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ON THE GENERALIZED BOUNDARY VALUE PROBLEM

BORIS RUDOLF

In the paper it is proved that the generalized linear boundary value
problem generates a Fredholm operator. Its index depends on the number of bound-
ary conditions. The existence results of Landesman-Lazer type are given as an ap-
plication to nonlinear problems by using dual generalized boundary value problems.

The paper deals with the generalized boundary value problem for a nonlinear
ordinary differential equation of n-th order.

The properties of mappings generated by such boundary value problems are
thoroughly studied by Šeda [9], [10], [11].

An important special case of the generalized boundary value problem is the
multipoint boundary value problem. Various existence and multiplicity results
for multipoint boundary value problems can be found by Rach̊unková [6], [7]. We
prove that the linear generalized boundary value problem generates always a linear
Fredholm operator. Its index is given by the order of equation and the number of
boundary conditions.

A certain type of existence result for two point nonlinear boundary value prob-
lems at resonance in L2 space, given by Grossinho [1], is based on the adjoint
boundary value problem to the corresponding linear problem.

If a classical solution is required or boundary conditions are more general an
adjoint problem cannot be described as boundary value problem for ordinary dif-
ferential equation. Instead of the adjoint problem we use a dual boundary value
problem and apply the method of Grossinho for the generalized boundary value
problem with bounded nonlinearity.

Preliminaries

We consider the generalized boundary value problem

(1) x(n)(t) + a1(t)x(n−1)(t) + · · ·+ an(t)x(t) + f(t, x(t), ..., xk(t)) = h(t) ,
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(2) li(x) = 0 i = 1, . . . ,m ,

on the bounded interval I = [a, b] , where ai ∈ C(I), h ∈ C(I), f ∈ C(I × Rk+1)
and li : Cn−1(I) → R are continuous linear functionals.

Boundary conditions (2) are assumed to be linearly independent.
An abstract formulation of the problem (1), (2) is given by the operator equation

Lx+ Nx = h ,

where

L : X → Z ,

L(x(t)) = x(n)(t) + a1(t)x(n−1)(t) + · · ·+ an(t)x(t)(3)

is a linear operator,

N : X → Z,

N (x(t)) = f(t, x(t), ..., xk(t))

is a nonlinear operator and h ∈ Z. The spaces X and Z are real Banach spaces.

Linear problem

In this part we deal with the linear generalized boundary value problem

x(n)(t) + a1(t)x(n−1)(t) + · · ·+ an(t)x(t) = h(t) ,(4)

li(x) = 0 i = 1, . . . ,m .(2)

We say that the problem (4), (2) generates a linear operator L : X → Z given
by (3) where X = {x ∈ Cn(I); li(x) = 0, i = 1, . . . ,m} and Z = C(I).

We show that the problem (4), (2) generates a Fredholm operator.

Definition [4], [12], [13]. Let X, Z be Banach spaces.
A linear operator L : domL ⊂ X → Z is called Fredholm iff

(i) the null space N (L) is finite dimensional
(ii) the range R(L) is closed and of finite codimension.

Index of L is the number

indL = dimN (L) − codimR(L) .

A characteristic of Fredholm operators of index zero is given by Nikol’skij [12].
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Theorem 1 (Nikol’skij) [12, p.233]. A linear bounded operator L : X → Z is
Fredholm of index zero iff

L = C + T ,

where C is a linear homeomorphism of X onto Z and T : X → Z is a linear
compact operator.

In case when the order of equation (4) is equal to the number of conditions (2)
Nikol’skij theorem follows that the operator L given by (3) is Fredholm of index
zero.

Lemma 1 [8, p.56]. The generalized boundary value problem (4), (2) with n = m
generates a Fredholm operator of index 0.

To prove that the linear operator L defined by the problem (4), (2) is Fredholm
of index k = n −m we use two simple generalizations of Nikol’skij theorem.

Theorem 2. A linear bounded operator L : X → Z is Fredholm of nonnegative
index k iff there is a continuous projection P : X → X such that P (X) = Xa,
dimXa = k and

L = CP ′ + T ,

where P ′ = I − P is a continuous projection onto Xb, X = Xa ⊕Xb, C is a linear
homeomorphism of Xb onto Z and T : X → Z is a linear compact operator.

Proof. Suppose L is a Fredholm operator of index k ≥ 0.
Then there is Xa, dimXa = k such that N (L) = Xa ⊕X1. As X = N (L)⊕X2

we denote Xb = X1 ⊕ X2, P a projection onto Xa and P ′ = I − P a projection
onto Xb.

Obviously L|Xb is Fredholm of index zero.
Theorem 1 implies that

L|Xb = C + T ′

where C is a linear homeomorphism of Xb onto Z and T ′ : Xb → Z is a linear
compact operator.

Now
L = LP ′ = L|XbP ′ = (C + T ′)P ′ = CP ′ + T .

Suppose L = CP ′ + T.
Then L = (C + T )P ′ + TP = (C + T ′)P ′ + TP where T ′ = TP ′, T ′ : Xb → Z

is compact. Theorem 1 implies that C + T ′ : Xb → Z is Fredholm of index zero.
As kernel

N ((C + T ′)P ′) = N (C + T ′)⊕N (P ′)

and range
R((C + T ′)P ′) = R(C + T ′)

there is

dimN ((C + T ′)P ′) = dimN (C + T ′) + dimN (P ′) =

= codimR(C + T ′) + dimXa = codimR(C + T ′) + k .
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That means the operator (C+T ′)P ′ is Fredholm of index k. Since TP is a compact
operator, L = (C+T ′)P ′+TP is a compact perturbation of the operator (C+T′)P ′

with index k and therefore the index of L is again equal to k [13, Theorem 5.E]. �
Theorem 3. A linear bounded operator L : X → Z is Fredholm of nonpositive
index −k iff there is a finite dimensional space X1, dimX1 = k, X ∩ X1 = {0}
such that

L = C|X + T ,

where C is a linear homeomorphism of X ⊕X1 onto Z and T : X → Z is a linear
compact operator.

Proof. Let L be Fredholm of index −k.
The existence of a finite dimensional space X1 such that dimX1 = k, X ∩X1 =

{0} is obvious. We define L1 : X ⊕X1 → Z by

L1(x+ x1) = Lx for x ∈ X, x1 ∈ X1 .

The operator L1 is Fredholm of index zero and

L1 = C + T1

where C is a linear homeomorphism of X ⊕X1 onto Z and T1 : X ⊕X1 → Z is a
linear compact operator. Then

L = L1|X = C|X + T1|X = C|X + T .

Let L = C|X + T.
We define T1 : X ⊕X1 → Z by

T1(x+ x1) = Tx− Cx1 for x ∈ X, x1 ∈ X1 .

As X1 is finite dimensional, T1 is a linear compact operator and T1|X = T. Now

L = C|X + T1|X = (C + T1)|X .

The operator C + T1 : X ⊕X1 → Z is Fredholm of index zero, and

(C + T1)(x+ x1) = (C + T1)x+ (C + T1)x1 = (C + T )x for x ∈ X, x1 ∈ X1 .

That means R(C + T1) = R(L) and N (C + T1) = X1 ⊕N (L). Now

dimN (C + T1) = dimX1 + dimN (L) = k + dimN (L)

and
codimR(C + T1) = codimR(L) .

Therefore
indL = −k . �

Two previous theorems imply the following result for the boundary value prob-
lem (4), (2) in case when the order of equation and the number of conditions are
different.
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Lemma 2. The generalized boundary value problem (4), (2) generates a Fredholm
operator of index n−m.

Proof. We denote X = {x ∈ Cn(I); li(x) = 0, i = 1, . . . ,m}, Z = C(I).
Case n ≥ m.
We add k = n−m boundary conditions

(5) l̃j(x) = 0 , j = 1, . . . , k

linearly independent on X. There is a set {φj, j = 1, . . . , k} ⊂ X of linearly
independent functions such that l̃j(φj) 6= 0. We denote by Xa = span{φj, j =
1, . . . , k} the k dimensional subspace of X and P a continuous projection onto Xa.

We define a complement of Xa by

Xb = {x ∈ Cn(I) ; li(x) = 0, i = 1, . . . ,m ; l̃j(x) = 0, j = 1, . . . , k} .

Lemma 1 implies that the problem (4), (2), (5) generates a Fredholm operator
L1 of index zero defined on Xb.

That means the operator L : X → Z given by (3) is

L = LP + L1P
′ = LP + (C + T ′)P ′ = CP ′ + T .

Theorem 2 implies that indL = k.
Case n < m.
We remove k = m− n linearly independent boundary conditions

lj(x) = 0 , j = 1, . . . , k

and denote by X1 the k dimensional space X1 = span{φj ∈ Cn(I), j = 1, . . . , k}
with basis {φj, j = 1, . . . , k lj(φj) 6= 0}. Obviously X ∩X1 = {0}.

Operator L1 defined by (3) on X ⊕ X1 is Fredholm of index zero. Lemma 1
implies that

L1 = C + T

where C is a linear homeomorphism of X ⊕X1 onto Z and T : X ⊕X1 → Z is a
linear compact operator.

Now
L = L|X

and Theorem 3 implies indL = −k. �

Dual pairs and dual problem

We define a dual problem to the linear problem (4), (2) and prove a Fredholm
alternative for dual operators which can be used for nonselfadjoint generalized
boundary value problems. Our Theorem 4 below is a modification of Theorem
5.G [13, p.304] for the case of nonselfadjoint boundary conditions.
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Definition [13]. Let U, V be Banach spaces and D : V × U → R be a bounded
bilinear map.

We call {V, U}D a dual pair iff the following separation properties are fulfilled

D(v, u) = 0 for each u ∈ U ⇒ v = 0 ,

D(v, u) = 0 for each v ∈ V ⇒ u = 0 .

We denote by 〈v, u〉D = D(v, u).

Definition. Let X, Y, Z, W be Banach spaces and D : Z×Y → R, D : W ×X →
R be bounded bilinear maps.

We call the operators L : X → Z and LD : Y →W dual iff for each x ∈ X, and
each y ∈ Y

〈Lx, y〉D = 〈LDy, x〉D .

Now we consider the equation

(6) Lx = h , L : X → Z

along with the dual equation

(7) LDy = 0 , LD : Y →W

and we formulate the following Fredholm alternative.

Theorem 4. Let X, Y, Z, W be Banach spaces and D : Z×Y → R, D : W×X →
R be bounded bilinear maps. We assume that

(i) {Z, Y }D, {W,X}D are dual pairs,
(ii) L : X → Z and LD : Y →W are dual operators,
(iii) L, LD are Fredholm with

indL + indLD = 0 .

Then for each given h ∈ Z the equation (6) has a solution x ∈ X iff

〈h, y〉D = 0

for each solution y ∈ Y of the dual equation (7).

Proof. We show that
dimN (LD) ≤ dimN (LT )

where LT : Z∗ → X∗ is the usual adjoint operator to L and Z∗, X∗ are the dual
spaces to Z, X respectively.

Let {y1, . . . , yn} be a basis of N (LD) ⊂ Y. We define linear functionals fj ∈ Z∗
by

fj(z) = 〈z, yj〉D for z ∈ Z .
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Then
fj(Lx) = 〈Lx, yj〉D = 〈LDyj , x〉D = 0

or
〈LT fj , x〉 = 〈fj , Lx〉 = 0 for each x ∈ X .

Thus fj ∈ N (LT ). The separation property of D implies f1, . . . , fn are linearly
independent.

Similarly
dimN (L) ≤ dimN ((LD)T )

where (LD)T : W ∗ → Y ∗.
As

codimR(L) = dimN ((LT ) codimR(LD) = dimN ((LD)T )

there is

indL = dimN (L) − codimR(L) ≤ codimR(LD)− dimN ((LD) = −indLD .

The assumption (iii) implies

dimN (LD) = dimN (LT ) .

Then N (LT ) = {f1, . . . , fn}, and

〈fj , h〉 = 0 ⇐⇒ 〈h, yj〉D = 0 .

The classical Fredholm alternative for the adjoint operator LT implies the state-
ment of our theorem. �
Example 1. Let us consider the generalized linear boundary value problem

x′′ + x = h(t) ,(8)

x(1) = 0,
∫ p

0
x(t) dt = 0, 0 < p ≤ 1 ,(9)

on the interval I = [0, 1], with h ∈ C(I).
We denote

X = {x ∈ C2(I) ; x satisfies (9)},

Y = {y ∈ C2(I) ; y(0) = 0 ,
∫ 1

1−p
y(s) ds = 0} ,

Z = W = C(I) ,

Lx = x′′ + x .
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Functionals D : Z × Y → R and D : W ×X → R are given by

〈z, y〉D =
∫ p

0

∫ 1

s

z(t)y(t − s) dtds .

〈w, x〉D =
∫ p

0

∫ 1−s

0
w(t)x(t+ s) dtds .

By a simple computation we obtain

〈Lx, y〉D = 〈Ly, x〉D .

Hence the problem

y′′ + y = 0 ,(10)

y(0) = 0 ,
∫ 1

1−p
y(s) ds = 0(11)

is a dual boundary value problem to (8), (9).
Lemma 1 implies that both (8), (9) and (10), (11) generate Fredholm operators

of index zero.

Theorem 5. There is a solution of the generalized boundary value problem (8),
(9) iff

〈h, y〉D = 0

for each solution y ∈ Y of the dual generalized boundary value problem (10), (11).

Proof. Theorem 4 implies our result. As the assumption (ii) is proved above and
the assumption (iii) follows from Lemma 1 we prove that the assumption (i) is
fulfilled.

Let z ∈ Z and
〈z, y〉D = 0 for each y ∈ Y .

There is

〈z, y〉D =
∫ p

0

∫ 1

s

z(t)y(t − s) dtds =
∫ 1

0
z(t)u(t) dt ,

where

u(t) =

{ ∫ t
0 y(t − s) ds , for t ≤ p ,∫ p
0 y(t − s) ds , for t > p .

For given t0 different from 0, p, 1 − p, and 1 we choose δ < p
2 such that Iδ =

(t0 − δ, t0 + δ) ∩ {0, p, 1− p, 1} = ∅ and a function yδ ∈ Y positive on (t0 − δ, t0),
negative on (t0, t0 +δ), equal to zero otherwise and such that

∫
Iδ
y(t) dt = 0. Then

the function uδ is positive on Iδ and equal to zero otherwise. As
∫ 1

0 z(t)uδ(t)dt = 0
for each δ sufficiently small, there is z(t0) = 0. Then z(t) = 0.
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The proof of the second separation property of assumption (i) as well as the
proof of separation properties of operator D are similar. �

Example 2. We consider the problem

x′′ + x = h(t) ,(8) ∫ p

0
x(t) dt = 0 where 0 < p ≤ 1 ,(12)

on I = [0, 1]. We denote X = {x ∈ C2(I); x satisfies (12)}, Y = {y ∈ C2(I);
y(0) = 0,

∫ 1
1−p y(s) ds = 0,

∫ 1
1−p y

′(s) ds = 0}, Z = W = C(I), Lx = x′′ + x.
After a similar computation as in the Example 1 and using the same functionals
D,D we obtain that the problem

y′′ + y = 0 ,(13)

y(0) = 0 ,
∫ 1

1−p
y(s) ds = 0 ,

∫ 1

1−p
y′(s) ds = 0(14)

is a dual boundary value problem to (8), (12).
Now Lemma 2 implies that the problem (8), (12) generates a Fredholm operator

of index 1 and (13), (14) generates a Fredholm operator of index −1.

Theorem 6. There is a solution of the generalized boundary value problem (8),
(12) iff

〈h, y〉D = 0

for each solution y ∈ Y of the dual generalized boundary value problem (13), (14).

The proof is similar to the one of the preceeding theorem.

Application to nonlinear problems

Example 3. We consider the nonlinear generalized boundary value problem

x′′ + x+ f(t, x) = h(t),(15)

x(2π) = 0,
∫ 2π

0
x(t) dt = 0,(16)

on the interval I = [0, 2π], where f : I × R → R is a continuous and bounded
function and h ∈ C(I).

We formulate an existence result for the generalized boundary value problem
(15), (16) by using a condition of Landesman-Lazer type [3].
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Theorem 7. Suppose that
(i) |f(t, x)| ≤M for each x ∈ R, t ∈ I,

(ii)
∫ π

0
f+(t)(1− cos t) dt+

∫ 2π

π

f−(t)(1− cos t) dt

>

∫ 2π

0
h(t)(1− cos t) dt >∫ π

0
f−(t)(1− cos t) dt+

∫ 2π

π

f+(t)(1− cos t) dt

where f±(t) = lim
x→±∞

f(t, x).

Then there is a solution of the problem (15), (16).

Proof. We denote X = {x ∈ C2(I), x satisfies (16)}, Z = C(I) and L : X → Z,
Lx = x′′ + x. Obviously N (L) = span{sin t} is a one dimensional subspace of X.

The problem

y′′ + y = 0 ,(17)

y(0) = 0 ,
∫ 2π

0
y(s) ds = 0 ,(18)

defines the dual operator LD : Y → W, where LDy = y′′ + y = Ly, Y = {y ∈
C2(I), y satisfies (18)} and W = Z = C(I).

Now N (LD) = N (L) and Theorem 5 yields

R(L) = {z ∈ Z, 〈z, sin t〉D = 0} ,

with

〈z, sin t〉D =
∫ 2π

0
z(t)(1 − cos t) dt .

By the decomposition X = N (L) ⊕ X2, Z = R(L) ⊕ Z2 the subspaces N (L)
and Z2 = span{(1 − cos t)} are one dimensional and there is an isomorphism
J : Z2 → N (L), defined by J(k(1 − cos t)) = k sin t. The nonlinear operator N is
defined by N (x)(t) = f(t, x(t)).

By the standard arguments from [5], [1] the original problem

Lx +Nx = h

is equivalent to the fixed point problem

x = Tx ,

where T : N (L)⊕X2 → N (L) ⊕X2,

T (x1, x2) = (x1 − JQ(Nx− h),−L−1
p (I −Q)(Nx− h)) ,
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Q : Z → Z2 is a continuous projection onto Z2 and L−1
p is pseudoinverse operator

defined on R(L) which is continuous as operator onto X2 and compact as operator
to Z.

Then the homotopy H : [0, 1]× Z → Z,

H(λ, x) = (I − λT )x

is compact.
We use the Leray-Schauder degree and prove that there is an open bounded set

Ω such that
deg(H(λ, x),Ω, 0)

is constant and nonzero for each λ ∈ [0, 1].
The homotopy invariance of degree is satisfied provided that there is no solution

of the equation

(19) H(λ, x) = 0 ,

on ∂Ω.
Let x = x1 + x2 be a solution of (19). Then

x2 + λL−1
p (I − Q)(Nx− h) = 0

and the assumption (i) implies that there is a real constant R2 such that

‖x2‖ < R2 .

Now (19) is equivalent to

Lx+ λ(Nx− h) = (λ− 1)J−1x1

and for each solution y of the dual problem (17), (18) there is

λ〈(Nx − h), y〉D = (λ − 1)〈J−1x1, y〉D .
Assume now that there are sequences λn ∈ (0, 1], xn ∈ N (L) such that ‖xn‖ →

∞ and H(λn, xn+x2n) = 0,where ‖x2n‖ < R2. As xn = kn sin t there is |kn| → ∞.
We choose y = sgn (kn) sin t. Then

〈(Nx− h), y〉D =
(λ− 1)
λ
|kn|〈(1− cos t), sint〉D ≤ 0 .

That means

sgn (kn)
∫ 2π

0
f(t, kn sin t+ x2n)(1− cos t) dt ≤ sgn (kn)

∫ 2π

0
h(t)(1− cos t) dt .

The last inequality is in contradiction with (ii).
That means there is a real constant R1 such that

‖x1‖ < R1

for each solution x = x1 +x2 of (19) and there is no solution of (19) on [0, 1]× ∂Ω
where

Ω = {x ∈ C(I) , x = x1 + x2 , ‖x1‖ < R1 , ‖x2‖ < R2} .
Then the Leray-Schauder degree

deg(H(1, x),Ω, 0) = deg(H(0, x),Ω, 0) 6= 0

and there is a solution x ∈ Ω of H(1, x) = 0. �
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Example 4. Let’s consider the same nonlinear differential equation (15) on I =
[0, 2π], with only one generalized boundary condition

(20)
∫ 2π

0
x(t) dt = 0 .

We denote X = {x ∈ C2(I), x satisfies (20)}, Xa = span{cos t} and P : X →
Xa a continuous projection onto Xa.

Theorem 8. Suppose that the assumptions (i), (ii) hold.
Then for each c ∈ R there is a solution x of the problem (15), (20) such that

Px = c cos t.

Proof. Again we denote Z = W = C(I) and L : X → Z, Lx = x′′ + x. Now
N (L) = span{sin t, cos t} is two dimensional subspace of X. We choose X1 =
span{sin t}, Xa = span{cos t} and decompose N (L) = Xa ⊕X1.

The problem
y′′ + y = 0 , (14)

defines the dual operator LD : Y → W, where LDy = y′′ + y = Ly, Y = {y ∈
C2(I), y satisfies (14)}.

Now N (LD) = span{sin t} and Theorem 6 follows

R(L) = {z ∈ Z, 〈z, sin t〉D = 0} .

To obtain the statement of our theorem we repeat the proof of Theorem 7 in
the space Xb = X1 ⊕X2 with arbitrary but fixed xa ∈ Xa. �
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