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Abstract. We consider a boundary value problem containing two pa-
rameters both in the non-linear ordinary differential equation and in the
non-linear boundary conditions. By using a suitable change of variables, we
bring the given problem to a family of those with linear boundary condi-
tions (plus some non-linear determining equations), and apply an iterative
method to approximately find its solution.

Keywords. Parametrised boundary value problems, non-linear boundary
conditions, numerical-analytic methods, successive approximations, deter-
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1. Introduction

An analysis of the publications concerning the iterative methods in the theory
of boundary value problems shows that various numerical-analytic methods, in
particular, those based upon successive approximations, are now widely used and
developed (see, e. g., [5] for a review).

According to the basic idea of the latter group of methods, the given boundary
value problem is replaced by a problem for a “perturbed” differential equation con-
taining some artificially introduced parameter, whose value should be determined
later. The solution of the “perturbed” problem is sought for in the analytic form
by iteration with all the iterations depending upon the parameter mentioned.

As to the way how the auxiliary problem is constructed, it is essential that
the form of the “perturbation term” yields a certain system of (algebraic or tran-
scendental) “determining equations,” which give the numerical values of the pa-
rameter corresponding to the solutions sought-for. By studying these determining
equations, it is possible to establish existence results for the original problem.
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It is worth mentioning that, earlier, the parametrised boundary value problems
were studied mostly in the case of the linear boundary conditions [4], or even in
the case when the parameters are contained only in the differential equation [1,2].

It has been an open problem to find out how one can construct a numerical-
analytic scheme suitable for problems with parameters both in the equation and in
non-linear boundary conditions. Here, we give a possible approach to this question
following the method from [3].

2. Problem setting

We consider the non-linear two-point parameterized boundary value problem

y′(t) = f(t, y(t), λ1, λ2), t ∈ [0, T ],(1)

g(y(0), y(T ), λ1, λ2) = 0,(2)

y1(0) = y10, y2(0) = y20,(3)

containing the parameters λ1 and λ2 both in Eq. (1) and in condition (2).
Here, we suppose that the functions f : [0, T ] × G × [a1, b1] × [a2, b2] → Rn

(n ≥ 3) and g : G × G × I1 × I2 → Rn are continuous, G ⊂ Rn is a closed,
connected, and bounded domain, and λk ∈ Ik := [ak, bk] (k = 1, 2) are unknown
scalar parameters.

Assume that, for t ∈ [0, T ], λ1 ∈ I1, and λ2 ∈ I2 fixed, the function f satisfies
the Lipschitz condition

|f(t, u, λ1, λ2) − f(t, v, λ1, λ2)| ≤ K|u− v|(4)

for all {u, v} ⊂ G and some non-negative matrix K = (Kkl)
n
k,l=1. In (4), as well

as in similar relations below, the signs |·| and ≤ are understood component-wise.
The problem is to find the values of the parameters λ1 and λ2 such that problem

(1), (2) has a classical solution satisfying the additional conditions (3). Thus, a
solution is the triple {y, λ1, λ2} and, therefore, (1)–(3) is similar, in a sense, to an
eigen-value problem.

3. A reduction to the parametrised boundary

value problem with linear conditions

Let us introduce the substitution

y(t) = x(t) + w,(5)

where w = col(w1, w2, . . . , wn) ∈ Ω ⊂ Rn is an unknown parameter. The domain
Ω is chosen so that

D + Ω ⊂ G,
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whereas the new variable, x, is supposed to have range in D, the closure of a
bounded subdomain of G.

Substitution (5) allows one to rewrite problem (1)–(3) as

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(6)

g(x(0) + w, x(T ) + w, λ1, λ2) = 0,(7)

x1(0) = y10 − w1, x2(0) = x20 − w2.(8)

Let us bring the boundary condition (7) to the form

Ax(0) + Bx(T ) = Φ(x(0) + w, x(T ) + w, λ1, λ2) = [A + B]w,

where Φ(u, v, λ1, λ2) := Au + Bv + g(u, v, λ1, λ2) and A, B are fixed square n-
dimensional matrices such that detB 6= 0.

The parameter w is natural to be determined from the determining equation

Φ(x(0) + w, x(T ) + w, λ1, λ2) = [A + B]w

or, equivalently,

Ax(0) + Bx(T ) + g(x(0) + w, x(T ) + w, λ1, λ2) = 0.

Thus, the essentially non-linear problem (1)–(3) turns out to be equivalent to

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(9)

Ax(0) + Bx(T ) + g(x(0) + w, x(T ) + w, λ1, λ2) = 0,(10)

x1(0) = y10 − w1, x2(0) = x20 − w2.(11)

On the other hand, system (9), (10), (11) can be regarded as a collection of
problems

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(12)

Ax(0) + Bx(T ) = 0,(13)

x1(0) = y10 − w1, x2(0) = x20 − w2.(14)

parametrised by the unknown vector w and considered together with the deter-
mining equation (10).

The essential advantage obtained thereby is that the boundary condition (13)
is linear.

It follows from the consideration above that family (12)–(14) can be studied
by using the numerical-analytic method developed in [5].

Assume that

Dβ := {x ∈ Rn : B(x, β(x)) ⊂ D} 6= ∅,(15)

where

β(x) :=
T

2
δG(f) + |(B−1A + En)x|
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and

(16) δG(f) :=
1

2

[

max
(t,x,λ1,λ2)∈[0,T ]×Ω×I1×I2

f(t, x, λ1, λ2)

− min
(t,x,λ1,λ2)∈[0,T ]×Ω×I1×I2

f(t, x, λ1, λ2)
]

.

Moreover, we suppose that K in (4) satisfies

r(K) <
10

3T
.(17)

Set

D1 :=
{

u ∈ Rn−2 : z ≡ col (y10 − w1, y20 − w2, u1, u2, . . . , un−2) ∈ Dβ

}

and introduce the sequence of functions

xm+1(t, w, u, λ1, λ2) := z +

∫ t

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2) ds

−
t

T

∫ T

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2) ds

−
t

T
[B−1A + En]z,(18)

where m ≥ 0 and x0(t, w, u, λ1, λ2) ≡ z.
Note that xm(0, w, u, λ1, λ2) = z for all m.
It can be verified that all the members of sequence (18) satisfy conditions (13)

and (14) for arbitrary u ∈ D1, w ∈ Ω, and λk ∈ Ik (k = 1, 2).
By virtue of (13), every solution, x, of (12)–(14) satisfies

x(T ) = −B−1Ax(0).

Therefore, Eq. (10) can be rewritten as

g(x(0) + w,−B−1Ax(0) + w, λ1, λ2) = 0.(19)

So, we conclude that problem (9)–(14) is equivalent to the following family of
boundary value problems with linear conditions:

x′(t) = f(t, x(t) + w, λ1, λ2), t ∈ [0, T ],(20)

Ax(0) + Bx(T ) = 0,(21)

x1(0) = y10 − w1, x2(0) = x20 − w2(22)

considered together with the determining equation (19).
We suggest to solve the latter system sequentially: first solve (20)–(22), and

then try to find out whether (19) can simultaneously be fulfilled.
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Theorem 1. Assume conditions (4), (15), and (17). Then:

1. Sequence (18) converges to the function x∗ = x∗(·, w, u, λ1, λ2) as m → +∞
uniformly in (w, u, λ1, λ2) ∈ Ω × D1 × I1 × I2.

2. The limit function x∗(·, w, u, λ1, λ2) is the unique solution of the “perturbed”

parametrised boundary value problem

x′(t) = f(t, x(t) + w, λ1, λ2) + ∆(w, u, λ1, λ2), t ∈ [0, T ],

Ax(0) + Bx(T ) = 0,

x1(0) = y10 − w1, x2(0) = x20 − w2

(23)

having the initial value x∗(0, w, u, λ1, λ2) = z, where

∆(w, u, λ1, λ2) := −
1

T
[B−1A + En]z

−
1

T

∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds.

3. The following error estimate holds:

|xm(t, w, u, λ1, λ2) − x∗(t, w, u, λ1, λ2)| ≤ h(t, w, u, λ1, λ2),(24)

where

h(t, w, u, λ1, λ2) :=
20t

9

(

1 −
t

T

)

Qm−1 (En − Q)−1

[

QδG(f)

+ K
∣

∣

(

B−1A + En

)

z
∣

∣

]

,

the vector δG(f) is given by (16), and Q := 3T
10 K.

Proof. It can be carried out similarly to that of Theorem 2.1 from [5, p. 34].

The following statement shows the relation of the function x∗(·, w, u, λ1, λ2) to
the solution of problem (20)–(22).

Theorem 2. Under the assumptions of Theorem 1, the function

x∗(·, w∗, u∗, λ∗

1, λ
∗

2)

is a solution of the parametrised boundary value problem (20)–(22) if, and only if

the triplet {u∗, λ∗

1, λ
∗

2} satisfies the system of determining equations

[B−1A + En]z +

∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

where w is considered as a parameter.
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Proof. Analogous to that of Theorem 2.3 from [5, p. 40].

Theorem 3. Assume conditions (4), (15), and (17). Then, for the function

y∗ := x∗(·, w∗, u∗, λ∗

1, λ
∗

2) + w∗(25)

to be a solution of the given parametrised problem (1)–(3), it is necessary and

sufficient that {w∗, u∗, λ∗

1, λ
∗

2} satisfy the system of determining equations

z +

∫ T

0

f (s, x∗(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

g
(

z + w,−B−1Az + w, λ1, λ2

)

= 0.

(26)

Proof. It is easily seen from the form substitution (5) that Eqns. (26) hold when-
ever the transformed boundary value problem (23) is equivalent to the original
problem (1)–(3).

Remark 1. Considering function (25), one can set

ym := xm(·, wm, um, λ1,m, λ2,m) + wm(27)

and regard (27) as the mth approximation to function (25), which solves the
boundary value problem (1)–(3).

In Eq. (27), xm is given by (18), whereas wm, um, λ1,m, and λ2,m are solutions
of

z +

∫ T

0

f (s, xm(s, w, u, λ1, λ2) + w, λ1, λ2)ds = 0,

g
(

z + w,−B−1Az + w, λ1, λ2

)

= 0.

(28)

We do not consider the strict substantiation of the above idea, referring to [5]
where similar techniques are described.

Example 1. Let us consider the third order parametrised differential equation

y′′′(t) +
1

2
(y′′(t))2 + λ1y(t) =

(

λ2 +
3

4

)

t2

16
, t ∈ [0, 1](29)

with the following non-linear boundary conditions containing parameters:

y′(1)y′(0) + λ1y(1) =
1

32
,

y(1)y′(0) + λ2y
′(0) + λ2y

′′(1) =
1

16
,

1

2
y′(0) +

(

1

2
− λ1

)

y′(1) = 0,

y(0) = −
1

16
, y′(0) = 0.

(30)
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Equivalently, equation (29) can be rewritten as

y′

1(t) = y2(t),

y′

2(t) = y3(t),

y′

3(t) =
t2

16
−

1

2
y2
3(t) − λ1y1(t)

(31)

together with the boundary conditions

y2(1)y2(0) + λ1y1(1) =
1

32
,

y1(1)y2(0) + λ2y2(0) + λ2y3(1) =
1

16
,

1

2
y2(0) +

(

1

2
− λ1

)

y2(1) = 0,

y1(0) = −
1

16
, y2(0) = 0.

(32)

One can verify that, for problem (31), (32), conditions (4), (15), and (17) are
fulfilled with (t, y2, y2, λ1, λ2) ∈ [0, 1]×G×I1×I2, λ1 ∈ I1 := [0, 1], λ2 ∈ I2 := [0, 1],

A := B := E3 := diag(1, 1, 1), K :=

[

0 1 0
0 0 1
1 0 1

3

]

, and

G :=

{

(y1, y2, y3) : |y1| ≤
1

2
, |y2| ≤

1

2
, |y3| ≤

1

3
,

}

,

because, in this case, r(K) = 0.9,

δG(f) ≤







1
2
1
3
53
144






,

and

β(x) =
T

2
δG(f) +

∣

∣(B−1A + E3)x
∣

∣ ≤







1
4
1
6
53
288






+ 2|x|.

Substitution (5) brings (31) to the form

x′

1(t) = x2(t) + w2,

x′

2(t) = x3(t) + w3,

x′

3(t) =
t2

16
−

1

2
(x3 + w3)

2(t) − λ1 (x1(t) + w1) ,

x1(0) = −
1

16
− w1, x2(0) = −w2.
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The computation performed according to (18) shows that the components of
the first iteration have the form

x1, 1(t, w1, w2, w3, u, λ1, λ2) = −
1

16
− w1 +

1

8
t + 2 t w1,

x1, 2(t, w1, w2, w3, u, λ1, λ2) = −w2 + 2 t w2,

and

x1, 3(t, w1, w2, w3, u, λ1, λ2) = u +
1

48
t3λ2 −

1

48
tλ2 +

1

64
t3 −

1

64
t − 2 u t,

where xm = col (xm,1, xm,2, xm,3).
Similarly, for the second iteration, we have the first

x2, 1(t, w1, w2, w3, u, λ1, λ2) = −
1

16
− w1 + w2 t2 − t w2 +

1

8
t + 2 t w1,

the second

x2, 2(t, w1, w2, w3, u, λ1, λ2) = −w2 +
1

192
t4 λ2 +

1

256
t4 − t2 u −

1

96
t2 λ2

−
1

128
t2 + u t + 2 t w2,

and the third

x2, 3(t, w1, w2, w3, u, λ1, λ2) := −
1

256
w3 t −

1679

107520
t + u + t λ1 w1

−
1

192
t w3 λ2 +

1

2880
t u λ2 − t w3 u +

1

96
t2 w3 λ2 + t2 w3 u

+
1

96
t2 u λ2 − t2 λ1 w1 −

1

72
t3 u λ2 −

1

192
t4 w3 λ2

−
1

192
t4 u λ2 +

1

60480
t λ2

2 +
1

120
t5 u λ2 −

1

32256
t7 λ2

2

−
1

21504
t7 λ2 −

1

256
t4 u −

1

256
t4 w3 + t2 u2 +

1

128
t2 w3

−
1

3
t u2 +

1

16
λ1 t −

7679

3840
u t−

839

40320
t λ2 +

191

9216
t3 λ2

+
383

24576
t3 +

1

128
t2 u +

1

20480
t5 −

1

57344
t7 +

1

160
t5 u

+
1

11520
t5 λ2

2 +
1

7680
t5 λ2 −

1

13824
t3 λ2

2 −
2

3
t3 u2 −

1

96
t3 u

−
1

16
t2 λ1

components of the function x2.
Solving the approximate determining equations (28) gives us the approximate

values of the unknown parameters. More precisely, we have

w1 = 0, w2 ≈ .1250000000, w3 ≈ .2552083572

λ1 =
1

2
, λ2 ≈ .2500045836, u =

−1 + 16 w3 λ2

16λ2
≈ .005212940674
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for m = 1 and

w1 = 0, w2 ≈ .127331555, w3 ≈ .2547074002

λ1 =
1

2
, λ2 ≈ .2458952578, u =

−1 + 16 w3 λ2

16λ2
≈ .2458952578

for m = 2.
Therefore, in the first approximation, the solution of parametrised problem

(29), (30) is

y1,1(t) = −
1

16
+

1

8
t, t ∈ [0, 1],

λ1 =
1

2
, λ2 ≈ .2500045836

(33)

and, in the second approximation,

y2,1(t) ≈ −
1

16
+ .1273315558 t2 − .0023315558 t, t ∈ [0, 1],

λ1 =
1

2
, λ2 ≈ .2458952578.

(34)

Note that

y(t) =
t2

8
−

1

16
, t ∈ [0, 1],

λ1 =
1

2
, λ2 =

1

4

(35)

is an exact solution of problem (29), (30). Computation by using Maple shows that
(33) and (34) provide good enough approximations to (35).
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