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1. Introduction

Consider the neutral differential equation

d

dt
[x(t) + px(t − τ)] + qx(t − σ) = 0, t ≥ t0,(1)

where

(i) p, q, τ, σ are positive real numbers.

Note that a nontrivial solution of an equation we call oscillatory if it has arbi-
trarily large zeros, and call it nonoscillatory otherwise, and next we shall say that
an equation is oscillatory provided all its (nontrivial) solutions are oscillatory, and
call it nonoscillatory otherwise.

A basic result on the oscillation of equation (1) says that every solution of
equation (1) is oscillatory if and only if its characteristic equation

λ + pλe−λτ + qe−λσ = 0(2)
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has no real roots. Such result we can find in the book [1] and for more general
equations in the book [2] and in the paper [3]. But to determine if equation (2)
has a real root is quite a problem itself. Therefore an effort of many authors is
to derive other conditions for oscillation and nonoscillation of considered equation
which can be easily applied than previous one. In a literature we can find several
sufficient conditions for every solution of equation (1) to be oscillatory (see e.g. [1]
and [4]) but less conditions for the existence of nonoscillatory solution of (1).

The aim of this contribution is to present new well-applicable conditions for the
existence of nonoscillatory solution of (1). The method is based on a transformation
of the equation (1) by a transformation of the independent variable.

The straight consideration about the existence of a real root of characteristic
equation (2) enables us to obtain the following result.

Theorem 1. Assume the condition (i) holds true and τ ≥ σ. Then equation (1)
has nonoscillatory solution x(t) = eλt, λ ∈ (− q

p
, 0).

Proof. According to assumptions it is clear that if the equation (2) has a real root
so it must be negative. Thus we define

F (λ) = λ + pλe−λτ + qe−λσ for λ ≤ 0

and put F (λ) = H1(λ)+H2(λ), where H1(λ) = λ+pλe−λτ , H2(λ) = qe−λσ. Then
we have

lim
λ→0−

H1(λ) = 0, lim
λ→−∞

H1(λ) = −∞, H ′

1(λ) = 1 + pe−λτ (1 − λτ) > 0

and lim
λ→0−

H2(λ) = q, lim
λ→−∞

H2(λ) = ∞, H ′

2(λ) = −qσe−λσ < 0

from which we see that for τ ≥ σ we have F (− q
p
) = − q

p
+ q(e

q

p
σ − e

q

p
τ ) < 0. Since

F (0) = q > 0 so we know that the equation (2) has the root λ ∈ (− q
p
, 0), the

function x(t) = eλt is the solution of (1) and the proof is complete.

Another way how to gain sufficient conditions for the existence of nonoscillatory
solution of equation (1) we present in the following sections.

2. Preliminaries

Consider the equation (1) but instead of condition (i) we suppose that

(ii) p, q, τ, σ are real numbers different from zero.

We transform the equation (1) by the transformation of the independent vari-
able. We put s = at, y(s) = x( 1

a
s) where a > 0. Then the equation (1)

acquires the form

d

ds
[y(s) + py(s − aτ)] +

1

a
qy(s − aσ) = 0, s ≥ s0,(3)

where s0 = at0.
It is clear the following holds true.
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Note 1. A function x(t) is a solution of the equation (1) for t ≥ t0 if and only if
the function y(s) = x( 1

a
s) is a solution of the equation (3) for s ≥ s0 and thus the

equation (1) is oscillatory if and only if equation (3) is oscillatory.

Since equation (3) is of the same form as equation (1) is so it is oscillatory if and
only if its characteristic equation

aη + paηe−aητ + qe−aησ = 0(4)

has no real roots and we can decide about solutions of (1) by the roots of the
equation (4).

Now we analyse this position.

(a) First of all we see that the number λ = 0 is not the root of equation (2).
(b) Suppose that equation (2) has a positive root λ. Then we can take a = λ and

equation (4) will be of the form λη + pληe−λητ + qe−λησ = 0 and we see that
η = 1 is the root of this equation. It means that equation

d

ds
[y(s) + py(s − λτ)] +

q

λ
y(s − λσ) = 0, s ≥ s0,

has nonoscillatory solution y(s) = es.
(c) Now suppose that equation (2) has a negative root λ. So if we take a = −λ,

equation (4) will be of the form −λη − pληeλητ + qeλησ = 0 and we see that
η = −1 is the root of this equation. It means that equation

d

ds
[y(s) + py(s + λτ)] −

q

λ
y(s + λσ) = 0, s ≥ s0,

has nonoscillatory solution y(s) = e−s.

We conclude this consideration in the following note.

Note 2. To every equation of the form (1), the characteristic equation of which
has a positive (negative) root, we can coordinate an equation of the same form
with the characteristic root 1 (−1). On the other hand, if we take an equation of
the form (1) with the solution y(s) = es (similarly with the solution y(s) = e−s)
and we choose some positive number λ (a negative number λ) so we can write the
equation of the same form with the solution x(t) = eλt (x(t) = eλt).

3. Conditions for nonoscillatory solutions

Theorem 2. Assume that p 6= 0, q > 0, τ > 0, σ > 0.

(I) Let there exist numbers q1 > 0, τ1 > 0, σ1 > 0 such that the conditions

1 + pe−τ1 + q1e
−σ1 = 0 and

τ1

τ
=

σ1

σ
=

q

q1
=

1

a
(5)

are satisfied. Then equation (1) has nonoscillatory solution x(t) = e
1
a

t.
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(II) Let there exist numbers q2 > 0, τ2 > 0, σ2 > 0 such that the conditions

−1 − peτ2 + q2e
σ2 = 0 and

τ2

τ
=

σ2

σ
=

q

q2
=

1

a
,(6)

are satisfied. Then equation (1) has nonoscillatory solution x(t) = e−
1
a

t.

Proof. Consider the equation

d

dz
[u(z) + p1u(z − τ1)] + q1u(z − σ1) = 0, z ≥ z0,(7)

with p1 6= 0, q1 > 0, τ1 > 0, σ1 > 0, which has the solution u(z) = ez, i.e. such that
its characteristic equation µ+p1µe−µτ1 +q1e

−µσ1 = 0 has the root µ = 1, i.e. such
that 1 + p1e

−τ1 + q1e
−σ1 = 0. The equation (7) we can transform to the equation

(1) by a suitable a > 0. In other words, there exists a number a > 0 such that the
transformation of (7) by t = az, x(t) = u( 1

a
t) gives the equation (1) in the formal

form

d

dt
[x(t) + p1x(t − aτ1)] +

1

a
q1x(t − aσ1) = 0.

So we have p = p1, and next

q =
1

a
q1, τ = aτ1, σ = aσ1.(8)

The conditions (8) we can write in the form

τ1

τ
=

σ1

σ
=

q

q1
=

1

a
.

The straight computation shows that the number 1
a

is the root of the equation (2).
The similar arguments hold true if we take the equation

d

dz
[u(z) + p2u(z − τ2)] + q2u(z − σ2) = 0, z ≥ z0,(9)

where p2 6= 0, q2 > 0, τ2 > 0, σ2 > 0 with the solution u(z) = e−z. The theorem is
proved.

Now using Theorem 2 we study the problem of the existence of nonoscillatory
solutions of the equation (1) under the condition (i).

The assumption (i) ensures that the equation (2) has not nonnegative root i.e.
the equation (1) has not the solution of the form x(t) = eλt, λ ≥ 0 and thus
there do not exist positive numbers q1, τ1, σ1 satisfying the first condition from
(5). Therefore we devote our attention to the case (II) of Theorem 2.

Let the numbers q2 > 0, τ2 > 0, σ2 > 0 be such that the first condition from
(6) is satisfied (note that such numbers always exist) and for some σ2 > 0 we
choose q2 > 0 and τ2 > 0 such that

q2 =
qσ

σ2
and τ2 =

τσ2

σ
.(10)
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Then the numbers q2, τ2, σ2 satisfy the second condition from (6) and the problem
of the existence of trinity of numbers for which the first condition from (6) is
satisfied is reduced to the problem of the existence of one such number.

Now we define the function G(σ2) = 1
σ2

eσ2 , σ2 > 0. Then

G′(σ2) =
1

σ2
2

eσ2(σ2 − 1), G′′(σ2) =
1

σ3
2

eσ2((σ2 − 1)2 + 1),

from which we see that for every σ2 > 0 we have G(σ2) ≥ e.
Now suppose that qσ > 1

e
. Then for every σ2 > 0 we have

1

qσ
< e ≤

1

σ2
eσ2 .

Therefore, according to (10) we have −1 + q2e
σ2 > 0 and the first condition from

(6) will be satisfied if and only if τ
σ
σ2 = ln q2eσ2−1

p
or

τ

σ
σ2 + ln p = ln

(

qσ

σ2
eσ2 − 1

)

(11)

for some σ2 > 0.
The existence of a positive root of the equation (11) we investigate now by the

auxiliary function

F (σ2) =
ln(qσ 1

σ2
eσ2 − 1)

τ
σ
σ2 + ln p

,

defined

- for σ2 ∈ (0,∞) if p ≥ 1
- for σ2 ∈ ((0,−σ

τ
ln p) ∪ (−σ

τ
ln p,∞)) if 0 < p < 1.

Then for p > 0 we have limσ2→∞ F (σ2) = σ
τ
, and

lim
σ2→0+

F (σ2) =

{

∞ if p ≥ 1
−∞ if 0 < p < 1.

In the case 0 < p < 1 we compute one-side limits of the function F at the point
−σ

τ
ln p and we obtain

lim
σ2→−

σ

τ
ln p−

F (σ2) =







−∞ if qτ + 2p
σ

τ ln p > 0
∞ if qτ + 2p

σ

τ ln p < 0
c ∈ R if qτ + 2p

σ

τ ln p = 0

and

lim
σ2→−

σ

τ
ln p+

F (σ2) =







∞ if qτ + 2p
σ

τ ln p > 0
−∞ if qτ + 2p

σ

τ ln p < 0
c ∈ R if qτ + 2p

σ

τ ln p = 0.

This investigation and the continuity of F enables us to formulate the following
results.
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Theorem 3. Let the condition (i) hold true and let

0 < p < 1, qσ >
1

e
, qτ + 2p

σ

τ ln p < 0.

Then there exists σ2 ∈ (0,−σ
τ

ln p) such that (11) holds true, i.e. the equation (9)
has the solution x(t) = e−t and the equation (1) has the nonoscillatory solution

x(t) = e−
σ2
σ

t.

Theorem 4. Let the condition (i) hold true and let

0 < p < 1, qσ >
1

e
, qτ + 2p

σ

τ ln p < 0 and
σ

τ
> 1.

Then there exists σ2 ∈ (−σ
τ

ln p,∞) such that (11) holds true i.e. the equation (9)
has the solution x(t) = e−t and the equation (1) has the nonoscillatory solution

x(t) = e−
σ2
σ

t.

Theorem 5. Let the condition (i) hold true and let

0 < p < 1, qσ >
1

e
, qτ + 2p

σ

τ ln p > 0 and
σ

τ
< 1.

Then there exists σ2 ∈ (−σ
τ

ln p,∞) such that (11) holds true i.e. the equation
(9) has the solution x(t) = e−t and the equation (1) has nonoscillatory solution

x(t) = e−
σ2
σ

t.

Remark 1. One can see that the above presented method can be used in many
other cases not only in the case when the condition (i) is satisfied.
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