√
|κyz|

(note that κyz = (κzy)−1) and obtain

ż∗ = ẋa∂aKzy ◦ y∗ +Kzy ◦ ẏ∗ =

=
(

ẋa
[
(∂iy∗ ◦ κyz)∂a(κyz)i + 1

2
(y∗ ◦ κyz)(∂i(κzy)j∂a∂j(κyz)i)

]
+(ẏ∗ ◦ κyz)

)√
|κyz| ,

z∗a = ∂aKzy ◦ y∗ + Kzy ◦ y∗a =

=
([

(∂iy∗ ◦ κyz)∂a(κyz)i + 1
2 (y∗ ◦ κyz)(∂i(κzy)j∂a∂j(κyz)i)

]
+(y∗a ◦ κyz)

)√
|κyz| ,

where ∂iy∗ : λ 7→ ∂iλy .

6. F-smooth connections

As in the standard finite-dimensional case, a connection on the distributional
bundle E is defined to be an F-smooth section

Γ : E → JE .
In the domain of a fibred coordinate chart (xa, yi) we have the local expression

Γay := y∗a ◦ Γ : E → Rn .
We shall only consider linear connections, that is connections Γ which are linear
morphisms over M . Then we write Γay = Γayy ◦ y∗ where Γayy : X ×Rn →Rn or
also

Γayy : X →O(Rn) ,
where O(Rn) denotes the vector space of all linear operators in Rn. The existence
of global connections then follows from standard arguments using the paracompact-
ness of M .

If Γayy and Γazz are the local expressions of Γ in two different fibred charts (x, y)
and (x, z), then we have

Γazz = (∂aKzy + Kzy ◦ Γayy) ◦Kyz .

As in the finite-dimensional case, a connection yields a number of structures
(whose assignment is actually equivalent to that of the connection itself). First, Γ
can be viewed as a linear map E ×M TM → TE , and (πE ,T℘) ◦ Γ is the identity of
E ×M TM . The image

HΓE := Γ(E ×
M

TM )

is a vector subbundle of TE → E , with m-dimensional fibres; the restriction of
Γ ◦ (πE ,T℘) is the identity of HΓE . If v : M → TM is a smooth vector field, then
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Γv : E → TE is an F-smooth vector field, called its horizontal lift, with coordinate
expression

ẋa ◦ Γv = va , ẏ∗ ◦ Γv = vaΓay .

We also have the complementary map

Ω := 11− Γ : TE → VE
(it is immediate to check that Ω is vertical valued) so that the map

(
Γ◦(πE ,T℘) , Ω

)
determines the decomposition

TE = HΓE ⊕
E

VE .

Let σ : M → E be an F-smooth section. The covariant derivative of σ is defined
to be the linear morphsim over M

∇σ := pr2
◦Ω ◦Tσ : TM → E .

If v : M → TM is a vector field we also write ∇vσ := ∇σ ◦ v. The local coordinate
expression of the covariant derivative is

(∇σ)y := y∗ ◦∇σ = ẋa∂aσy − Γay ◦ σ .

We want to show that a classical smooth connection γ : E → JE yields a con-
nection on E →M in a natural way. We first perform a preliminary construction.

Let η : E → ∧nV∗E be a smooth section. Denote by ω : TE → VE the vertical
projection associated with γ. Then we have

ω∗η : E → ∧nT∗E ,

d(ω∗η) : E → ∧n+1T∗E ,

γ y d(ω∗η) : E×
M

TM → ∧nT∗E

Denoting by ι : VE → TE the standard inclusion, we set

∇η := ι∗ ◦ [γ y d(ω∗η)] : E×
M

TM → ∧nV∗E .

Let now σ : M → E be a section corresponding to an ordinary smooth section
E → C ⊗ V−1/2E (defined on a ‘tubelike’ open submanifold of E). If σ nowhere
vanishes we set

∇σ :=
1

2σ
∇(σ2) ,

which has the local coordinate expression

(∇σ)y = ∂aσy + γia∂iσy + 1
2(∂iγia)σy

(more properly, here we should write γia ◦ y−1 : X ×Rn→ R). From this it is clear
that ∇σ can be extended by continuity to all sections M → E ; we thus have an
induced connection Γ on E →M . Note that Γ is linear, even if γ is not. Its local
coordinate expression is

Γayy = −γia∂i − 1
2
(∂iγia)11Y .

It is not difficult to check that, under a change of the fibre coordinates, Γayy trans-
forms in the right way for the components of a connection.
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The connection Γ induced by γ has a simple geometric interpretation. Namely,
consider a smooth curve c : I→M . Suppose that, for sufficiently close t, t 0 ∈ I, γ
yields a diffeomorphism ϕt : Ec(t0) → Ec(t) via parallel transport along c (this is
certainly the case if E is a vector bundle and γ is linear). Then, for each λ ∈ Ec(t0)

the smooth curve

I→ E : t 7→ (ϕ t)∗λ

is exactly the horizontal lift of c (in E) through λ. For a general classical connection,
the map ϕt will be not defined on the whole fibre Ec(t0) (even for t arbitrarily close
to t0), but the above interpretation applies, for example, whenever λ has compact
support.

7. Brackets and curvature

This section is a brief summary of statements which either can be developped
in strict analogy with the finite-dimensional situation, or follow from direct calcu-
lations.

Let v, w : E → TE be F-smooth vector fields, so that Tv,Tw : TE → TTE . We
have a canonical involution s : TTE → TTE , and

Tw ◦ v − s(Tv ◦ w) : E → VTE ∼= TE ×
E

TE .

Then we define the Lie bracket of the two vector fields to be

[v, w] := pr2

(
Tw ◦ v − s(Tv ◦ w)

)
: E → TE ,

which has the local expression

[v, w]a = vb∂bw
a − wb∂bva + ∂y∗w

a ◦ vy − ∂y∗v
a ◦wy ,

[v, w]y = vb∂bwy − wb∂bvy + ∂y∗wy ◦ vy − ∂y∗vy ◦wy

The Frölicher-Nijenhuis bracket of tangent-valued forms can be introduced by a
straightforward extension of the standard definition, which is given in terms of the
Lie bracket of vector fields [FN56, MK98, MM84, KMS93]. In particular we are
interested in ‘basic’ forms E → ∧T∗M ⊗M TE . If Γ is a connection on E then its
curvature is defined to be

R := 1
2 [Γ,Γ] : E → ∧2T∗M ⊗

E
VE ,

which has the coordinate expression

Ryy = Rabyydxa ∧dxb = (∂aΓbyy + Γbyy ◦ Γayy)dxa ∧ dxb .

In particular, if Γ is the connection determined by the classical connection γ, then
we find

Rabyy = −ρ i
ab ∂i − 1

2 (∂iρ i
ab )11Y ,

where ρ denotes the classical curvature of γ.
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[FK88] Frölicher, A. and Kriegl, A., Linear spaces and differentiation theory, John Wiley &
Sons (1988).
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