
Archivum Mathematicum

Jan Chvalina; Ludmila Chvalinová
Multistructures determined by differential rings

Archivum Mathematicum, Vol. 36 (2000), No. 5, 429--434

Persistent URL: http://dml.cz/dmlcz/107756

Terms of use:
© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107756
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 36 (2000), 429–434, CDDE 2000 issue

MULTISTRUCTURES DETERMINED BY DIFFERENTIAL RINGS

Jan Chvalina1 and Ludmila Chvalinová2
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Abstract. Multistructures namely hypergroups are playing very essen-
tial role in contemporary mathematics. This contribution aims at some
natural constructions of such multistructures defined on differential rings
with differentiation operators which can be especially applied to rings of
continuously differentiable functions.
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The systematic study of algebraic aspects of transformations of differential and
difference operators applied to investigation of differential and difference equations
is of a persistent interest. General algebraic approach to the transformation the-
ory is described in [13], more in detail see also [12] and other related papers
of Professor Neuman. This fruitful direction has been iniciated by Professor O.
Bor̊uvka in the 1950s in the framework of his intensive research of linear differ-
ential transformations of the second order - [3]. The theory dominating by high
level of algebraization and geometrization is developing by the Bor̊uvka’s school
and his succesors up to present times.

In contemporary investigations of algebraic and geometrical structures an im-
portant role is playing by hyperstructures, formerly called multistructures, which
occur very naturally in convexity theory, harmonic analysis, in projective and affine
geometry, in the decomposition theory of noncommutative algebraic structures and
elsewhere, cf. [2,4,6,7,8,11,14,15,16].
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In this contribution we give construction of multistructures determined by
quasi-orders defined by means of derivation operators on differential rings. Some
constructions based on results of [4], par.1 chapter IV and of paper [5] are possible
for general differential rings, the other are specialized.

Recall basic concepts overtaken e.g. from [6]. A multigroupoid or a hyper-
groupoid (in recent literature) is a pair (M, ·), where M is a nonempty set and
a mapping · : M ×M → P∗(M) (the system of all nonempty subsets of M) is a
binary multioperation called also a hyperoperation. This multioperation is usually
extended onto the powerset P(M) by the rule A.B =

⋃
{a.b; a ∈ A, b ∈ B} for any

pair A 6= ∅ 6= B, where A,B ⊂ M and moreover by ∅.A = ∅ = A.∅. It is to be
noted that operations on powersets of carriers of ternary relational structures were
used by Professor M. Novotný in a series of his papers - started by [14] - including
also investigations of relationships between ternary structures and multistructures.
If this multioperation is associative (here A.B =

⋃
{a.b; a ∈ A, b ∈ B} for any pair

A 6= ∅ 6= B, A,B ⊆ M) then (M, ·) is called a semihypergroup, if (M, ·), more-
over, satisfies the reproduction axiom - a.M = M = M.a for any a ∈ M - then
(M, ·) is said to be a multigroup or a hypergroup. We will use the latter terms. A
hypergroupoid satisfying the reproduction axiom is called a quasi-hypergroup.

Let (R,+, .,∆R) be a commutative differential ring, i.e. (R,+, .) is a commu-
tative ring, ∆R is a set of derivations on the set R, which means that ∆R is a
subset of the endomorphism monoid End(R,+) of the additive abelian group of
the ring (R,+, .) satisfying the differentiation rule. Thus for d ∈ ∆R and any pair
of elements x, y ∈ R we have d(x+ y) = d(x) + d(y) and d(x.y) = d(x).y+ x.d(y).
Moreover we suppose that any d : R→ R is surjective. A differential structure ∆R

of a ring can be endowed with the Lie multiplication d1 ⋄L d2 = d1d2 − d2d1; then
(R,+, ⋄L) is a Lie ring of derivations. If ∆R = {d} is a singleton we say that this
differential structure is monogeneous.

By R,R+,N we denote the set of all real, positive real numbers, positive
integers, respectively.

Examples 1. Let J = (a, b) ⊆ R (possibly J = R) and C∞(J) - as usually -
be the ring of real functions f : J → R with continuous derivatives of all orders.
If ∆ = { d

dx
}, where df

dx
= f ′ is the usual derivative of a function f ∈ C∞(J), then

(C∞(J),+, .,∆) is a differential ring with a monogenous differential structure.
2. Let R[x1, . . . , xn], [x1, . . . , xn] ∈ Rn (for a fixed integer n) be the ring of all

polynomials with coefficients in the field (R,+, .). Denoting
∆ = {

∑n
1 λk.

∂
∂xk

; [λ1, . . . , λn] ∈ Rn} we obtain (R[x1, . . . , xn],+, .,∆) as an ex-
ample of a differential ring.

Other examples can be found e.g. in [9,10] The join operation · in a hyper-
groupoid (M, ·) has two inverses - right extension and left extension - defined by
a/b = {x; a ∈ x · b} and b\a = {x; a ∈ b · x} called also right and left fractions, re-
spectively. The reproductive axiom for (M, ·) is easily seen to be equivalent to the
condition that fractions a/b, b\a are nonempty for any pair a, b ∈ M . In the case
of a commutative join operation · evidently a/b = b\a. Now, a hypergroup (M, ·)
is called a join space if it is commutative and satisfies the transposition axiom: For
any quadruple a, b, c, d ∈M the implication a/b∩c/d 6= ∅ ⇒ a.d∩c.d 6= ∅ is valid -
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[6,7,8]. The concept of a join space has been introduced by W. Prenowitz and used
by him and afterwards by him and J. Jantosciak to build again several branches
of geometry. Recall that a self-map f of a hypergroupoid (M, .) is called a good
endomorphism of (M, .) if it satisfies these set equalities f(x, y) = f(x).f(y) for
any pair x, y ∈M .

Let (R,+, ·,∆R) be a differential (non necessary commutative) ring,M(∆R) be
the free monoid over∆R within the full transformation monoid of R (i.e. M(∆R) is
the set of all finite words d1 . . . dn, dk ∈ ∆R including the empty word Λ, identified
with the identity operator idR, endowed with the binary operation of concatena-
tion). We define d1 . . . dn(x) = dn(. . . (d1(x)) . . . ) which means application of the
composition of operators d1, . . . , dn- in this order - to the element x ∈ R.

Theorem 1. Let (R,+, ·,∆R) be a differential ring. Let x ∗ y = {d1 . . . dn(z); z ∈
{x, y}, dk ∈ ∆R, n ∈ N} = {δ(z); z ∈ {x, y}, δ ∈M(∆R)}. Then we have

1◦ (R, ∗) is a commutative hypergroup such that any differential endomorphism
of the ring (R,+, ·,∆R) (i.e. f ∈ End(R,+, ·) with f(dk(x)) = dk(f(x)), x ∈ R) is
a good endomorphism of (R, ∗).

2◦ The hypergroup (R, ∗) satisfies the transposition law, hence it is a join space
if and only if for any pair of elements x, y ∈ R such that there exists a pair of words
(δ, σ) ∈ M(∆R) ×M(∆R) and a suitable element z ∈ R with δ(z) = x, σ(z) = y,
we have τ(x) = ω(y) for some pair of words τ ∈M(∆R), ω ∈M(∆R).

Proof. Define a binary relation r ⊂ R×R by xry whenever there exists an m-tuple
of derivations operators d1, . . . , dm ∈ ∆R, i.e. a word δ = d1 . . . dm ∈M(∆R) such
that y = δ(x). The relation r is reflexive (if d1 = · · · = dm = idR) and transitive:
For x, y, z ∈ R such that xry, yrz, i.e. y = δ(x), z = σ(y) for suitable words
δ, σ ∈ M(∆R) we get z = δσ(x) = σ(δ(x)), with δσ ∈ M(∆R), thus xrz. If for
arbitrary pair x, y ∈ R we define

x ∗ y = {δ(z); z ∈ {x, y}, δ ∈M(∆R)} =
= {δ(x); δ ∈M(∆R)} ∪ {δ(y); δ ∈M(∆R)} = r(x) ∪ r(y)

then by the fundamental construction [4], or [5] and [16] we have that (R, ∗) is a
commutative hypergroup. Further, if f : R → R is a differential endomorphism
of the ring (R,+, .,∆R) which means f ∈ End(R,+, .) and f(d(x)) = d(f(x)) for
any d ∈ ∆R and any x ∈ R, then by the induction f(δ(x)) = δ(f(x)) for any word
δ ∈M(∆R) and each element x ∈ R, thus for any pair x, y ∈ R we have

f(x ∗ y) = {f(δ(z)); z ∈ {x, y}, δ ∈M(∆R)} =
= {δ(f(z)); z ∈ {x, y}, δ ∈M(∆R)} = f(x) ∗ f(y).

Hence the assertion 1◦ is true.
Finally, the monoidM(∆R) acts on the setR. By [5] Theorem 6 the hypergroup

(R, ∗) is a join space iff for every pair of elements x, y ∈ R such that there exists a
pair of words δ1, σ1 ∈ M(∆R) and an element z ∈ R with δ(z) = x, σ(z) = y, we
have τ(x) = ω(y) for suitable words τ, ω ∈ M(∆R), thus we obtain the assertion
2◦.

Remark. Using principal ideals within differential images of the carrier set R
of a differential ring (R,+, ., {d}) with a monogeneous differential structure, we



432 J. CHVALINA AND L. CHVALINOVÁ

can construct a countable set (in general) of commutative extensive hypergroups
(R, ◦m) with the same carrier R. (Extensivity of a hyperoperation ◦ means x, y ∈
x ◦ y for all x, y ∈ R.) This construction is based on [4], chapt.IV, Theorem 2.1
which is generalized in [15] - Propositions 2,3. More in detail, for a given positive
integer m ∈ N we define

x ◦m y = {z ∈ R;x.dm(R) ⊆ z.dm(R) or y.dm(R) ⊆ z.dm(R)},
where dm(R) = {dm(x);x ∈ R}. Then by the above mentioned theorems we obtain
that (R, ◦m) is a commutative extensive hypergroup.

Theorem 2. Let (R,+, ·,∆R) be a commutative differential ring with a monoge-
neous differential structure ∆R = {d}. Let (R, ∗d) be a commutative hypergroupoid
defined by the indefinite integral x ∗d y = d−1(x+ y) for all x, y ∈ R. Then (R, ∗d)
is a commutative quasi-hypergroup such that (x+ y)/(u+ v) = x/u+ y/v for any
quadruple x, y, u, v ∈ R and for arbitrary triad x, y, z ∈ R we have

1◦ x/y = d(x) − y,
2◦ d(x) = (x+ y)/z − y/z,
3◦ d(x/y) = d(x)/d(y),
4◦ d(x ∗d x+ y ∗d y) = d(x ∗d y) + d(x ∗d y).

Proof. We show first that the hypergroupoid (R, ∗d) satisfies the reproduction
axiom.

Let a ∈ R be an arbitrary element. Since a∗dR ⊆ R and (R, ∗d) is commutative
if suffices to prove the inclusion R ⊆ a∗dR. For any x ∈ R then d−1(x) = I(x) =
{y ∈ R; d(y) = x} is called the indefinite integral of x. Now, for arbitrary b ∈ R
we denote xb = d(b) − a. Then d(b) = a + xb, i.e. b ∈ d−1(a + xb) = I(a + xb) =
a ∗d xb ⊆

⋃
x∈R a ∗d x = a ∗d R, hence a ∗d R = R = R ∗d a for any a ∈ R. It is

easy to see that (R, ∗d) is not associative in general, thus (R, ∗d) is a commutative
quasi-hypergroup. Further, for x, y, u, v ∈ R arbitrary we have

1◦ x/y = {z ∈ R;x ∈ z ∗d y} = {z ∈ R;x ∈ I(z + y)}, thus x ∈ z ∗d y iff
d(x) = z + y, thus z = d(x) − y, hence we get that z ∈ x/y iff z = d(x) − y
consequently x/y = d(x) − y which is a singleton.
Now x/u+ y/v = d(x) − u+ d(y) − v = d(x+ y) − (u+ v) = (x+ y)/(u+ v).

2◦ For any x, y, z ∈ R we have (x+ y)/z = d(x + y) − z = d(x) + d(y) − z =
d(x) + y/z, therefore d(x) = (x+ y)/z − y/z. Similarly,

3◦ d(x/y) = d(d(x) − y) = d(d(x)) − d(y) = d(x)/d(y) and
4◦ d(x ∗d y) + d(x ∗d y) = d(d−1(x + y)) + d(d−1(x + y)) = x + y + x + y =

x+x+y+y = d(d−1(x+x+y+y)) = d(d−1(x+x)+d−1(y+y)) = d−1(x∗dx+y∗dy).

Now we specialize our considerations to the classical differential rings of real
functions f ∈ C∞(J), J = (a, b) ⊆ R (not excluding the case J = R) with the
usual differentiation. For any f ∈ C∞(J) we denote by

∫
f(x)dx the set of all

primitive functions to f , i.e.
∫
f(x)dx = {F : J → R;F ′(x) = f(x), x ∈ J}. For

any pair of function ϕ,ψ ∈ C∞(J) we define a hyperoperation ⋆ on the ring C∞(J)
by

f ⋆(ϕ,ψ) g =

∫
(ϕ′(x)f(x) + ψ′(x)g(x))dx, f, g ∈ C∞(J).
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Evidently, (C∞(J), ⋆(ϕ,ψ)) is a hypergroupoid (noncommutative in general).

Theorem 3. Let J ⊆ R be an open interval, ϕ,ψ ∈ C∞(J) be a pair of strictly
monotone functions (i.e. ϕ′(x).ψ′(x) 6= 0 for all x ∈ J). Then the hypergroupoid
(C∞(J), ⋆(ϕ,ψ)) is a quasi-hypergroup (i.e. it satisfies the reproduction axiom)
which is commutative if and only if the difference ϕ − ψ on the interval J is a
constant function.

Proof. Clearly, for any pair f, g ∈ C∞(J) and any function h ∈ f ⋆(ϕ1,ϕ2) g we
have h ∈ C∞(J). Suppose f ∈ C∞(J) is an arbitrary function. Then evidently

f ⋆(ϕ1,ϕ2) C∞(J) =
⋃
{f ⋆(ϕ1,ϕ2) g; g ∈ C∞(J)} ⊆ C∞(J)

and
C∞(J) ⋆(ϕ1,ϕ2) f ⊆ C∞(J), as well. We prove the opposite inclusions.
Suppose that g ∈ C∞(J) is an arbitrary function. Define

h1(x) = 1
ϕ′

2
(x) (g

′(x) − ϕ′

1(x)f(x)), x ∈ J .

Since ϕ′

1(x).ϕ
′

2(x) 6= 0 for each x ∈ J , then ϕ′

2(x) 6= 0 for any x ∈ J , thus the
function 1

ϕ′

2
(x) is defined on the interval J and 1

ϕ′

2
(x) ∈ C∞(J), g′(x)−ϕ′

1(x)f(x) ∈

C∞(J), hence h1 ∈ C∞(J). Then
f ⋆(ϕ1,ϕ2) h1 =

∫
(ϕ′

1(x)f(x) + ϕ′

2(x)h1(x))dx =
∫
g′(x)dx = {g(x) + c; c ∈ R},

thus
g ∈ f ⋆(ϕ1,ϕ2) h1 ⊆

⋃
{f ⋆(ϕ1,ϕ2) h;h ∈ C∞(J)}.

Similarly if we define
h2(x) = 1

ϕ′

1
(x) (g

′(x) − ϕ′

2(x)f(x)), x ∈ J ,

then the assumption ϕ′

1(x) 6= 0 for any x ∈ J and f, g, ϕ1, ϕ2 ∈ C∞(J) implies
h2 ∈ C∞(J). Further,
h2 ⋆(ϕ1,ϕ2) f =

∫
(ϕ′

1(x)h2(x) + ϕ′

2(x)f(x))dx =
∫
g′(x)dx = {g(x) + c; c ∈ R},

thus - similarly as above - we have
g ∈ h2 ⋆(ϕ1,ϕ2) f ⊆

⋃
{h ⋆(ϕ1,ϕ2) f ;h ∈ C∞(J)} = C∞(J) ⋆(ϕ1,ϕ2) f .

Hence
C∞(J) ⊆ (f ⋆(ϕ1,ϕ2) C∞(J)) ∩ (C∞(J) ⋆(ϕ1,ϕ2) f),

consequently the hypergroupoid (C∞(J), ⋆(ϕ1,ϕ2)) satisfies the reproduction ax-
iom. Therefore it is a quasi-hypergroup.

Now suppose ϕ1(x)−ϕ2(x) = c for some real number c ∈ R. Then ϕ′

1 = ϕ′

2 and
f ⋆(ϕ1,ϕ2) g = g ⋆(ϕ1,ϕ2) f for any pair of functions f, g ∈ C∞(J). On the contrary,
if the hyperoperation ⋆(ϕ1,ϕ2) is commutative then

∫
(ϕ′

1(x)f(x)+ϕ′

2(x)g(x))dx =∫
(ϕ′

1(x)g(x) + ϕ′

2(x)f(x))dx which is equivalent to

∫
(ϕ′

1(x) − ϕ′

2(x))(f(x) − g(x))dx = 0.(1)

Especially for f(x) = g(x)+1, x ∈ J the equality (1) gives
∫

(ϕ′

1(x)−ϕ
′

2(x))dx = 0,
which implies ϕ′

1(x) − ϕ′

2(x) = 0 thus ϕ1(x) − ϕ2(x) is a constant function.

Remark. It is easy to see that the hyperoperation
⋆(ϕ1,ϕ2) : C∞(J) ×C∞(J) → P∗(C∞(J))

is not associative. In a special case ϕ1(x) = ϕ2(x) = x, x ∈ J , i.e. within the
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commutative quasi-hypergroup (C∞(J), ∗), where f ∗ g =
∫
(f(x) + g(x))dx for

any pair f, g ∈ C∞(J), we get from Theorem 2 (1◦, 2◦, 3◦) the following rules:

f(x)/g(x) = df(x)
dx

− g(x), d
dx

(f(x)/g(x)) = df(x)
dx

/dg(x)
dx

,
df(x)
dx

= (f(x) + g(x))/h(x) − g(x)/h(x)
for arbitrary f, g, h ∈ C∞(J). Moreover, for any quadruple f, g, u, v ∈ C∞(J) then
we have (f(x)+ g(x))/(u(x)+ v(x)) = f(x)/u(x)+ g(x)/v(x). Using derivatives of
functions from C∞(J) we can expressed certain sufficient conditions for validity of
transposition law for the quasi-hypergroup (C∞(J), ⋆(ϕ1,ϕ2)). Moreover, transpo-
sition hypergroups, forming an important class of hypergroups, can be constructed
from quasi-ordered groups and monoids of some transformation operators of rings
of continuously differentiable functions. These operators yielding substitutions for
some classes of ordinary differential equations will be investigated in a forthcoming
paper.
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