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ON NEUMANN ELLIPTIC PROBLEMS WITH
DISCONTINUOUS NONLINEARITIES

NIKOLAOS HALIDIAS

Abstract. In this paper we study a class of nonlinear Neumann elliptic
problems with discontinuous nonlinearities. We examine elliptic problems

with multivaluedboundary conditions involving the subdifferential of a locally
Lipschitz function in the sense of Clarke.

1. Introduction

In this paper, using the critical point theory of Chang [3] for locally Lipschitz
functionals, we study nonlinear boundary problems with discontinuous nonlinear-
ities and nonlinear Neumann boundary conditions. Let Z ⊆ RN be a bounded
domain with a C 1-boundary Γ. The problem under consideration is:{

− div(||Dx(z)||p−2Dx(z)) = f(z, x(z)) a.e. on Z

− ∂x
∂np

(z) ∈ ∂j(z, τ (x)(z)) a.e. on Γ, 2 ≤ p <∞ .
(1)

Here, ∂ is the subdifferential for locally Lipschitz functionals in the sense of
Clarke [4].

First, we convert the single-valued problem to a multivalued problem by filling
in the gaps. The multivalued one is:{

− div(||Dx(z)||p−2Dx(z)) ∈ [f1(z, x(z)), f2(z, x(z))] a.e. on Z

− ∂x
∂np
∈ ∂j(z, τ (x)(z)) a.e. on Γ, 2 ≤ p <∞ .

(2)

with f1(z, x) = lim inf
x→x′

f(z, x′) and f2(z, x) = lim sup
x→x′

f(z, x′). First we prove an

existence result for problem (2) using the critical point theory of Chang [3]. Fi-
nally we prove an existence result for the single-valued one under more restrictive
hypothesis on the right hand side. Stuart-Tolland [7] proved an analogous theo-
rem for a Dirichlet boundary value problem involving the laplacian operator. Also
Ambrosetti-Badiale [1] studied a Dirichlet problem by using Clarke’s dual action
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principle and they used a very interesting technic so that the energy functional
remains a C1 functional. Finally, Heikkila-Lakshmikantham [5] had studied these
problems using the method of upper and lower solutions.

Here we study Neumann problems with the p-Laplacian operator and nonlinear
boundary conditions. It seems that is the first such result on Neumann problems.
In the following section we state some facts from the critical point theory and the
subdifferential for locally lipschitz functionals.

2. Preliminaries

Let Y be a subset of X. A function f : Y → R is said to satisfy a Lipschitz
condition (on Y ) provided that, for some nonnegative scalar K, one has

|f(y) − f(x)| ≤ K||y − x||

for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be any
other vector in X. The generalized directional derivative of f at x in the direction
v, denoted by fo(x; v) is defined as follows:

fo(x; v) = lim sup
y→x
t↓0

f(y + tv) − f(y)
t

,

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x
then the function v → fo(x; v) is finite, positively homogeneous, subadditive and
satisfies |fo(x; v)| ≤ K||v||. In addition f o satisfies fo(x;−v) = −fo(x; v). Now we
are ready to introduce the generalized gradient which denoted by ∂f(x) as follows:

∂f(x) = {w ∈ X∗ : fo(x; v) ≥ 〈w, v〉 for all v ∈ X} .

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂f(x) is a nonempty, convex, weakly compact subset of X∗ and ||w||∗ ≤ K
for every w in ∂f(x).

(b) For every v in X, one has

fo(x; v) = max{〈w, v〉 : w ∈ ∂f(x)} .

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2 .

Let us recall the (P.S)-condition introduced by Chang.

Definition. We say that Lipschitz function f satisfies the Palais-Smale condition
if any sequence {xn} along which |f(xn)| is bounded and

λ(xn) = Minw∈∂f(xn)||w||X∗ → 0

possesses a convergent subsequence.

Let us now recall a theorem of Chang for minimization of locally Lipschitz
functionals.
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Theorem 1. Suppose a locally Lipschitz function f defined on a reflexive Ba-
nach space, satisfies the (P.S)-condition and it is bounded from below. Then
c = infX f(x) is a critical value of f .

Recall that we say that c is a critical value of f if there exists a critical point
xo in f−1(c).

In the next section we will use the following inequality which appears in Tolks-
dorff [8].

N∑
j=1

(aj(η)− aj(η′))(η − η′) ≥ C|η− η′|p .(3)

for η, η′ ∈ RN , with aj(η) = |η|p−2ηj.

3. Existence theory

Let us state the hypotheses for the function f and j of problem (1).
H(f): f : Z ×R→ R is a function such that

(i) f(z, ·) is N -measurable (i.e. if x(·) ∈W 1,p(Z) is measurable so is f(z, x(z))).
(ii) there exists h : R → R such that h(x) → ∞ as n → ∞ and there exists

M > 0 such that −F (z, x) ≥ h(|x|) for |x| ≥M with F (z, x) =
∫
Z
f(z, r)dr.

(iii) |f(z, x)| ≤ a(z) + c|x|µ−1, µ < p for almost all z ∈ Z and all x ∈ R.
H(j): j : Z×R→ R such that z → j(z, x) is measurable and x→ j(z, x) locally

Lipschitz. Also j(z, ·) ≥ 0 for almost all z ∈ Z and finally |w(z)| ≤ a1(z)+c|x|p∗−1

with p∗ = Np
N−p for every w(z) ∈ ∂j(z, x).

Remark. If hypothesis H(j) holds, then theorem 2.7.5 of Clarke [4] is satisfied.

Proposition 1. If hypotheses H(f), H(j) holds, then problem (2) has a solution
x ∈W 1,p(Z).

Proof. Let Φ(x) = −
∫
Z
F (z, x(z))dz and ψ(x) = 1

p
||Dx||pp +

∫
Γ
j(z, τ (x(z))dσ.

Then the energy functional is R(x) = Φ(x) + ψ(x).

Claim 1: R(·) satisfies the (P.S)-condition of Chang [3].
Indeed, let {xn}n≥1 ⊆ W 1,p is such that R(xn)→ c as n→∞. We shall prove

that this sequence is bounded in W1,p(Z). Suppose not. Then ||xn|| → ∞. Let
yn(z) = xn(z)

||xn|| . Then clearly we have yn
w→ y in W 1,p(Z). From the choice of the

sequence we have

Φ(xn) +
1
p
||Dxn||pp ≤M(4)

(recall that j(z, ·) ≥ 0). Dividing with ||xn||p the last inequality, we have

−
∫
Z

F (z, x(z))
||xn||p

dz +
1
p
||Dyn||pp ≤

M

||xn||p
.

By virtue of hypothesis H(f)(iii) we have that F (z,x(z))
||xn||pp

→ 0. Hence
lim sup ||Dyn||pp → 0. Thus, ||Dy|| = 0 and it arises that y = c ∈ R. But ||yn|| = 1,
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so c 6= 0 and we have that |xn(z)| → ∞. Going back to (3) and using hypothesis
H(f)(ii) we have a contradiction. So ||xn|| is bounded, i.e xn

w→ x in W 1,p(Z). It
remains to show that xn→ x in W 1,p(Z). From the properties of the subdifferen-
tial of Clarke, we have

∂R(xn) ⊆ ∂Φ(xn) + ∂ψ(xn)

⊆ ∂Φ(xn) + ∂(
1
p
||Dxn||pp) +

∫
Γ

∂j(z, τ (xn(z))) dσ

(see Clarke [4], p. 83).
So we have

〈wn, y〉 = 〈Axn, y〉 + 〈rn, y〉 −
∫
Z

vn(z)y(z) dz ,

where rn(z) ∈ ∂j(z, xn(z)), vn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))], wn the element
with minimal norm of the subdifferential of R and finallyA : W 1,p(Z)→W 1,p(Z)∗

is such that 〈Ax, y〉 =
∫
Z

(||Dx(z)||p−2(Dx(z), Dy(z))RN dz. But xn
w→ x in

W 1,p(Z), so xn → x in Lp(Z) and xn(z) → x(z) a.e. on Z by virtue of the
compact embedding W 1,p(Z) ⊆ Lp(Z). Thus, rn is bounded in Lq(Z) (see Chang
[3], p. 104 Proposition 2), i.e rn

w→ r in Lq(Z). Choose y = xn − x. Then in the
limit we have that lim sup〈Axn, xn− x〉 = 0 (note that vn is bounded). By virtue
of the inequality (3) of Tolksdorff we have that Dxn → Dx in Lp(Z). So we have
xn → x in W 1,p(Z). The Claim is proved.

Claim 2: R(·) is bounded from below.
Indeed, suppose not. Then there exists some sequence {xn}n≥1 such that

R(xn) ≤ −n. Then we have

Φ(xn) + ψ(xn) ≤ −n

(recall that j(z, ·) ≥ 0.) By virtue of the continuity of Φ+ψ we have that ||xn|| → ∞
(because if ||xn|| is bounded then Φ(xn) + ψ(xn) is also bounded). Dividing with
||xn||p and letting n→∞ we have as before a contradiction (by virtue of hypothesis
H(f)(ii)). Therefore R(·) is bounded from below.

So by Theorem 1 we have that there exists x ∈ W1,p(Z) such that 0 ∈ ∂R(x).
That is 0 ∈ ∂Φ(x) + ∂ψ(x). Let ψ1(x) = ||Dx||p

p
and ψ2(x) =

∫
Γ
j(z, τ (x)(z)dσ.

Then let ψ̂1 : Lp(Z) → R the extension of ψ1 in Lp(Z). Then ∂ψ1(x) ⊆ ∂ψ̂1(x)
(see Chang [3]). It is easy to prove that the nonlinear operator Â : D(A) ⊆
Lp(Z)→ Lq(Z) such that

〈Âx, y〉 =
∫
Z

||Dx(Z)||p−2(Dx(z), Dy(z))dz for all y ∈W1,p(Z)
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with D(A) = {x ∈ W1,p(Z) : Âx ∈ Lq(Z)}, satisfies Â = ∂ψ̂1. Indeed, first we
show that Â ⊆ ∂ψ̂ and then it suffices to show that Â is maximal monotone.

〈Âx, y − x〉 =
∫
Z

||Dx(z)||p−2(Dx(z), Dy(z) −Dx(z))RN dz

=
∫
Z

||Dx(z)||p−2(Dx(z), Dy(z))RN dz −
∫
Z

||Dx(z)||pdz

≤
∫
Z

(
||Dx(z)||q(p−2)||Dx(z)||q

q
+
||Dy(z)||p

p
)dz − ||Dx||pp

=
||Dx||pp
q
− ||Dx||p +

||Dy||pp
p

= ψ̂1(y) − ψ̂1(x) .

The monotonicity part is obvious using inequality (3). The maximality needs
more work. Let J : Lp(Z) → Lq(Z) be defined as J(x) = |x(·)|p−2x(·). We will
show that R(Â + J) = Lq(Z). Assume for the moment that this holds. Then let
v ∈ Lp(Z), v∗ ∈ Lq(Z) such that

(Â(x)− v∗, x− v)pq ≥ 0

for all x ∈ D(Â). Therefore there exists x ∈ D(Â) such that Â(x) + J(x) =
v∗ + J(v) (recall that we assumed that R(Â + J) = Lq(Z)). Using this in the
above inequality we have that

(J(v) − J(x), x− v)pq ≥ 0 .

But J is strongly monotone. Thus we have that v = x and Â(x) = v∗. Therefore
Â is maximal monotone. It remains to show that R(Â + J) = Lq(Z). But Ĵ =
J |W1,p(Z): W 1,p(Z)→W 1,p(Z)∗ is maximal monotone, because is demicontinuous
and monotone. So A+ Ĵ is maximal monotone. But it is easy to see that the sum
is coercive. So is surjective. Therefore, R(A + Ĵ) = W1,p(Z)∗. Then for every
g ∈ Lq(Z), we can find x ∈W1,p(Z) such that A+Ĵ (x) = g ⇒ A(x) = g− Ĵ (x) ∈
Lq(Z) ⇒ A(x) = Â(x). Thus, R(Â+ J) = Lq(Z).

So, we can say that∫
Z

w(z)y(z) =
∫
Z

||Dx(z)||p−2(Dx(z), Dy(z)) dz +
∫

Γ

v(z)y(z) dσ(5)

with w(z) ∈ [f1(z, x(z)), f2(z, x(z))] and v(z) ∈ ∂j(z, τ (x(z))), for every y ∈
W 1,p(Z). Let y = φ ∈ C∞o (Z). Then we have∫

Z

w(z)φ(z) dz =
∫
Z

||Dx(z)||p−2(Dx(z), Dφ(z)) dz .

But div(||Dx(z)||p−2Dx(z)) ∈W−1,q(Z) then we have that

div(||Dx(z)||p−2Dx(z) ∈ Lq(Z) because w(Z) ∈ Lq(Z) .

Then we have that − div(||Dx(z)||p−2Dx(z)) ∈ [f1(z, x(z)), f2(z, x(z))] a.e. on Z.
Going back to (5) and letting y ∈ C∞(Z) and finally using the Green formula
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1.6 of Kenmochi [6], we have that − ∂x
∂np
∈ ∂j(z, τ (x)(z)). So x ∈ W1,p(Z) solves

(2).

Let now state the following condition on f .
H(f )1: f satisfies H(f) and in addition there exists g : Z×R→ R Carathéodory

such that x→ g(z, x)− f(z, x) is increasing.

Remark. If f satisfies the hypothesis H(f)1 then has countable number of dis-
continuities.

Theorem 2. If the hypotheses H(f)1, H(j) holds, then problem (1) has a solution
x ∈W 1,p(Z).

Proof. If

Φ(x) =−
∫
Z

F (z, x(z)) dz +
∫
Z

∫ x(z)

o

g(z, r) drdz ,

ψ(x) =
1
p
||Dx||pp +

∫
Γ

j(z, x(z)) dz −
∫
Z

∫ x(z)

o

g(z, r) drdz ,

then the energy functional is R = Φ + ψ.
From Proposition (1) we know that there exists x ∈ W1,p(Z) such that 0 ∈

∂R(x). Then from definition of the subdifferential of Clarke we have 0 ≤ Ro(x; v)
for all v ∈W 1,p(Z). So, we have 0 ≤ Φo(x; v) + ψo(x; v) ⇒ −Φo(x; v) ≤ ψo(x; v),
that is −∂Φ(x) ⊆ ∂ψ(x).

We will show that λ{z ∈ Z : x(z) ∈ D(f)} = 0 with D(f) = {x ∈ R : f(x+) <
f(x−)}, that is the set of downward-jumps.

Let w ∈ ∂(−Φ(x)) and for any t ∈ D(f), set

ρ±(z) = [1− χt(x(z))]w(z) + χt(x(z))[f(z, x(z)±)] ,(6)

where

χt(s) =
{

1 if s = t
0 if otherwise.(7)

Then ρ± ∈ Lp(Z) and ρ± ∈ ∂ψ(x). Hence∫
Z

ρ±(z)y(z) dz =
∫
Z

(||Dx(z)||p−2(Dx(z), Dy(z))RN dz +
∫

Γ

v(z)y(z) dσ

for all y ∈ W 1,p(Z).
So for y = φ ∈ C∞o (Z) we have∫

Z

ρ±(z)φ(z) dz =
∫
Z

(||Dx(z)||p−2(Dx(z), Dφ(z))RN dz .

Thus, ρ+ = ρ− for almost all z ∈ Z. From this it follows that χt(x(z)) = 0 for
almost all z ∈ Z. Since D(f) is countable, and

χ(x(z)) =
∑

t∈D(f)

χt(x(z)) ,
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it follows that χ(x(z)) = 0 almost everywhere, (with χ(t) = 1 if t ∈ D(f) and
χ(t) = 0 otherwise).

Now it is clear that x ∈W1,p(Z) solves problem (1).
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