Archivum Mathematicum

Judita Lihová

Characterization of posets of intervals

Archivum Mathematicum, Vol. 36 (2000), No. 3, 171--181

Persistent URL: http://dml.cz/dmlcz/107729

Terms of use:

© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

CHARACTERIZATION OF POSETS OF INTERVALS

JUDITA LIHOVÁ

Abstract

If \mathcal{A} is a class of partially ordered sets, let $\mathcal{P}(. \mathcal{A})$ denote the system of all posets which are isomorphic to the system of all intervals of \mathbb{A} for some $\mathbb{A} \in \mathcal{A}$. We give an algebraic characterization of elements of $\mathcal{P}(\mathcal{A})$ for \mathcal{A} being the class of all bounded posets and the class of all posets \mathbb{A} satisfying the condition that for each $a \in \mathbb{A}$ there exist a minimal element u and a maximal element v with $u \leq a \leq v$, respectively.

For a partially ordered set \mathbb{A} let Int \mathbb{A} be the system of all intervals of \mathbb{A}; further, we put $\operatorname{Int}_{0} \mathbb{A}=\operatorname{Int} \mathbb{A} \cup\{\emptyset\}$. The systems Int \mathbb{A} and Iøt \mathbb{A} are partially ordered by the set-theoretical inclusion.

These systems, particularly in the case when \mathbb{A} is a lattice, have been investigated in several papers (cf. [1]-[12]). In [5], the algebraic characterization of $\operatorname{Int}_{0} \mathbb{L}$ for \mathbb{L} being a lattice with a least or with a greatest element was given.

For each class \mathcal{A} of partially ordered sets we denote by $\mathcal{P}(\mathcal{A})$ the class of all partially ordered sets \mathbb{P} having the property that there exists $\mathbb{A}_{\mathbb{P}} \in \mathcal{A}$ such that Int $\mathbb{A}_{\mathbb{P}}$ is isomorphic to \mathbb{P}.

Let us denote by
\mathcal{A}_{α} - the class of all partially ordered sets \mathbb{A} which have the least element and the greatest element;
\mathcal{A}_{β} - the class of all partially ordered sets \mathbb{A} such that for each $a \in \mathbb{A}$ there exists a minimal element u of \mathbb{A} and a maximal element v of \mathbb{A} with $u \leq a \leq v$.

In the present paper we give an algebraic characterization of elements of $\mathcal{P}\left(\mathcal{A}_{\alpha}\right)$ or $\mathcal{P}\left(\mathcal{A}_{\beta}\right)$, respectively.

The question of characterizing $\mathcal{P}\left(\mathcal{A}_{t}\right)$, where \mathcal{A}_{t} is the class of all partially ordered sets, remains open.

[^0]
1. The Class $\mathcal{P}\left(\mathcal{A}_{\alpha}\right)$

We will deal with partially ordered sets \mathbb{P} and \mathbb{A} which have the underlying set P or A, respectively. The corresponding partial orders are denoted by \leq or \preceq, respectively.

We recall that by an interval of a partially ordered set $\mathbb{P}=(P, \leq)$ a set $<a, b>=\{x \in P: a \leq x \leq b\}$ with $a, b \in P, a \leq b$ is meant. If $a=b$, we use the notation $\langle a\rangle$ instead of $\langle a, a\rangle$. The symbol ($a\rangle$ will be used for the set $\{x \in P: x \leq a\}$. (Remark that ($a>$ need not be an interval.)

The system of all minimal and maximal elements of \mathbb{P} will be denoted by Min \mathbb{P} and Max \mathbb{P}, respectively.

An analogous terminology is applied for $\mathbb{A}=(A, \preceq)$.
Consider the following condition concerning the partially ordered set $\mathbb{P}=(P, \leq)$:
$\left(\beta_{1}\right)$ if $x \in P$, then there exists $u \in \operatorname{Min} \mathbb{P}$ with $u \leq x$.
Theorem 1.1. Let $\mathbb{P}=(P, \leq)$ be a partially ordered set. Then $\mathbb{P} \in \mathcal{P}\left(\mathcal{A} \alpha_{\alpha}\right)$ if and only if \mathbb{P} has a greatest element I, it fulfils the condition $\left(\beta_{1}\right)$ and there exist $o, i \in \operatorname{Min} \mathbb{P}$ and a dual isomorphism

$$
\varphi:<o, I>\rightarrow<i, I>
$$

satisfying:
(1) if $x \in P$, then $y=\sup \{x, o\}, z=\sup \{x, i\}$ exist and $x=\inf \{y, z\}$ holds;
(2) if $y \in<o, I>, z \in<i, I>$ and the set $\{y, z\}$ has a lower bound, then $\varphi^{-1}(z) \leq y ;$
(3) if $y_{1}, y \in<o, I>, y_{1} \leq y$, then $\inf \left\{y, \varphi\left(y_{1}\right)\right\}$ exists.

Proof. Let $\mathbb{P} \in \mathcal{P}\left(\mathcal{A}_{\alpha}\right)$. Then \mathbb{P} is isomorphic to Int \mathbb{A} for a partially ordered set $\mathbb{A}=(A, \preceq)$ with a least element 0 and a greatest element 1 . Evidently $\prec 0,1 \succ$ is the greatest element of $\operatorname{Int} \mathbb{A}, \operatorname{Int} \mathbb{A}$ fulfils $(\mathbb{\beta})$ and if we take $o=\prec 0 \succ, i=\prec 1 \succ$ and define φ by $\varphi(\prec 0, a \succ)=\prec a, 1 \succ, \varphi$ is a dual isomorphism and the conditions (1)-(3) are satisfied. Hence \mathbb{P} has the required properties, too.

The proof of the converse is made in several steps. So let \mathbb{P} fulfil $\left(\beta_{1}\right)$ and let I be the greatest element of $\mathbb{P}, o, i \in \operatorname{Min} \mathbb{P}, \varphi$ be a dual isomorphism $\langle o, I\rangle \rightarrow\langle i, I\rangle$ such that (1)-(3) are satisfied. For the sake of brevity we will write $u \wedge v$ and $u \vee v$ instead of $\inf \{u, v\}$ and $\sup \{u, v\}$, respectively.
A. If $y \in<o, I>$, then $p=y \wedge \varphi(y)$ exists and $p \in \operatorname{Min} \mathbb{P}$. Moreover, $y=$ $p \vee o, \varphi(y)=p \vee i$.

Let $y \in\langle o, I\rangle$. Then $y \wedge \varphi(y)$ exists by (3). Let $y \wedge \varphi(y)=x$. By $\left(\beta_{1}\right)$ there exists $p \in \operatorname{Min} \mathbb{P}$ with $p \leq x$. We have $p=y^{\prime} \wedge z^{\prime}$, where $y^{\prime}=p \vee o, z^{\prime}=p \vee i$ by (1). Obviously $y^{\prime} \leq y, z^{\prime} \leq \varphi(y)$. Now p is a lower bound of both $\left\{y^{\prime}, \varphi(y)\right\}$ and
$\left\{y, z^{\prime}\right\}$, so that we have $y=\varphi^{-1}(\varphi(y)) \leq y^{\prime}, \varphi^{-1}\left(z^{\prime}\right) \leq y$ by (2). The latter gives $z^{\prime} \geq \varphi(y)$. We have $y=y^{\prime}, z^{\prime}=\varphi(y), x=p$.
B. Let $x \in P, x=u \wedge v, u \in\langle o, I>, v \in\langle i, I>$. Then $u=x \vee o, v=x \vee i$. Moreover, $x \in \operatorname{Min} \mathbb{P}$ if and only if $v=\varphi(u)$.

Denote $y=x \vee o, z=x \vee i$ (the existence follows from (1)). Obviously $y \leq u$ and $z \leq v$. As $\{y, v\}$ has a lower bound, we have $\varphi^{-1}(v) \leq y$. Using A we obtain $\varphi^{-1}(v) \wedge v=r \in \operatorname{Min} \mathbb{P}$. Since $\varphi^{-1}(v) \leq u$, we have $r \leq u \wedge v=x$. Hence $\left\{\varphi^{-1}(v), z\right\}$ has a lower bound and consequently $\varphi^{-1}(z) \leq \varphi^{-1}(v)$, which implies $z \geq v$. As also $z \leq v$ holds, we have $v=z=x \vee i$. The proof of $u=x \vee o$ is analogous.

If $v=\varphi(u)$, then $x \in \operatorname{Min} \mathbb{P}$ by A. Conversely, let $x=u \wedge v \in \operatorname{Min} \mathbb{P}$. Then evidently $\varphi^{-1}(v) \wedge v=x$ and also $u \wedge \varphi(u)=x$. So the set $\left\{\varphi^{-1}(v), \varphi(u)\right\}$ has a lower bound and consequently $u=\varphi^{-1}(\varphi(u)) \leq \varphi^{-1}(v)$, which implies $\varphi(u) \geq v$. But we have also $\varphi(u) \leq v$ and therefore $v=\varphi(u)$.
C. Let $x \in P, y=x \vee o, z=x \vee i, q=y \wedge \varphi(y), p=\varphi^{-1}(z) \wedge z$. Then $x=p \vee q$.

As $x=y \wedge z$, we have $\varphi^{-1}(z) \leq y$ by (2), which implies $z \geq \varphi(y)$. Consequently $p, q \leq x$. Now let $x^{\prime} \geq p, q, x^{\prime} \in P$. In view of A we have $y=q \vee o \leq x^{\prime} \vee o, z=$ $p \vee i \leq x^{\prime} \vee i$. Using (1) we obtain $x^{\prime}=\left(x^{\prime} \vee o\right) \wedge\left(x^{\prime} \vee i\right) \geq y \wedge z=x$.

Let us remark that $I=o \vee i$ by C.
If $p \in \operatorname{Min} \mathbb{P}$, set $\psi(p)=p \vee o$.
D. The mapping $\psi: \operatorname{Min} \mathbb{P} \rightarrow\langle o, I\rangle$ is a bijection.

In view of A, ψ is onto. Let $p, q \in \operatorname{Min} \mathbb{P}, p \vee o=q \vee o=y$. By (1), $p=$ $y \wedge(p \vee i), q=y \wedge(q \vee i)$ and using B we obtain $p \vee i=\varphi(y)=q \vee i$. Thus $p=q$.

Let $A=\operatorname{Min} \mathbb{P}$ and define a partial order \preceq in A by

$$
p \preceq q(p, q \in \operatorname{Min} \mathbb{P}) \Longleftrightarrow p \vee o \leq q \vee o .
$$

Notice that ψ is now an isomorphism of $\mathbb{A}=(A, \preceq)$ onto $(\langle o, I\rangle, \leq)$. The aim is to show that \mathbb{P} is isomorphic to $\operatorname{Int} \mathbb{A}$.
E. If $p, q \in A, p \preceq q$, then $p \vee q$ exists (in $\mathbb{P})$ and $p \vee q=(q \vee o) \wedge \varphi(p \vee o)$ holds.

The relation $p \vee o \leq q \vee o$ implies that $x=(q \vee o) \wedge \varphi(p \vee o)$ exists. By B we have $q \vee o=x \vee o, \varphi(p \vee o)=x \vee i$ and consequently $(x \vee o) \wedge \varphi(x \vee o)=$ $(q \vee o) \wedge \varphi(q \vee o)=q, \varphi^{-1}(x \vee i) \wedge(x \vee i)=(p \vee o) \wedge \varphi(p \vee o)=p$. Using C we obtain $x=p \vee q$.

Now let us define $\Phi: \operatorname{Int}(A, \preceq) \rightarrow P$ by

$$
\Phi(\prec p, q \succ)=p \vee q(=(q \vee o) \wedge \varphi(p \vee o)) \quad(p, q \in A, p \preceq q) .
$$

F. The mapping Φ is an isomorphism of $(\operatorname{Int}(A, \preceq), \subseteq)$ onto $\mathbb{P}=(P, \leq)$.

To prove that Φ is onto, let $x \in P$. Take p, q as in C. Then $p \vee o=\varphi^{-1}(x \vee i) \leq$ $x \vee o=q \vee o$ by A, hence $p \preceq q$ and $\varphi(\prec p, q \succ)=p \vee q=x$ by C.

Further let $p \preceq q, p_{1} \preceq q_{1}$. We will show that $\prec p, q \succ \subseteq \prec p_{1}, q_{1} \succ$ if and only if $p \vee q \leq p_{1} \vee q_{1}$. First let $\prec p, q \succ \subseteq \prec p_{1}, q_{1} \succ$. Then $p_{1} \preceq p \preceq q \preceq q_{1}$ and consequently $p_{1} \vee o \leq p \vee o \leq q \vee o \leq q_{1} \vee o$. This implies $p \vee q=(q \vee$ $o) \wedge \varphi(p \vee o) \leq\left(q_{1} \vee o\right) \wedge \varphi\left(p_{1} \vee o\right)=p_{1} \vee q_{1}$. Conversely let $p \vee q \leq p_{1} \vee q_{1}$. It is $p \leq p \vee o, p \leq p_{1} \vee q_{1}=\left(q_{1} \vee o\right) \wedge \varphi\left(p_{1} \vee o\right) \leq \varphi\left(p_{1} \vee o\right)$, so that the set $\left\{p \vee o, \varphi\left(p_{1} \vee o\right)\right\}$ has a lower bound and consequently $p_{1} \vee o \leq p \vee o$ by (2). Analogously $q \leq p_{1} \vee q_{1}=\left(q_{1} \vee o\right) \wedge \varphi\left(p_{1} \vee o\right) \leq q_{1} \vee o, q \leq q \vee i=\varphi(q \vee o)$, so that $q \vee o=\varphi^{-1}(\varphi(q \vee o)) \leq q_{1} \vee o$. We conclude that $p_{1} \preceq p, q \preceq q_{1}$.

Evidently o is the least, i the greatest element of (A, \preceq), so that $(A, \preceq) \in \mathcal{A}_{\alpha}$. The proof of 1.1. is complete.

To verify that no of the conditions (1)-(3) can be omitted, let us see the partially ordered sets in Figs. 1-3.

Fig. 1

Fig. 2

Fig. 3
Each of these partially ordered sets fulfils the condition $\left(\beta_{1}\right)$ trivially, the i-th partially ordered set fails to satisfy (i), while the other conditions are fulfilled.

If \mathbb{P} is isomorphic to $\operatorname{Int} \mathbb{A}, \mathbb{A} \in \mathcal{A}_{x}$, then there exist $o, i \in \operatorname{Min} \mathbb{P}$ and φ as in 1.1. A natural question arises if other $o_{1}, i_{1}, \varphi_{1}$ satisfying (1)-(3) can exist for the same \mathbb{P}. It is easy to see that if o, i, φ satisfy (1)-(3), then also $o_{1}=i, i_{1}=o, \varphi_{1}=\varphi^{-1}$ satisfy (1)-(3). The resulting \mathbb{A}_{1} is the dual of \mathbb{A}. But also other q, i_{1}, φ_{1} can exist, as we can see in Fig. 4.

Fig. 4
Notice that the partially ordered set in Fig. 4 is directly reducible, namely it is isomorphic to $\operatorname{Int} \mathbb{A} \times \operatorname{Int} \mathbb{A}$ for \mathbb{A} being a two-element chain. We will prove that if \mathbb{P} is directly irreducible, such a situation cannot occur. More precisely, we will prove the following theorem.

Theorem 1.2. Let $\mathbb{P}=(P, \leq)$ be a directly irreducible partially ordered set with the greatest element I and let \mathbb{P} fulfil the condition $\left(\beta_{1}\right)$. If o, i, φ and $o_{1}, i_{1}, \varphi_{1}$ are as in 1.1, then either $o_{1}=o, i_{1}=i, \varphi_{1}=\varphi$ or $o_{1}=i, i_{1}=o, \varphi_{1}=\varphi^{-1}$.

To prove this we make use of a lemma.
Lemma 1.3. Let $\mathbb{P}=(P, \leq)$ be a partially ordered set with the greatest element I and let \mathbb{P} fulfil the condition $\left(\beta_{1}\right)$. Further let o, i, φ be as in 1.1., $p_{0} \in \operatorname{Min} \mathbb{P}$. Then the interval $\left.<p_{0}, I\right\rangle$ is isomorphic to the direct product $\left\langle p_{0} \vee o, I\right\rangle \times$ $<p_{0} \vee i, I>$.

Proof. Let us define:

$$
\chi:<p_{0}, I>\rightarrow<p_{0} \vee o, I>\times<p_{0} \vee i, I>
$$

by $\chi(x)=(x \vee o, x \vee i)$ for each $x \in P, x \geq p_{0}$. To show that χ is onto, let $u, v \in P, u \geq p_{0} \vee o, v \geq p_{0} \vee i$. The set $\{u, v\}$ has a lower bound, so that $\varphi^{-1}(v) \leq u$ and consequently $u \wedge v$ exists. Denote $x=u \wedge v$. Evidently $p_{0} \leq x$. In view of B, we have $u=x \vee o, v=x \vee i$ and thus $\chi(x)=(u, v)$. The implication $x \leq x^{\prime} \Longrightarrow \chi(x) \leq \chi\left(x^{\prime}\right)$ si evident, while the opposite one follows from (1).

Proof of 1.2. In view of Lemma 1.3, the interval $\left\langle o_{1}, I\right\rangle$ is isomorphic to $<o_{1} \vee o, I>\times<o_{1} \vee i, I>$. Let \preceq and \preceq_{1} be the partial order defined in
$A=\operatorname{Min} \mathbb{P}$ as in the proof of 1.1 using o, i, φ and $o_{1}, i_{1}, \varphi_{1}$, respectively. Then $\left(A, \preceq_{1}\right)$ is isomorphic to $\left\langle o_{1}, I\right\rangle$. In view of 1.3 , the interval $\left\langle o_{1}, I\right\rangle$ is isomorphic to $\left\langle o_{1} \vee o, I\right\rangle \times<o_{1} \vee i, I>$. But $\left(A, \preceq_{1}\right)$ is directly irreducible because otherwise \mathbb{P}, which is isomorphic to $\operatorname{Int}\left(A, \preceq_{1}\right)$, would be also directly reducible. Hence either $o_{1} \vee o=I$ or $o_{1} \vee i=I$. Suppose, e.g., that the first possibility occurs. Then $o=\left(o \vee o_{1}\right) \wedge\left(o \vee i_{1}\right)=I \wedge\left(o \vee i_{1}\right)=o \vee i_{1}$ and this implies $i_{1}=o$. Further $o_{1}=\left(o_{1} \vee o\right) \wedge\left(o_{1} \vee i\right)=I \wedge\left(o_{1} \vee i\right)=o_{1} \vee i$, which implies $o_{1}=i$. Now let $z \in<o_{1}, I>=<i, I>$. We will show that $\varphi_{1}(z)=\varphi^{-1}(z)$. We have $\varphi^{-1}(z) \in<o, I>$ and $\varphi^{-1}(z) \wedge z \in \operatorname{Min} \mathbb{P}$ by A. But $z \in<o_{1}, I>, \varphi^{-1}(z) \in<i_{1}, I>$, so that using B we obtain $\varphi^{-1}(z)=\varphi_{1}(z)$. Assuming that $o_{1} \vee i=I$ we obtain analogously $o_{1}=o, i_{1}=i, \varphi_{1}=\varphi$.

2. The Class $\mathcal{P}\left(\mathcal{A}_{\beta}\right)$

In this section we will characterize partially ordered sets $\mathbb{P}=(P, \leq)$ belonging to the class $\mathcal{P}\left(\mathcal{A}_{\beta}\right)$. Without loss of generality we can assume that \mathbb{P} is connected. Namely \mathbb{P} is isomorphic to Int \mathbb{A} if and only if each its maximal connected subset \mathbb{P}_{i} is isomorphic to Int \mathbb{A}_{i} for some \mathbb{A}_{i}.

Consider the following condition concerning the partially ordered set $\mathbb{P}=(P, \leq)$:
(β) if $x \in P$, then there exist $u \in \operatorname{Min} \mathbb{P}, v \in \operatorname{Max} \mathbb{P}$ with $u \leq x \leq v$.
If $P_{1} \subseteq P$ and for some $x, x_{1} \in P_{1}$ there exists supremum of $\left\{x, x_{1}\right\}$ in P_{1} with the inherited order, this element will be denote by $x \vee_{P_{1}} x_{1}$. But instead of $x \vee_{P} x_{1}$ we will write $x \vee x_{1}$, as so far.

Theorem 2.1. Let $\mathbb{P}=(P, \leq)$ be a connected partially ordered set. Then \mathbb{P} belongs to $\mathcal{P}\left(\mathcal{A}_{\beta}\right)$ if and only if \mathbb{P} satisfies (β) and for each $y \in \operatorname{Max} \mathbb{P}$ there exist $p_{0}(y), p_{1}(y) \in \operatorname{Min} \mathbb{P}$ and a dual isomorphism

$$
\varphi_{y}:<p_{0}(y), y>\rightarrow<p_{1}(y), y>
$$

satisfying the conditions (1)-(3) of 1.1. in ($y>$ and, moreover, it holds:
(4) if $p \in \operatorname{Min} \mathbb{P}, y, z \in \operatorname{Max} \mathbb{P}, p \leq y, z$ and $p_{i}(y)=p_{j}(z)=q$ for some $i, j \in\{0,1\}$, then $p \vee_{(y>} q=p \vee_{(z>} q$;
(5) if for some $y, y^{\prime} \in \operatorname{Max} \mathbb{P}$ there exists $q \in \operatorname{Min} \mathbb{P}, q \leq y, y^{\prime}$ and the elements $p_{0}(y), p_{1}(y), p_{0}\left(y^{\prime}\right), p_{1}\left(y^{\prime}\right)$ are different, then there exist $z, z^{\prime} \in \operatorname{Max} \mathbb{P}$ and $k \in\{0,1\}$ such that $y, y^{\prime}, z, z^{\prime}$ are different, $q \leq z, z^{\prime}$ and $z=p_{0}(y) \vee$ $p_{k}\left(y^{\prime}\right), z^{\prime}=p_{1}(y) \vee p_{1-k}\left(y^{\prime}\right)$;
(6) if $y_{1}, y_{2}, \ldots, y_{n} \in \operatorname{Max} \mathbb{P}(n \in N)$ and there exist $i_{1}, \ldots, i_{n} \in\{0,1\}$ such that $p_{1-i_{k}}\left(y_{k}\right)=p_{i_{k+1}}\left(y_{k+1}\right)$ for each $k \in\{1, \ldots, n-1\}$ and $p_{1-i_{n}}\left(y_{n}\right)=p_{i_{1}}\left(y_{1}\right)$, then n is even.

First we will show that no of the conditions (4)-(6) can be omitted. If we take \mathbb{P} as in Fig. 5, the condition (4) does not hold, while (5), (6) are satisfied. Fig. 6
shows that (5) does not follow from (4) and (6) and finally \mathbb{P} in Fig. 7 does not satisfy (6), while (4) and (5) hold.

Fig. 5

Fig. 6

Fig. 7
The proof of 2.1 takes the remaining part of this section.
First let $\mathbb{P} \in \mathcal{P}\left(\mathcal{A}_{\beta}\right)$. Then \mathbb{P} is isomorphic to $\operatorname{Int} \mathbb{A}$ for a partially ordered set $\mathbb{A}=$ $(A, \preceq) \in \mathcal{A}_{\beta}$. Evidently Int \mathbb{A} fulfils (β). If $y=\prec u, v \succ$ is any maximal interval in \mathbb{A} we take $\prec u \succ$ for $\varnothing(y)$ and $\prec v \succ$ for $p_{1}(y)$ and we define $\varphi_{y}(\prec u, w \succ)=$ $\prec w, v \succ$. It is easy to see that (1)-(6) are satisfied. Consequently \mathbb{P} has also the required properties.

Now we are going to prove the converse. So, throughout this section, we will suppose that \mathbb{P} satisfies (β) and for each $y \in \operatorname{Max} \mathbb{P}$ there exist $p_{0}(y), p_{1}(y) \in \operatorname{Min} \mathbb{P}$ and a dual isomorphism $\varphi_{y}:<p_{0}(y), y>\rightarrow<p_{1}(y), y>$ satisfying (1)-(3) in $(y>$ and, moreover, (4)-(6) hold.

Lemma 2.2. If $y, z \in \operatorname{Max} \mathbb{P}, p_{i}(y) \leq z$ for some $i \in\{0,1\}$, then $p_{i}(y) \in$ $\left\{p_{0}(z), p_{1}(z)\right\}$.

Proof. If $y=z$, there is nothing to prove. So let $y \neq z$. Assume that the elements $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are different. As $p_{i}(y) \leq y, z$, there exists $y \in \operatorname{Max} \mathbb{P}$ different from z (and from y) such that $y^{\prime}=p_{i}(y) \vee p_{j}(z)$ for some $j \in\{0,1\}$. But then $z \geq p_{i}(y), p_{j}(z)$ implies $z \geq y^{\prime}$, a contradiction. So $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are not different. Suppose that $p_{i}(y) \notin\left\{p_{0}(z), p_{1}(z)\right\}$. Then necessarily $p_{1-i}(y) \in$ $\left\{p_{0}(z), p_{1}(z)\right\}$. Let, e.g., $p_{1-i}(y)=p_{0}(z)$. Using (4) we obtain $y=p_{i}(y) \vee_{(y>}$ $p_{1-i}(y)=p_{i}(y) \vee_{(z>} p_{0}(z) \leq z$, a contradiction. Hence $p_{i}(y) \in\left\{p_{0}(z), p_{1}(z)\right\}$.

As an immediate consequence of 2.2 we obtain:
Lemma 2.3. If $y, y^{\prime}, z \in \operatorname{Max} \mathbb{P}, p_{i}(y) \neq p_{j}\left(y^{\prime}\right)$ for some $i, j \in\{0,1\}$ and $z \geq$ $p_{i}(y), p_{j}\left(y^{\prime}\right)$, then one of $p_{i}(y), p_{j}\left(y^{\prime}\right)$ is $p_{0}(z)$, the other is $p_{1}(z)$.

Lemma 2.4. Let $y \in \operatorname{Max} \mathbb{P}, p \in \operatorname{Min} \mathbb{P}, p \leq y, i \in\{0,1\}$. Then $p \vee{ }_{(y>} p_{i}(y)=$ $p \vee p_{i}(y)$.
Proof. Let $t \in P, t \geq p, p_{i}(y)$ and let $z \in \operatorname{Max} \mathbb{P}, z \geq t$. In view of 2.2 . we have $p_{i}(y)=p_{j}(z)$ for some $j \in\{0,1\}$. Using (4) we obtain $p \vee_{(y>} p_{i}(y)=p \vee_{(z>} p_{i}(y) \leq$ t.

As we have remarked in the preceding section, if $y \in \operatorname{Max} \mathbb{P}$, then $y=p_{0}(y) \vee_{(y>}$ $p_{1}(y)$. Using 2.4. we obtain:
Corollary 2.5. If $y \in \operatorname{Max} \mathbb{P}$, then $y=p_{0}(y) \vee p_{1}(y)$.
Lemma 2.6. Let $y \in \operatorname{Max} \mathbb{P}, p, q \in \operatorname{Min} \mathbb{P}, p, q \leq y$ and $p \vee p_{i}(y) \leq q \vee p_{i}(y)$ for some $i \in\{0,1\}$. Then $p \vee_{(y>} q=p \vee q$.
Proof. Let $t \in P, t \geq p, q$. By (β) there exists $z \in \operatorname{Max} \mathbb{P}$ with $z \geq t$.
Distinguish two cases:
(a) $p_{i}(y) \in\left\{p_{0}(z), p_{1}(z)\right\}$ or $p_{1-i}(y) \in\left\{p_{0}(z), p_{1}(z)\right\}$;
(b) all $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are different.

If $p_{i}(y)=p_{j}(z)(j \in\{0,1\})$, we have $p \vee_{(z>} q=\left(q \vee p_{j}(z)\right) \wedge_{(z>}\left(p \vee p_{1-j}(z)\right) \leq$ $q \vee p_{j}(z)=q \vee p_{i}(y) \leq y$, so that $p \vee_{(y>} q \leq p \vee_{(z>} q \leq t$ by E, B and 2.4. If $p_{1-i}(y) \in$ $\left\{p_{0}(z), p_{1}(z)\right\}$, we proceed analogously using that $q \vee p_{1-i}(y) \leq p \vee p_{1-i}(y)$. Let us see the case (b). By (5) there exists $y^{\prime} \in \operatorname{Max} \mathbb{P}, y^{\prime}=p_{i}(y) \vee p_{j}(z)$ for some $j \in\{0,1\}$. Now $p \vee_{(y>} q \leq y^{\prime}, p \vee_{\left(y^{\prime}>\right.} q \leq y$, as we have shown above. Hence $p \vee_{\left(y^{\prime}>\right.} q=p \vee_{(y>} q$. Analogously $p \vee_{\left(y^{\prime}>\right.} q=p \vee_{(z>} q$ and as $p \vee_{(z>} q \leq t$, we have $p \vee_{(y>} q \leq t$, completing the proof.

If $y, z \in \operatorname{Max} \mathbb{P}, i, j \in\{0,1\}$, by a zig-zag connecting $p_{i}(y)$ with $p_{j}(z)$ a sequence $p_{i}(y)=p_{i_{1}}\left(z_{1}\right), p_{1-i_{1}}\left(z_{1}\right)=p_{i_{2}}\left(z_{2}\right), \ldots, p_{1-i_{n-1}}\left(z_{n-1}\right)=p_{i_{n}}\left(z_{n}\right), p_{1-i_{n}}\left(z_{n}\right)=p_{j}(z)$ with $z_{1}, \ldots, z_{n} \in \operatorname{Max} \mathbb{P}, i_{1}, \ldots, i_{n} \in\{0,1\}$ will be meant. The number n will be mentioned as the length of this zig-zag. If, moreover, $p_{i_{1}}\left(z_{1}\right)=p_{1-i_{n}}\left(z_{n}\right)$, then we will refer to as a closed zig-zag of the length n.

Evidently the condition (6) can be rewritten in such a way that each closed zig-zag is of an even length.
Lemma 2.7. Let $y, z \in \operatorname{Max} \mathbb{P}, q \in \operatorname{Min} \mathbb{P}, q \leq y, z, i, j \in\{0,1\}$. Then there exists a zig-zag connecting $p_{i}(y)$ with $p_{j}(z)$.
Proof. If $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are not different, the assertion is trivial. So let $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are different. Then there exists $y \in \operatorname{Max} \mathbb{P}$ such that $y^{\prime}=p_{i}(y) \vee p_{j}(z)$ or $y^{\prime}=p_{i}(y) \vee p_{1-j}(z)$. In the first case we have $p_{i}(y)=$ $p_{k}\left(y^{\prime}\right), p_{1-k}\left(y^{\prime}\right)=p_{j}(z)$ for some $k \in\{0,1\}$ by 2.3. In the latter case we get from $p_{i}(y)$ to $p_{j}(z)$ through y^{\prime} and z.

Now using connectedness of \mathbb{P}, the following assertion can be proved easily.
Lemma 2.8. Let $y, z \in \operatorname{Max} \mathbb{P}, i, j \in\{0,1\}$. Then there exists a zig-zag connecting $p_{i}(y)$ with $p_{j}(z)$.

Proof. By connectedness of \mathbb{P}, there exists a sequence $p_{i}(y), z_{1}, q_{1}, z_{2}$, $q_{2}, \ldots, q_{n-1}, z_{n}, p_{j}(z)$ such that $z_{1}, \ldots, z_{n} \in \operatorname{Max} \mathbb{P}, q_{1}, \ldots, q_{n-1} \in \operatorname{Min} \mathbb{P}, p_{i}(y) \leq$ $z_{1}, z_{n} \geq p_{j}(z), q_{k} \leq z_{k}, z_{k+1}$ for each $k \in\{1, \ldots, n-1\}$. Now we will prove the assertion by induction on n. If $n=1$, there is nothing to prove. Let the assertion hold for $n=l$ and let $p_{i}(y), z_{1}, q_{1}, \ldots, q_{l}, z_{l+1}, p_{j}(z)$ be a sequence as above. By the induction hypothesis, there exists a zig-zag connecting $p_{i}(y)$ with $p_{0}\left(z_{l}\right)$. Using 2.7. we obtain that there exists a zig-zag connecting $p_{0}\left(z_{l}\right)$ with $p_{j}(z)$. Connecting both zig-zags we get a zig-zag from $p_{i}(y)$ to $p_{j}(z)$.

Now let us fix any $y_{0} \in \operatorname{Max} \mathbb{P}$ and take any of $p_{0}\left(y_{0}\right), p_{1}\left(y_{0}\right)$, e.g. $p_{0}\left(y_{0}\right)$. The condition (6) ensures that for any $y \in \operatorname{Max} \mathbb{P}$ and $i \in\{0,1\}$ each zig-zag connecting $p_{0}\left(y_{0}\right)$ with $p_{i}(y)$ is of an even length, or each has an odd length. Moreover, if each zig-zag connecting $p_{0}\left(y_{0}\right)$ with $p_{i}(y)$ is of an even length, then each zig-zag connecting $p_{0}\left(y_{0}\right)$ with $p_{1-i}(y)$ is of an odd length and vice versa. So if we define $\mathcal{M}_{0}(\mathbb{P}) \subseteq\left\{p_{i}(y): y \in \operatorname{Max} \mathbb{P}, i \in\{0,1\}\right\}$ by
$p_{0}\left(y_{0}\right) \in \mathcal{M}_{0}(\mathbb{P})$,
$p_{i}(y) \in \mathcal{M}_{0}(\mathbb{P})(y \in \operatorname{Max} \mathbb{P}, i \in\{0,1\})$ if and only if zig-zags connecting $p_{0}\left(y_{0}\right)$ with $p_{i}(y)$ have even lengths,
the set $\mathcal{M}_{0}(\mathbb{P})$ contains just one of $p_{0}(y), p_{1}(y)$ for each $y \in \operatorname{Max} \mathbb{P}$.
Set $A=\operatorname{Min} \mathbb{P}$ and define a relation \preceq in A by
$p \preceq q \Longleftrightarrow$ there exists $y \in \operatorname{Max} \mathbb{P}$ such that $p, q \leq y$ and $p \vee p_{i}(y) \leq q \vee p_{i}(y)$ for $i \in\{0,1\}$ with $p_{i}(y) \in \mathcal{M}_{0}(\mathbb{P})$.
First of all we will prove:
Lemma 2.9. If $p \preceq q$, then for any $z \in \operatorname{Max} \mathbb{P}$ with $p, q \leq z$ we have $p \vee p_{j}(z) \leq$ $q \vee p_{j}(z)$ for $j \in\{0,1\}$ such that $p_{j}(z) \in \mathcal{M}_{0}(\mathbb{P})$.

Proof. If $p \preceq q$, then there exists $y \in \operatorname{Max} \mathbb{P}$ such that $p, q \leq y$ and $p \vee p_{i}(y) \leq$ $q \vee p_{i}(y)$ for $i \in\{0,1\}$ with $p_{i}(y) \in \mathcal{M}_{0}(\mathbb{P})$. Let $z \in \operatorname{Max} \mathbb{P}, p, q \leq z$ and let $p_{j}(z) \in \mathcal{M}_{0}(\mathbb{P})(j \in\{0,1\})$. Distinguish the cases:

$$
\begin{aligned}
& p_{i}(y)=p_{j}(z) \\
& p_{i}(y) \neq p_{j}(z), p_{1-i}(y)=p_{1-j}(z) \\
& p_{i}(y) \neq p_{j}(z), p_{1-j}(y) \neq p_{1-j}(z)
\end{aligned}
$$

In the first case the assertion follows from (4) and 2.4. In the second case we have $p \vee p_{1-j}(z)=p \vee p_{1-i}(y) \geq q \vee p_{1-i}(y)=q \vee p_{1-j}(z)$, so that $p \vee p_{j}(z) \leq q \vee p_{j}(z)$. In the third case all $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are different. According to (5) and using that $p_{i}(y), p_{j}(z) \in \mathcal{M}_{0}(\mathbb{P})$ we obtain that there exists $y^{\prime} \in \operatorname{Max} \mathbb{P}$ such that $p, q \leq y^{\prime}, y^{\prime}=p_{i}(y) \vee p_{1-j}(z)$. In view of 2.3 , it is $p_{i}(y)=p_{k}\left(y^{\prime}\right), p_{1-j}(z)=p_{1-k}\left(y^{\prime}\right)$
for some $k \in\{0,1\}$. Now we have $p \vee p_{k}\left(y^{\prime}\right)=p \vee p_{i}(y) \leq q \vee p_{i}(y)=q \vee p_{k}\left(y^{\prime}\right)$ and consequently $p \vee p_{1-k}\left(y^{\prime}\right) \geq q \vee p_{1-k}\left(y^{\prime}\right)$. But $p \vee p_{1-k}\left(y^{\prime}\right)=p \vee p_{1-j}(z), q \vee$ $p_{1-k}\left(y^{\prime}\right)=q \vee p_{1-j}(z)$, so that $p \vee p_{j}(z) \leq q \vee p_{j}(z)$.

Lemma 2.10. If $p \preceq q, q \preceq r$, then there exists $t \in \operatorname{Max} \mathbb{P}$ with $p, q, r \leq t$.
Proof. Let $p \preceq q, q \preceq r$. Then there exist $y, z \in \operatorname{Max} \mathbb{P}$ such that $p, q \leq y$, $q, r \leq z$ and if $p_{i}(y), p_{j}(z) \in \mathcal{M}_{0}(\mathbb{P})$, it is $p \vee p_{i}(y) \leq q \vee p_{i}(y), q \vee p_{j}(z) \leq r \vee p_{j}(z)$. If $p_{i}(y)=p_{j}(z)$, we have $p \leq p \vee p_{i}(y) \leq q \vee p_{i}(y)=q \vee p_{j}(z) \leq z$, so that $p, q, r \leq z$. Further let us suppose that $p_{i}(y) \neq p_{j}(z), p_{1-i}(y)=p_{1-j}(z)$. Then we have $r \leq r \vee p_{1-j}(z) \leq q \vee p_{1-j}(z)=q \vee p_{1-i}(y) \leq y$, so that $p, q, r \leq y$. Finally if $p_{0}(y), p_{1}(y), p_{0}(z), p_{1}(z)$ are different, we use (5) and we take $y=p_{i}(y) \vee p_{1-j}(z)$. There exists $k \in\{0,1\}$ such that $p_{i}(y)=p_{k}\left(y^{\prime}\right), p_{1-j}(z)=p_{1-k}\left(y^{\prime}\right)$. Now it is $p \leq p \vee p_{i}(y) \leq q \vee p_{i}(y)=q \vee p_{k}\left(y^{\prime}\right) \leq y^{\prime}$ and proceeding as in the previous case taking y^{\prime} instead of y we obtain $p, q, r \leq y^{\prime}$.

Lemma 2.11. The relation \preceq is a partial order in A and $(A, \preceq) \in \mathcal{A}_{\beta}$.
Proof. The reflexivity is trivial, the antisymmetry follows immediately from 2.9. The transitivity is a consequence of 2.10 . and 2.9 . To prove $(A, \preceq) \in \mathcal{A}_{\beta}$ let $p \in A=\operatorname{Min} \mathbb{P}$. Take any $y \in \operatorname{Max} \mathbb{P}$ with $y \geq p$. If $p_{i}(y) \in \mathcal{M}_{0}(\mathbb{P})$, then evidently $p_{i}(y) \in \operatorname{Min}(A, \preceq), p_{1-i}(y) \in \operatorname{Max}(A, \preceq)$ and it is $p_{i}(y) \preceq p \preceq p_{1-i}(y)$.

Now let us define $\Phi: \operatorname{Int}(A, \preceq) \rightarrow P$ by

$$
\Phi(\prec p, q \succ)=p \vee q \quad(p, q \in A, p \preceq q) .
$$

Notice that if $p \preceq q$, then $p \vee q$ exists by 2.6.
Lemma 2.12. The mapping Φ is an isomorphism of $(\operatorname{Int}(A, \preceq), \subseteq)$ onto $\mathbb{P}=$ (P, \leq).

Proof. To prove that Φ is onto, let $x \in P$. Take any $y \in \operatorname{Max} \mathbb{P}, y \geq x$. In view of the results of the previous section, we have $x=p \vee_{(y>} q$ for some $p, q \in$ $\operatorname{Min} \mathbb{P}, p, q \leq y$ with $p \vee{ }_{(y>} p_{0}(y)=p \vee p_{0}(y), q \vee_{(y>} p_{0}(y)=q \vee p_{0}(y)$ (and hence also $\left.p \vee p_{1}(y), q \vee p_{1}(y)\right)$ being comparable. Hence p, q are also comparable. If, e.g., $p \preceq q$, we have $\Phi(\prec p, q \succ)=p \vee q=p \vee_{(y>} q=x$. It remains to show that if $p \preceq q, p_{1} \preceq q_{1}$, then $\prec p, q \succ \subseteq \prec p_{1}, q_{1} \succ$ is equivalent to $p \vee q \leq p_{1} \vee q_{1}$. If $p \vee q \leq p_{1} \vee q_{1}$, we take $y \in \operatorname{Max} \mathbb{P}, y \geq p_{1} \vee q_{1}$. Using F we obtain $\prec p, q \succ \subseteq$ $\prec p_{1}, q_{1} \succ$ immediately. Conversely let $\prec p, q \succ \subseteq \prec p_{1}, q_{1} \succ$. Then $p_{1} \preceq p \preceq q \preceq$ q_{1} and using 2.10. we obtain that there exist $y, z \in \operatorname{Max} \mathbb{P}$ such that $p_{1}, p, q_{1} \leq y$ and $p_{1}, q, q_{1} \leq z$. Applying F to $\left(y>\right.$ and $\left(z>\right.$ we obtain $p \leq p_{1} \vee q_{1}, q \leq p_{1} \vee q_{1}$. Consequently $p \vee q \leq p_{1} \vee q_{1}$. The proof is complete.

References

[1] Igošin, V. I., Selfduality of lattices of intervals of finite lattices, Inst. matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Mal'ceva, Tezisyy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, s. 48.
[2] Igošin, V. I., Lattices of intervals and lattices of convex sublattices of lattices, Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69-76.
[3] Igošin, V. I., Identities in interval lattices of lattices, Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491-501.
[4] Igošin, V. I., On lattices with restriction on their intervals, Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209-216.
[5] Igošin, V. I., Algebraic characteristic of lattices of intervals, Uspechi matem. nauk 40 (1985), 205-206.
[6] Igošin, V. I., Semimodularity in lattices of intervals, Math. Slovaca 38 (1988), 305-308.
[7] Jakubík, J., Selfduality of the system of intervals of a partially ordered set, Czechoslov. Math. J. 41 (1991), 135-140.
[8] Jakubík, J., Lihová, J., Systems of intervals of partially ordered sets, Math. Slovaca 46 (1996 No. 4), 355-361.
[9] Kolibiar, M., Intervals, convex sublattices and subdirect representations of lattices, Universal Algebra and Applications, Banach Center Publications, Vol. 9, Warsaw 1982, 335-339.
[10] Lihová, J., Posets having a selfdual interval poset, Czechoslov. Math. J. 44 (1994), 523-533.
[11] Lihová, J., On posets with isomorphic interval posets, Czechoslov. Math. J. 49 (1999), 67-80.
[12] Slavík, V., On lattices with isomorphic interval lattices, Czechoslov. Math. J. 35 (1985), 550-554.

Faculty of Science, University of P. J. Šafarik, 04154 Košice, Jesenná 5, SLOVAKIA
E-mail: lihova@duro.science.upjs.sk

[^0]: 2000 Mathematics Subject Classification: 06A06.
 Key words and phrases: partially ordered set, interval.
 The author was supported by the Slovak VEGA Grant No. 1/4379/97.
 Received April 6, 1999.

