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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 36 (2000), 171 – 181

CHARACTERIZATION OF POSETS OF INTERVALS

JUDITA LIHOVÁ

If is a class of partially ordered sets, let ( ) denote the system of
all posets which are isomorphic to the system of all intervals of for some ∈ .
We give an algebraic characterization of elements of ( ) for being the class of all
bounded posets and the class of all posets satisfying the condition that for each
a ∈ there exist a minimal element u and a maximal element v with u ≤ a ≤ v,

respectively.

For a partially ordered set A let Int A be the system of all intervals of A ; further,
we put Int0 A = Int A ∪ {∅}. The systems Int A and Int0 A are partially ordered
by the set-theoretical inclusion.

These systems, particularly in the case when A is a lattice, have been investi-
gated in several papers (cf. [1]-[12]). In [5], the algebraic characterization of Int0 L
for L being a lattice with a least or with a greatest element was given.

For each class A of partially ordered sets we denote by P(A) the class of all
partially ordered sets P having the property that there exists AP ∈ A such that
Int AP is isomorphic to P.

Let us denote by
Aα - the class of all partially ordered sets A which have the least element and the
greatest element;
Aβ - the class of all partially ordered sets A such that for each a ∈ A there exists
a minimal element u of A and a maximal element v of A with u ≤ a ≤ v.

In the present paper we give an algebraic characterization of elements of P(Aα)
or P(Aβ), respectively.

The question of characterizing P(At), where At is the class of all partially
ordered sets, remains open.
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1. The class P(Aα)

We will deal with partially ordered sets Pand A which have the underlying set
P or A, respectively. The corresponding partial orders are denoted by ≤ or �,
respectively.

We recall that by an interval of a partially ordered set P = (P,≤) a set
< a, b >= {x ∈ P : a ≤ x ≤ b} with a, b ∈ P, a ≤ b is meant. If a = b, we
use the notation <a> instead of <a, a> . The symbol (a> will be used for the
set {x ∈ P : x ≤ a}. (Remark that (a> need not be an interval.)

The system of all minimal and maximal elements of Pwill be denoted by Min P
and Max P, respectively.

An analogous terminology is applied for A = (A,�).
Consider the following condition concerning the partially ordered set P= (P,≤):
(β1) if x ∈ P, then there exists u ∈Min Pwith u ≤ x.

Theorem 1.1. Let P = (P,≤) be a partially ordered set. Then P ∈ P(A α) if
and only if P has a greatest element I, it fulfils the condition (β1) and there exist
o, i ∈ Min Pand a dual isomorphism

ϕ :<o, I>→<i, I >

satisfying:

(1) if x ∈ P , then y = sup {x, o}, z = sup {x, i} exist and x = inf {y, z}
holds;

(2) if y ∈< o, I >, z ∈< i, I > and the set {y, z} has a lower bound, then
ϕ−1(z) ≤ y;

(3) if y1, y ∈<o, I>, y1 ≤ y, then inf {y, ϕ(y1)} exists.

Proof. Let P∈ P(A α). Then P is isomorphic to Int A for a partially ordered set
A = (A,�) with a least element 0 and a greatest element 1. Evidently ≺ 0, 1 � is
the greatest element of IntA , IntA fulfils (β1) and if we take o =≺ 0 �, i =≺ 1 �
and define ϕ by ϕ(≺ 0, a �) =≺ a, 1 �, ϕ is a dual isomorphism and the conditions
(1)–(3) are satisfied. Hence Phas the required properties, too.

The proof of the converse is made in several steps. So let Pfulfil (β1) and let I be
the greatest element of P, o, i ∈Min P, ϕ be a dual isomorphism<o, I >→<i, I>
such that (1)–(3) are satisfied. For the sake of brevity we will write u∧v and u∨v
instead of inf{u, v} and sup{u, v}, respectively.

A. If y ∈< o, I >, then p = y ∧ ϕ(y) exists and p ∈ Min P. Moreover, y =
p ∨ o, ϕ(y) = p ∨ i.

Let y ∈<o, I >. Then y ∧ ϕ(y) exists by (3). Let y ∧ ϕ(y) = x. By (β1) there
exists p ∈Min Pwith p ≤ x. We have p = y ′ ∧ z′, where y′ = p ∨ o, z′ = p ∨ i by
(1). Obviously y′ ≤ y, z′ ≤ ϕ(y). Now p is a lower bound of both {y′, ϕ(y)} and
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{y, z′}, so that we have y = ϕ−1(ϕ(y)) ≤ y′, ϕ−1(z′) ≤ y by (2). The latter gives
z′ ≥ ϕ(y). We have y = y′, z′ = ϕ(y), x = p.

B. Let x ∈ P, x = u ∧ v, u ∈<o, I >, v ∈<i, I > . Then u = x ∨ o, v = x ∨ i.
Moreover, x ∈Min P if and only if v = ϕ(u).

Denote y = x ∨ o, z = x ∨ i (the existence follows from (1)). Obviously y ≤ u
and z ≤ v. As {y, v} has a lower bound, we have ϕ−1(v) ≤ y. Using A we obtain
ϕ−1(v) ∧ v = r ∈ Min P. Since ϕ−1(v) ≤ u, we have r ≤ u ∧ v = x. Hence
{ϕ−1(v), z} has a lower bound and consequently ϕ−1(z) ≤ ϕ−1(v), which implies
z ≥ v. As also z ≤ v holds, we have v = z = x ∨ i. The proof of u = x ∨ o is
analogous.

If v = ϕ(u), then x ∈ Min P by A. Conversely, let x = u ∧ v ∈ Min P. Then
evidently ϕ−1(v) ∧ v = x and also u ∧ ϕ(u) = x. So the set {ϕ−1(v), ϕ(u)} has a
lower bound and consequently u = ϕ−1(ϕ(u)) ≤ ϕ−1(v), which implies ϕ(u) ≥ v.
But we have also ϕ(u) ≤ v and therefore v = ϕ(u).

C. Let x ∈ P, y = x ∨ o, z = x ∨ i, q = y ∧ ϕ(y), p = ϕ−1(z) ∧ z. Then
x = p ∨ q.

As x = y∧z, we have ϕ−1(z) ≤ y by (2), which implies z ≥ ϕ(y). Consequently
p, q ≤ x. Now let x′ ≥ p, q, x′ ∈ P. In view of A we have y = q ∨ o ≤ x′ ∨ o, z =
p ∨ i ≤ x′ ∨ i. Using (1) we obtain x′ = (x′ ∨ o) ∧ (x′ ∨ i) ≥ y ∧ z = x.

Let us remark that I = o ∨ i by C.

If p ∈Min P, set ψ(p) = p ∨ o.

D. The mapping ψ : Min P→<o, I> is a bijection.

In view of A, ψ is onto. Let p, q ∈ Min P, p ∨ o = q ∨ o = y. By (1), p =
y ∧ (p∨ i), q = y ∧ (q ∨ i) and using B we obtain p∨ i = ϕ(y) = q ∨ i. Thus p = q.

Let A = Min Pand define a partial order � in A by

p � q (p, q ∈ Min P)⇐⇒ p ∨ o ≤ q ∨ o.

Notice that ψ is now an isomorphism of A = (A,�) onto (<o, I >,≤). The aim is
to show that P is isomorphic to Int A .

E. If p, q ∈ A, p � q, then p∨ q exists (in P) and p∨ q = (q∨o)∧ϕ(p∨o) holds.

The relation p ∨ o ≤ q ∨ o implies that x = (q ∨ o) ∧ ϕ(p ∨ o) exists. By B
we have q ∨ o = x ∨ o, ϕ(p ∨ o) = x ∨ i and consequently (x ∨ o) ∧ ϕ(x ∨ o) =
(q ∨ o) ∧ ϕ(q ∨ o) = q, ϕ−1(x ∨ i) ∧ (x ∨ i) = (p ∨ o) ∧ ϕ(p ∨ o) = p. Using C we
obtain x = p ∨ q.

Now let us define Φ : Int (A,�)→ P by

Φ(≺ p, q �) = p ∨ q(= (q ∨ o) ∧ ϕ(p ∨ o)) (p, q ∈ A, p � q).



174 J. LIHOVÁ

F. The mapping Φ is an isomorphism of (Int (A,�),⊆) onto P= (P,≤).

To prove that Φ is onto, let x ∈ P . Take p, q as in C. Then p∨o = ϕ−1(x∨ i) ≤
x ∨ o = q ∨ o by A, hence p � q and ϕ(≺ p, q �) = p ∨ q = x by C.

Further let p � q, p1 � q1. We will show that ≺ p, q �⊆≺ p1, q1 � if and
only if p ∨ q ≤ p1 ∨ q1. First let ≺ p, q �⊆≺ p1, q1 �. Then p1 � p � q � q1
and consequently p1 ∨ o ≤ p ∨ o ≤ q ∨ o ≤ q1 ∨ o. This implies p ∨ q = (q ∨
o) ∧ ϕ(p ∨ o) ≤ (q1 ∨ o) ∧ ϕ(p1 ∨ o) = p1 ∨ q1. Conversely let p ∨ q ≤ p1 ∨ q1.
It is p ≤ p ∨ o, p ≤ p1 ∨ q1 = (q1 ∨ o) ∧ ϕ(p1 ∨ o) ≤ ϕ(p1 ∨ o), so that the set
{p ∨ o, ϕ(p1 ∨ o)} has a lower bound and consequently p1 ∨ o ≤ p ∨ o by (2).
Analogously q ≤ p1 ∨ q1 = (q1 ∨ o) ∧ ϕ(p1 ∨ o) ≤ q1 ∨ o, q ≤ q ∨ i = ϕ(q ∨ o), so
that q ∨ o = ϕ−1(ϕ(q ∨ o)) ≤ q1 ∨ o. We conclude that p1 � p, q � q1.

Evidently o is the least, i the greatest element of (A,�), so that (A,�) ∈ Aα.
The proof of 1.1. is complete. �

To verify that no of the conditions (1)-(3) can be omitted, let us see the partially
ordered sets in Figs. 1-3.

Fig. 1 Fig. 2

Fig. 3

Each of these partially ordered sets fulfils the condition (β1) trivially, the i-th
partially ordered set fails to satisfy (i), while the other conditions are fulfilled.
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If Pis isomorphic to Int A , A ∈ Aα, then there exist o, i ∈Min Pand ϕ as in 1.1.
A natural question arises if other o1, i1, ϕ1 satisfying (1)-(3) can exist for the same
P. It is easy to see that if o, i, ϕ satisfy (1)-(3), then also o 1 = i, i1 = o, ϕ1 = ϕ−1

satisfy (1)-(3). The resulting A1 is the dual of A . But also other o1, i1, ϕ1 can
exist, as we can see in Fig. 4.

Fig. 4

Notice that the partially ordered set in Fig. 4 is directly reducible, namely it
is isomorphic to Int A × Int A for A being a two-element chain. We will prove
that if P is directly irreducible, such a situation cannot occur. More precisely, we
will prove the following theorem.

Theorem 1.2. Let P= (P,≤) be a directly irreducible partially ordered set with
the greatest element I and let P fulfil the condition (β1). If o, i, ϕ and o1, i1, ϕ1 are
as in 1.1, then either o1 = o, i1 = i, ϕ1 = ϕ or o1 = i, i1 = o, ϕ1 = ϕ−1.

To prove this we make use of a lemma.

Lemma 1.3. Let P= (P,≤) be a partially ordered set with the greatest element
I and let P fulfil the condition (β 1). Further let o, i, ϕ be as in 1.1., p0 ∈ Min P.
Then the interval <p0, I > is isomorphic to the direct product < p0 ∨ o, I > ×
<p0 ∨ i, I>.

Proof. Let us define:

χ :<p0, I >→<p0 ∨ o, I > × <p0 ∨ i, I >

by χ(x) = (x ∨ o, x ∨ i) for each x ∈ P, x ≥ p0. To show that χ is onto, let
u, v ∈ P, u ≥ p0 ∨ o, v ≥ p0 ∨ i. The set {u, v} has a lower bound, so that
ϕ−1(v) ≤ u and consequently u ∧ v exists. Denote x = u ∧ v. Evidently p0 ≤ x.
In view of B, we have u = x∨ o, v = x∨ i and thus χ(x) = (u, v). The implication
x ≤ x′ =⇒ χ(x) ≤ χ(x′) si evident, while the opposite one follows from (1). �
Proof of 1.2. In view of Lemma 1.3, the interval < o1, I > is isomorphic to
< o1 ∨ o, I > × < o1 ∨ i, I >. Let � and �1 be the partial order defined in
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A = Min P as in the proof of 1.1 using o, i, ϕ and o 1, i1, ϕ1, respectively. Then
(A,�1) is isomorphic to<o1, I>. In view of 1.3, the interval<o1, I> is isomorphic
to < o1 ∨ o, I > × < o1 ∨ i, I >. But (A,�1) is directly irreducible because
otherwise P, which is isomorphic to Int (A,� 1), would be also directly reducible.
Hence either o1 ∨ o = I or o1 ∨ i = I. Suppose, e.g., that the first possibility
occurs. Then o = (o∨ o1) ∧ (o ∨ i1) = I ∧ (o ∨ i1) = o ∨ i1 and this implies i1 = o.
Further o1 = (o1 ∨ o) ∧ (o1 ∨ i) = I ∧ (o1 ∨ i) = o1 ∨ i, which implies o1 = i.
Now let z ∈< o1, I >=< i, I > . We will show that ϕ1(z) = ϕ−1(z). We have
ϕ−1(z) ∈<o, I> and ϕ−1(z)∧z ∈ Min Pby A. But z ∈<o 1, I>, ϕ

−1(z) ∈<i1, I >,
so that using B we obtain ϕ−1(z) = ϕ1(z). Assuming that o1 ∨ i = I we obtain
analogously o1 = o, i1 = i, ϕ1 = ϕ. �

2. The class P(Aβ)

In this section we will characterize partially ordered sets P= (P,≤) belonging
to the class P(Aβ). Without loss of generality we can assume that P is connected.
Namely P is isomorphic to Int A if and only if each its maximal connected subset
Pi is isomorphic to Int Ai for some Ai .

Consider the following condition concerning the partially ordered set P= (P,≤):
(β) if x ∈ P, then there exist u ∈ Min P, v ∈Max Pwith u ≤ x ≤ v.

If P1 ⊆ P and for some x, x1 ∈ P1 there exists supremum of {x, x1} in P1 with
the inherited order, this element will be denote by x∨P1 x1. But instead of x∨P x1

we will write x ∨ x1, as so far.

Theorem 2.1. Let P = (P,≤) be a connected partially ordered set. Then P
belongs to P(Aβ) if and only if P satisfies (β) and for each y ∈Max P there exist
p0(y), p1(y) ∈Min Pand a dual isomorphism

ϕy :<p0(y), y>→<p1(y), y>

satisfying the conditions (1)-(3) of 1.1. in (y> and, moreover, it holds:

(4) if p ∈ Min P, y, z ∈ Max P, p ≤ y, z and p i(y) = pj(z) = q for some
i, j ∈ {0, 1}, then p ∨(y> q = p ∨(z> q;

(5) if for some y, y′ ∈Max Pthere exists q ∈Min P, q≤ y, y ′ and the elements
p0(y), p1(y), p0(y′), p1(y′) are different, then there exist z, z′ ∈ Max Pand
k ∈ {0, 1} such that y, y′, z, z′ are different, q ≤ z, z′ and z = p0(y) ∨
pk(y′), z′ = p1(y) ∨ p1−k(y′);

(6) if y1, y2, ..., yn ∈Max P(n ∈ N ) and there exist i 1, ..., in ∈ {0, 1} such that
p1−ik(yk) = pik+1(yk+1) for each k ∈ {1, ..., n−1} and p1−in(yn) = pi1(y1),
then n is even.

First we will show that no of the conditions (4)-(6) can be omitted. If we take
Pas in Fig. 5, the condition (4) does not hold, while (5), (6) are satisfied. Fig. 6
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shows that (5) does not follow from (4) and (6) and finally P in Fig. 7 does not
satisfy (6), while (4) and (5) hold.

Fig. 5 Fig. 6

Fig. 7

The proof of 2.1 takes the remaining part of this section.
First let P∈ P(A β).Then Pis isomorphic to IntA for a partially ordered set A =

(A,�) ∈ Aβ. Evidently Int A fulfils (β). If y =≺ u, v � is any maximal interval
in A we take ≺ u � for p0(y) and ≺ v � for p1(y) and we define ϕy(≺ u,w �) =
≺ w, v � . It is easy to see that (1)-(6) are satisfied. Consequently Phas also the
required properties.

Now we are going to prove the converse. So, throughout this section, we will
suppose that Psatisfies (β) and for each y ∈ Max Pthere exist p 0(y), p1(y) ∈ Min P
and a dual isomorphism ϕy :< p0(y), y >→< p1(y), y > satisfying (1)-(3) in (y >
and, moreover, (4)-(6) hold.

Lemma 2.2. If y, z ∈ Max P, p i(y) ≤ z for some i ∈ {0, 1}, then pi(y) ∈
{p0(z), p1(z)}.

Proof. If y = z, there is nothing to prove. So let y 6= z. Assume that the elements
p0(y), p1(y), p0(z), p1(z) are different. As pi(y) ≤ y, z, there exists y′ ∈ Max P
different from z (and from y) such that y′ = pi(y)∨ pj(z) for some j ∈ {0, 1}. But
then z ≥ pi(y), pj(z) implies z ≥ y′, a contradiction. So p0(y), p1(y), p0(z), p1(z)
are not different. Suppose that pi(y) 6∈ {p0(z), p1(z)}. Then necessarily p1−i(y) ∈
{p0(z), p1(z)}. Let, e.g., p1−i(y) = p0(z). Using (4) we obtain y = pi(y) ∨(y>

p1−i(y) = pi(y) ∨(z> p0(z) ≤ z, a contradiction. Hence pi(y) ∈ {p0(z), p1(z)}. �
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As an immediate consequence of 2.2 we obtain:

Lemma 2.3. If y, y′, z ∈ Max P, p i(y) 6= pj(y′) for some i, j ∈ {0, 1} and z ≥
pi(y), pj(y′), then one of pi(y), pj(y′) is p0(z), the other is p1(z).

Lemma 2.4. Let y ∈ Max P, p ∈ Min P, p ≤ y, i ∈ {0, 1}. Then p ∨ (y> pi(y) =
p ∨ pi(y).

Proof. Let t ∈ P, t ≥ p, pi(y) and let z ∈ Max P, z ≥ t. In view of 2.2. we have
pi(y) = pj(z) for some j ∈ {0, 1}. Using (4) we obtain p∨(y> pi(y) = p∨(z>pi(y) ≤
t. �

As we have remarked in the preceding section, if y ∈Max P, then y = p0(y)∨(y>

p1(y). Using 2.4. we obtain:

Corollary 2.5. If y ∈ Max P, then y = p 0(y) ∨ p1(y).

Lemma 2.6. Let y ∈ Max P, p, q ∈ Min P, p, q ≤ y and p ∨ p i(y) ≤ q ∨ pi(y) for
some i ∈ {0, 1}. Then p ∨(y> q = p ∨ q.
Proof. Let t ∈ P, t ≥ p, q. By (β) there exists z ∈Max Pwith z ≥ t.
Distinguish two cases:

(a) pi(y) ∈ {p0(z), p1(z)} or p1−i(y) ∈ {p0(z), p1(z)};
(b) all p0(y), p1(y), p0(z), p1(z) are different.

If pi(y) = pj(z) (j ∈ {0, 1}), we have p ∨(z> q = (q ∨ pj(z)) ∧(z> (p ∨ p1−j(z)) ≤
q∨pj(z) = q∨pi(y) ≤ y, so that p∨(y>q ≤ p∨(z>q ≤ t by E, B and 2.4. If p1−i(y) ∈
{p0(z), p1(z)}, we proceed analogously using that q ∨ p1−i(y) ≤ p ∨ p1−i(y). Let
us see the case (b). By (5) there exists y′ ∈ Max P, y ′ = pi(y) ∨ pj(z) for some
j ∈ {0, 1}. Now p ∨(y> q ≤ y′, p ∨(y′> q ≤ y, as we have shown above. Hence
p ∨(y′> q = p ∨(y> q. Analogously p ∨(y′> q = p ∨(z> q and as p∨(z> q ≤ t, we have
p ∨(y> q ≤ t, completing the proof. �

If y, z ∈Max P, i, j ∈ {0, 1}, by a zig-zag connecting p i(y) with pj(z) a sequence
pi(y) = pi1(z1), p1−i1(z1) = pi2(z2), ..., p1−in−1(zn−1) = pin(zn), p1−in(zn) = pj(z)
with z1, ..., zn ∈ Max P, i 1, ..., in ∈ {0, 1} will be meant. The number n will be
mentioned as the length of this zig-zag. If, moreover, pi1(z1) = p1−in(zn), then we
will refer to as a closed zig-zag of the length n.

Evidently the condition (6) can be rewritten in such a way that each closed
zig-zag is of an even length.

Lemma 2.7. Let y, z ∈ Max P, q ∈ Min P, q ≤ y, z, i, j ∈ {0, 1}. Then there
exists a zig-zag connecting pi(y) with pj(z).

Proof. If p0(y), p1(y), p0(z), p1(z) are not different, the assertion is trivial. So
let p0(y), p1(y), p0(z), p1(z) are different. Then there exists y′ ∈ Max P such that
y′ = pi(y) ∨ pj(z) or y′ = pi(y) ∨ p1−j(z). In the first case we have pi(y) =
pk(y′), p1−k(y′) = pj(z) for some k ∈ {0, 1} by 2.3. In the latter case we get from
pi(y) to pj(z) through y′ and z. �
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Now using connectedness of P, the following assertion can be proved easily.

Lemma 2.8. Let y, z ∈ Max P, i, j ∈ {0, 1}. Then there exists a zig-zag connect-
ing pi(y) with pj(z).

Proof. By connectedness of P, there exists a sequence pi(y), z1, q1, z2,
q2, ..., qn−1, zn, pj(z) such that z1, ..., zn ∈ Max P, q 1, ..., qn−1 ∈ Min P, p i(y) ≤
z1, zn ≥ pj(z), qk ≤ zk, zk+1 for each k ∈ {1, ..., n− 1}. Now we will prove the
assertion by induction on n. If n = 1, there is nothing to prove. Let the assertion
hold for n = l and let pi(y), z1, q1, ..., ql, zl+1, pj(z) be a sequence as above. By the
induction hypothesis, there exists a zig-zag connecting pi(y) with p0(zl). Using
2.7. we obtain that there exists a zig-zag connecting p0(zl) with pj(z). Connecting
both zig-zags we get a zig-zag from pi(y) to pj(z). �

Now let us fix any y0 ∈ Max Pand take any of p 0(y0), p1(y0), e.g. p0(y0). The
condition (6) ensures that for any y ∈Max Pand i ∈ {0, 1} each zig-zag connecting
p0(y0) with pi(y) is of an even length, or each has an odd length. Moreover, if
each zig-zag connecting p0(y0) with pi(y) is of an even length, then each zig-zag
connecting p0(y0) with p1−i(y) is of an odd length and vice versa. So if we define
M0(P)⊆ {p i(y) : y ∈Max P, i∈ {0, 1}} by

p0(y0) ∈M0(P),
pi(y) ∈M0(P) (y ∈ Max P, i ∈ {0, 1}) if and only if zig-zags connecting

p0(y0) with pi(y) have even lengths,
the set M0(P) contains just one of p 0(y), p1(y) for each y ∈ Max P.

Set A = Min Pand define a relation � in A by
p � q ⇐⇒ there exists y ∈Max P such that p, q ≤ y and p ∨ p i(y) ≤ q ∨ pi(y)

for i ∈ {0, 1} with pi(y) ∈M0(P).
First of all we will prove:

Lemma 2.9. If p � q, then for any z ∈Max Pwith p, q ≤ z we have p∨ p j(z) ≤
q ∨ pj(z) for j ∈ {0, 1} such that pj(z) ∈M0(P).

Proof. If p � q, then there exists y ∈ Max P such that p, q ≤ y and p ∨ p i(y) ≤
q ∨ pi(y) for i ∈ {0, 1} with pi(y) ∈ M0(P). Let z ∈ Max P, p, q ≤ z and let
pj(z) ∈M0(P) (j ∈ {0, 1}). Distinguish the cases:

pi(y) = pj(z);
pi(y) 6= pj(z), p1−i(y) = p1−j(z);
pi(y) 6= pj(z), p1−j(y) 6= p1−j(z).

In the first case the assertion follows from (4) and 2.4. In the second case we have
p∨p1−j(z) = p∨p1−i(y) ≥ q∨p1−i(y) = q∨p1−j(z), so that p∨pj(z) ≤ q∨pj(z).
In the third case all p0(y), p1(y), p0(z), p1(z) are different. According to (5) and
using that pi(y), pj(z) ∈M0(P) we obtain that there exists y ′ ∈ Max P such that
p, q ≤ y′, y′ = pi(y)∨p1−j(z). In view of 2.3, it is pi(y) = pk(y′), p1−j(z) = p1−k(y′)
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for some k ∈ {0, 1}. Now we have p ∨ pk(y′) = p ∨ pi(y) ≤ q ∨ pi(y) = q ∨ pk(y′)
and consequently p ∨ p1−k(y′) ≥ q ∨ p1−k(y′). But p ∨ p1−k(y′) = p ∨ p1−j(z), q ∨
p1−k(y′) = q ∨ p1−j(z), so that p ∨ pj(z) ≤ q ∨ pj(z). �

Lemma 2.10. If p � q, q � r, then there exists t ∈ Max Pwith p, q, r ≤ t.

Proof. Let p � q, q � r. Then there exist y, z ∈ Max P such that p, q ≤ y,
q, r ≤ z and if pi(y), pj(z) ∈M0(P), it is p∨p i(y) ≤ q∨pi(y), q∨pj(z) ≤ r∨pj(z).
If pi(y) = pj(z), we have p ≤ p ∨ pi(y) ≤ q ∨ pi(y) = q ∨ pj(z) ≤ z, so that
p, q, r ≤ z. Further let us suppose that pi(y) 6= pj(z), p1−i(y) = p1−j(z). Then we
have r ≤ r∨ p1−j(z) ≤ q∨ p1−j(z) = q ∨p1−i(y) ≤ y, so that p, q, r ≤ y. Finally if
p0(y), p1(y), p0(z), p1(z) are different, we use (5) and we take y′ = pi(y)∨ p1−j(z).
There exists k ∈ {0, 1} such that pi(y) = pk(y′), p1−j(z) = p1−k(y′). Now it is
p ≤ p ∨ pi(y) ≤ q ∨ pi(y) = q ∨ pk(y′) ≤ y′ and proceeding as in the previous case
taking y′ instead of y we obtain p, q, r ≤ y′. �

Lemma 2.11. The relation � is a partial order in A and (A,�) ∈ Aβ.

Proof. The reflexivity is trivial, the antisymmetry follows immediately from 2.9.
The transitivity is a consequence of 2.10. and 2.9. To prove (A,�) ∈ Aβ let
p ∈ A = Min P. Take any y ∈Max Pwith y ≥ p. If p i(y) ∈M0(P), then evidently
pi(y) ∈ Min (A,�), p1−i(y) ∈Max (A,�) and it is pi(y) � p � p1−i(y). �

Now let us define Φ : Int (A,�)→ P by

Φ(≺ p, q �) = p ∨ q (p, q ∈ A, p � q).

Notice that if p � q, then p ∨ q exists by 2.6.

Lemma 2.12. The mapping Φ is an isomorphism of (Int (A,�),⊆) onto P=
(P,≤).

Proof. To prove that Φ is onto, let x ∈ P . Take any y ∈ Max P, y ≥ x. In
view of the results of the previous section, we have x = p ∨(y> q for some p, q ∈
Min P, p, q ≤ y with p ∨ (y> p0(y) = p ∨ p0(y), q ∨(y> p0(y) = q ∨ p0(y) (and hence
also p ∨ p1(y), q ∨ p1(y)) being comparable. Hence p, q are also comparable. If,
e.g., p � q, we have Φ(≺ p, q �) = p ∨ q = p ∨(y> q = x. It remains to show that
if p � q, p1 � q1, then ≺ p, q �⊆≺ p1, q1 � is equivalent to p ∨ q ≤ p1 ∨ q1. If
p ∨ q ≤ p1 ∨ q1, we take y ∈ Max P, y ≥ p 1 ∨ q1. Using F we obtain ≺ p, q �⊆
≺ p1, q1 � immediately. Conversely let ≺ p, q �⊆≺ p1, q1 �. Then p1 � p � q �
q1 and using 2.10. we obtain that there exist y, z ∈Max P such that p1, p, q1 ≤ y
and p1, q, q1 ≤ z. Applying F to (y> and (z > we obtain p ≤ p1 ∨ q1, q ≤ p1 ∨ q1.
Consequently p ∨ q ≤ p1 ∨ q1. The proof is complete. �
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[2] Igošin, V. I., Lattices of intervals and lattices of convex sublattices of lattices, Uporjadočen-
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