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A NOTE ON REGULARITY FOR
NONLINEAR ELLIPTIC SYSTEMS

JOSEF DANECEK AND EUGEN VISZUS

ABSTRACT. The L2 - regularity of the gradient of weak solutions to nonlinear
elliptic systems is proved.

1. INTRODUCTION

In this paper we consider the problem of regularity of the first derivatives of
weak solutions to the nonlinear elliptic system

(1) —Dyaf(x,u, Du) = a;(x,u,Du), i=1,...,N, a=1,...,n,

where a$*(x,u,p), a;(x,u,p) are Caratheodorian mappings from (x,u,p) € Q x
RY x R™ into R. A function u € W 2(Q,RY) is called a weak solution to (1) in
Qif

/af‘(m,u,Du)Daq}i(m) dx = / ai(z,u, Du)p'(x) dx Yo € C(Q,RY).
Q Q

In case of a general system (1) only partial regularity can be expected for n > 2, see
e.g. [Cal, [Gia], [Ne]. Under the assumptions below we will prove L** - regularity
(0 < XA < n) of gradient of weak solutions for the system (1) whose coefficients
a%(z,u, Du) have the form

(2) af (¢, u, Du) = A{(2) Dpw + gf* (x,u, Du),

where Af‘jﬁ is a matrix of functions satisfying the following condition of strong
ellipticity

(3) AP (@)l > vIEf, aexeQ VEeR™v>0
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and ¢ (x,u, z) are smooth functions with sublinear growth in z. In what follows,
we formulate the smoothness and the growth conditions for the functions Af;ﬁ (),
9% (z,u, z) and a,(x, u, z) precisely.

In [Da] the first author has proved L?* - regularity of gradient of weak solutions
to (1) in situation when the coefficients Af;ﬁ are continuous. In [DV] the authors
have shown the analogous result under another assumptions on the coeflicients
A7 In [DV] it is supposed that AJ € L°(Q) N Ls(), where & = &(r) =
1/(1 4+ |Inr|). The functions from such class are discontinuous in general, see
definition and Proposition 1 below.

In this paper the coefficients Af;ﬂ belong to L>*(2) NVMO(Q) (for definition
see below) and the result of this paper may be seen as a generalization of that from

[DV], see Remark 2 below. The proof of the result is based on method analogous
to that in [DV].

2. NOTATIONS AND DEFINITIONS

We will consider bounded open set Q C R™ with points « = (z1,...2,), n > 3
and u: @ — RN, N > 1, u(z) = (u!(2),...,uN(z)) is a vector-valued function,
Du = (Dyu,...,Dyu), Dy = 0/0x,. We will use the convention on summation
over repeated indices. The meaning of )y CC ) is that the closure of ) is
contained in Q, i.e. Qo C Q. For the sake of simplicity we denote by | - | the
norm in R™ as well as in RY and R™. If z € R™ and r is a positive real number,
we set By(z) = {y e R™: |y —x|<r}, i.e., the open ball in R™ Q(z,r) = QN
B(x,r). We denote by u;, = |Q(z,7)|;! fQ(z,r) u(y)dy = JCQ(I,T) u(y) dy the
mean value over the set Q(z,r) of a function u € L'(Q,RY), where |Q(z,7)|n
is the n-dimensional Lebesgue measure of (x,r). Beside the usually used space
C§° (€2, RY), the Hélder space C%*(Q,R™) and the Sobolev spaces W*? (€, RY),
WEP(Q,RN), WiP(Q,RN) (see, e.g. [KJF]) we introduce the following Morrey
spaces.

Definition 1. Let A € [0,n], ¢ € [1,00). A function v € L7(2,RY) is said to
belong to L%*(Q,RY) if

1
lullZor @ ry = sup {T—A /Q( )IU(y)I“dy: zEQr> 0} < o0,

where Q(z,7) = QN B, (x).

For more details see [Cal], [Gia], [KJF], [N].

In the next definition we assume that &: [0,d] — [0,00) is a continuous, non-
decreasing function such that o — &(o)/c is almost decreasing, i.e. there exists
K4 > 1 such that

Kq)@(t) > @(S)
t s

Vo<t<s<d.
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Definition 2. A function u € L2(€2,R") is said to belong to Lg(Q, RY) if

1/2

1

[ulg.o =sup{ — | {lu(y) — ue.|*dy cxeQre (0,diam)] p < oo
Q(T) Q(z,r)

and by Ig (2, R"Y) we denote subspace of all u € Lg(2, RY) such that

[u]e,0,r, =

1/2

1

sup § —— [u(y) — ug.r|*dy cxeQre(0,r9] p =o0(l) as 19 \, 0.
Q(T) Q(z,r)

Remark 1. If & = 1 we set Ls(Q,RY) = BMO(,RY) (bounded mean oscila-
tion) and Ig(Q,RY) = VMO(Q,RY) - vanishing mean oscilation, for details see
[Ac, [Cal, [Sp].

Some basic properties of above mentioned spaces are formulated in the following
properties, for the proofs see [Ac|, [Ca], [KJF] and [Sp].

Proposition 1. Let Q@ C R"™ be a domain of the class C>'. Then the following
assertions holds:
(i) L™ (Q,RY) is isomorphic to the L>=(Q,RY).
(i) u € WEA(Q,RY) and Du € LENQLR™), n—2 < X\ < n then u €
CO(Q,RY), a=(A+2—n)/2.
(iii) Lg(2,RY) is a Banach space with norm lullgp@ryy = lull 2@ ryy +
[U]ﬁé(QVRN).
(iv) Let ®(r) = 1/(1+|Inr|). Then C°(Q,RM)\ Ls(Q,RY) and (L=(Q,RN)N
lo(Q,RM))\ CO(Q,RY) are not empty.
(v) Forpe[l,00), Y CCQ, 1o € (0,dist(Y,09Q)) and u € Lo(Q,RY) set

1/p

1

Np(u; @, ,19) = sup{ —— |u(y) — ug.r|Pdy sz eQ,re (0,r)
Q(T) Q(z,r)

Then we have for each u € Lgs(Q,RY)

Nl (ua 437 Q/a TO) S Np (ua 437 Q/a TO) S C(pa n)[u]@',Q,TU .

Remark 2. It is a trivial fact that L¢(Q,RY) C VMO(Q,RY) if &(r) vanishes
as r approaches zero.
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3. MAIN RESULTS

Suppose that for all (z,u, z) € Q x RN x R™N the following conditions hold:

(4) lai(z,u, 2)| < fi(z) + L],
(5) |97 (@, u, 2)| < f(2) + L 2]
(6) 97 (@ u,2)2l = v o[ = f2,

where L, vy are positive constants, 1 < 49 < (n+2)/n,0 <~ <1, f, f& € L°*(Q),
0>2,0< A<, fi € L70A0(Q), go = n/(n+2). We put A = (A7), g = (¢2),
a= (@), f=(f), = ().

Theorem. Let u € WE(Q,RYN) be a weak solution to the system (1) and the

conditions (2), (3), (4), (5) and (6) be satisfied. Suppose further that Af;ﬁ €
LX) NVMOWQ),i,j=1,....,N,a,8=1,...,n. Then

foj (@, R™N) if A<n
Du
(Q R"N) with arbitrary N <n if A=n.

loc

Corollary. Let the assumptions of theorem be satisfied. Then

COC-n+2/2 ( RN) if n—2<A<n
u
co (Q,RN) with arbitrary v <1 if A=n.
Proof. It follows from Poincaré’s inequality and Proposition 1(ii). O

4. AUXILIARY LEMMAS
In this section we present the results needed for the proof of Theorem. In
B(z,r) C R™ we consider a linear elliptic system

(7) —Do (A} Dgu?) =0

with constant coefficients satisfying (3).

Lemma 1 ([Ca] pp. 54-55). Let u € Wh2(B(x,r),RY) be a weak solution to the
system (7). Then for each t € [0, 1]

/B Du(y)?dy < ct” / Du(y)[? dy

r

holds.
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Lemma 2 ([KN]). Let ® = ®(R), R € (0,d], d > 0 be a nonnegative function
and let A, B, C, a, b be nonnegative constants. Suppose that for allt € (0,1] and
all R € (0,d]

®(tR) < (At" + B)®(R) + CR’

holds. Futher let K € (0,1) be such that e = AK*™® + BK=% < 1. Then
®(R) <cR’, Re(0.d],

where ¢ = max{C/K(1 — €), SUPge(ga,q ®(R)/R"}.
The following Lemma is the special case of Lemma 3.4 of the paper [Da].

Lemma 3 (|Da], pp.757-758). Letu € W12(Q,RY), Du € L*7(Q,R"™), 0< 7 <
n and (4) and (5) are satisfied with f; € L2020 (Q), f& € L22(Q), 0 < A < n.
(i) Then a; € L?%*0(Q) and for each ball Br(x) C Q we have

(8) (/ Jas(, u, Du)|*0 dy < ¢ R
Br(z)

where ¢ = ¢(n, L, o, diam , ||.}T||L2qg,/\qg(QvRN), | Dullonyrry) and Ao =
min{Ago, n — (n — 7)qo70} -
(ii) For each ¢ € (0,1) and all Br(x) C Q

(9) [ lst@uboPay<enye [ DuPdy+er.
Br(x) Br(x)

Here ¢ = ¢(L,e,v,diam Q, ||.}T||L2,)\(QVRTLN), [Dull2(or™y), A1 = A for A < n
and A\ < n for A =n.

Proof. For the proof (i) see [Ca|, pp.106-107. According to (5) we have

r(z)

/ 195 (y, u, Du)|? dy < ¢ <|,ﬂ|%2,>\(Q,RnN) R* —|—/ | Du|? dy) .
Br(z) B

Applying the Young inequality we obtain
/ | Du|*Y dy < 5/ |Dul? dy + c(n, e, v)R"
Br(z) Br(x)
for each € € (0,1) and (9) easily follows. O

In the following considerations we will use a result about higher integrability of
gradient of weak solution to the system (1).
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Proposition 4 ([Gia], p.138). Suppose that (2) - (6) are fulfilled and let u €
WE2(Q,RYN) be a weak solutions of (1). Then there exists an exponent r > 2 such

that u € VV;I(Q, R™N). Moreover there exists a constant ¢ = c(v, vy, L, | Alls0) and

R > 0 such that for all balls Br(x) C Q, R < R the following inequality is satisfied

1/r
< IDUITdy>
Bry/a(z)
1/2 _ 1/r 1/rqo
<c <][|DUI2)dy> +<][(fr+|flr)dy> +R< Ifl”“)dy>
Br(z) Br(z) Br(z)

5. PROOF OF THE THEOREM

Let Br/2(20) C Br(xo) C 2 be an arbitrary ball and let w € WOLQ(BR/Q(I()), RY)
be a solution of the following system

(10) / (A7) a9.Rj2Dpw’ Doy’ da
Bry2(%0)
= [ (A iz = A (@) D D
Rr/2(Zo

—/ g% (2, u, Du) Doy’ dx—|—/ a;(z,u, Du)p' dx
Bpr/2(x0) Br/2(x0)

for all p € W, *(Bg /2(0), RY). It is known that under the assumption of Theorem
such solution exists and is unique for all R < R’ (R’ is sufficiently small).

Substituting ¢ = w in (10) and using the ellipticity, the Holder and the Sobolev
inequalities we get

1/2/ |Dw|2d1‘ <c </ |Azo r/2 — A(x)|2|Du|2 dz
Br/2(x0) Br/2(%0)

1/q0
+/ l9(2,u, Du)|? dz + </ |a(x, u, Du)|*%® dx)
Bry2(wo) Bry2(zo)

= c(I +II+III).

Taking into account the properties of matrix A = (Af‘jﬁ ), Proposition 1(v), Propo-
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sition 4 with r > 2 and the Holder inequality (' = r/(r — 2)) we obtain

1/r! 2/r
I< </ |A(x) — AIU,R/2|2T/ dl”) </ |Dul|” da:)
Br/2(x0) Br/2(%0)

1/r! 2/r
gcR"/”< |A(z) = Agg. /2" dx> ( / |Du|’”dx>
Bry2(%0) Bry2(%0)

2/r
< Ny (A3 1, Bya (a0) . R/2)R™™ < / Dul’ dx>
B

r/2(®0)

2/r
< e¢i(n,m, RYRM™ </ |Dul|” dx) ,
Br/2(x0)

where ¢; = ¢1(n,r, R) vanishes as R approaches zero, because Af;ﬁ € VMO(9Q)

(in this step we apply the more generaly condition on Af;ﬁ than in [DV]).
To the estimate the last integral in above inequality we use Proposition 4 and
we get

</ ) .(.|Du|rdx)2/r
Bry2(%0)

2/r
1 =
< - - 2 r r
< g o Duldy < / IRCinaY >dy>

2/rqo
L R20-2/7) / 7T dy
Br(x)
1 2 2N/r | p2Ar—24N)/7)

where c3 = c3(r, ||f||LM(Q), ||J7||LM(Q), ||J?||m0vkqo(n))-

I< 04(3)/

|Dul?dz + c5 (R”/T + RQ(T‘QHV”) R
Br(xo)

where ¢4(R) vanishes as R approaches zero.
We can estimate II and III by means of Lemma 3 (with 7 = 0) and we have

(11) 1/2/ |Dw|?dz < cg (6+C4(R))/ |Du|?dx + R* } |
Bpr/2(x0) Br(xo)

where ¢ = min{(2\ + n(r — 2))/r, CA+ (n + 2)(r — 2))/r,A\,n+ 2 — nyp} =
min{\,n + 2 — nyo} because r > 2.
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The function v = u — w € WH2(Bp/a(z0), RY) is the solution of the system
(12) / (A7) 20,r/2Dsv" Dap' dz =0, Y € Wy *(Brya(wo), RY) .
Bry2(%o)
From lemma 1 we have for ¢t € (0, 1]

/ Do(y)P dy < e 1" / Du(y)|? dy -
Bir/2(%0) Bpr/2(x0)

By means of (11) and (12) we obtain for ¢ € (0,1] and € € (0,1)

/ |Du|?dz < cg {(t"+6—|—64(R))/ |Du|2dx—|—R“} .
Bir/2(x0) Br(zo)

For ¢ € [1,2] the above inequality is trivial and we obtain

(13) / \Dul2de < co (£ + = + c4(R))/ \Dul2dz + 1 R”,
Bir(z0) Br(xo)

vVt e[0,1]

where the constants ¢ and c19 depends only on above mentioned parametrs.
Now from Lemma 2 we get the result the following manner. We put ®(R) =
JB (o) |Dul?*dz, A = co, B = co(e + c4(R)) and C = c¢19. We can choose 0 <

K < 1 such that AK"™* < 1/2 (in the case A = n we have AK"~* < 1/2, where
A1 is from Lemma 3(ii)). It is obvious that the constants €9 > 0, Ry > 0 exist
such that BK~* < 1/2 (B = g + c4(Ry)) and then for all ¢ € (0,1), R < Ry the
assumptions of Lemma 2 are satisfied and therefore

/ |Du|? dx < ¢ RM.
Br(zo)

If 4 = X the Theorem is proved. If u < A the previous procedure can be
repeated with 7 = p in Lemma 3. It is clear that after a finite number of steps
(since p increases in each step as it follows from Lemma 3) we obtain g = .
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