Archivum Mathematicum

Konrad Piéro
Some properties of the weak subalgebra lattice of a partial algebra of a fixed type

Archivum Mathematicum, Vol. 38 (2002), No. 2, 81--94

Persistent URL: http://dml.cz/dmlcz/107823

Terms of use:

© Masaryk University, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107823
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 38 (2002), 81 — 94

SOME PROPERTIES OF THE WEAK SUBALGEBRA LATTICE
OF A PARTIAL ALGEBRA OF A FIXED TYPE

KONRAD PIORO

ABSTRACT. We investigate, using results from [9], when a given lattice is
isomorphic to the weak subalgebra lattice of a partial algebra of a fixed
type. First, we reduce this problem to the question when hyperedges of a
hypergraph can be directed to a form of directed hypergraph of a fixed type.
Secondly, we show that it is enough to consider some special hypergraphs. Fi-
nally, translating these results onto the lattice language, we obtain necessary
conditions for our algebraic problem, and also, we completely characterize
the weak subalgebra lattice for algebras of some types.

1.

Since the present paper is strongly related to [9], we use the notation and
definitions from there. For basic concepts concerning hypergraphs see e.g. [3];
concerning algebras (partial and total) and lattices of subalgebras see e.g. [2], [4],
[6] and [7]; concerning lattice theory see e.g. [5] and [7].

It is known that a lattice L = (L, <y,) is isomorphic to the weak subalgebra
lattice S, (A) of a partial algebra A, or equivalently, to the weak subhypergraph
lattice of an algebraic, directed or undirected hypergraph (see Theorem 3.16 in [9];
see also [1]) iff

(W.1) L is algebraic and distributive,

(W.2) every element of L is a join of join-irreducible elements,

(W.3) for each non-zero and non-atomic join-irreducible element i, the set of all
atoms contained in ¢ is finite and non-empty,

(W.4) the set of all non-zero and non-atomic join-irreducible elements of L is an
antichain with respect to the lattice ordering <j,.
An element 17 is join-irreducible iff for each ki, ko, i = k1 V ko implies i = ky
or ¢ = kQ.
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In [9] the following result, fundamental for our investigations, is given (Proposition
3.19).

Proposition 1.1. Let a lattice L satisfy (W.1)-(W.4), and (K, k) be an algebra
type. Then there is a partial algebra A of type (K, k) such that S, (A) ~ L iff
there is an algebraic hypergraph G of type (k=1(0), k71(1),k71(2),...) such that
G** ~U(L).

The first aim of the paper (section 2) is to show that in the above fact such
an algebraic hypergraph may be replaced by a directed hypergraph D of type 7,
where 7 depends, in a simple combinatorial way, on (k~*(0),x71(1),x7(2),...).
The second aim (section 3) is to prove that it is sufficient to restrict our attention
to some special hypergraphs. Next, we will translate hypergraph results onto the
lattice language, and thus we will obtain some necessary condition for lattices
to be isomorphic to the weak subalgebra lattice of a partial algebra of a fixed
type. Further, we will characterize the weak subalgebra lattice for algebras of
some types. Although these results are solutions only for some types, it seems,
having experiences and ideas from [8], that main hypergraph results of the paper
(Theorems 2.2 and 3.3) will be also useful to obtain solutions of our problem for
other types. Recall that in [8] we have solved this problem for unary algebras.

Obviously there are lattices satisfying (W.1)—(W.4), being not isomorphic to the
weak subalgebra lattice of any partial algebra of a fixed type. For example, take
type (K, k) consisting of exactly one constant (i.e. K = {k} and (k) = 0), and
let L be the family of sets {0, {1}, {1,2},{1,3},{1,2,3} } with set-inclusion. Then
L satisfies (W.1)-(W.4), and L has one atom and two non-zero and non-atomic
join-irreducible elements. Thus U(L) contains one vertex and two hyperedges, so
there is not an algebraic hypergraph G of type (1,0,0,...) such that G** ~ H.
Hence, L %2 S,,(A) for each partial algebra A of type (K, k).

Let G be an algebraic hypergraph of type 7, and H = G**. Then obviously for
any weak subhypergraph K of H, there is an algebraic hypergraph D of type 7
such that D** = K. As in [8] (Propositions 2.8 and 2.9) we can translate this result
onto the lattice language. In [8] we have considered only lattices satisfying (W.1),
(W.2), (W.4), and such that any non-zero non-atomic join-irreducible element
contains one or two atoms. But it does not matter in the proof of Proposition
2.8. Thus for a lattice L satisfying (W.1)-(W.4), and sets A C A(L), I C Z(L)
such that A(:) C A for i € I, the complete sublattice [A U I];, generated by the
set {0} U AU I consists only of joins of elements from {0} U AU I. In particular,
A(JAUIL) = A, Z([AUI]L) = I, and [A U I]y, satisfies (W.1)-(W.4). Hence,

Proposition 1.2. Let (K, &) be an algebra type, and let L be a lattice isomorphic
to the weak subalgebra lattice of a partial algebra of type (K, k). Then for any sets
A C A(L) and I C Z(L) such that A(i) C A for alli € I, there is a partial algebra
A of type (K, k) such that Sy(A) ~ [AUI]y,.

Here, A(L) and Z(L) are the sets of all atoms and of all non-zero and non-
atomic join-irreducible elements, respectively. For any element 4, A(%) is the set of
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all atoms contained in i. Recall also (see Definition 3.17 in [9]) that VU = A(L),
EYL) = Z(L) and IYM (e) = A(e) for e € Z(L).

2.

For any sets A and B, let Sur (A, B) be the set of all surjections from A onto
B. Further, for k,;m € N, Sur(m,A) = Sur ({1,... ,m},A) and Surg,(A4) =
UnenSur (n, A) and Sur(m,k) = Sur ({1, ompb . ,k:}) and s(m, k)
= |Sur (m, k)| (where {1,...,0} denotes the empty set).

Obviously |Sur (m,A)| = |Sur (m,|A])| = s(m,|A]), s(m,k) =0form < k—1,
s(0,m) = s(m,0) = 0 for m > 1, Sur (§,0) = {0} and s(0,0) = 1, in particular,
Sur g, (0) = {0}.

It is also well-known that for any k,m € N with m > k, s(m, k) = Z;ig(—l)j
ﬁ(lﬁ—j)m, or equivalently, s(m, k) = klS(m, k), where S(m, k) are Stirling’s
numbers of the second kind, i.e. S(m,m) =1 for m >0, S(m,0) =0 for m > 1,
S(m,k)=8S(m —1,k—1)+ S(m —1,k) for 0 < k < m.

Definition 2.1. Let 7 = (79, 71,72, . ..) be a sequence of cardinal numbers. Then
T(r) = (To(z), T1(7), To(7), . ..) is the sequence such that Ti(r) = 3, o Tm -
s(m, k) = 32,5 Tm - s(m, k) for any k € N.

The following facts are immediate (see the notation in [9]; recall that N is the
family of all sequences of non-negative integers, in which almost all terms are equal
zero): To(1) = 10 and Ty (1) > Trgr (7) for allm € N\{0}. If |[{i e N: 75 > 1}| <
Ng and 7; € N for each ¢ > k, then Ty (1) < Ng. If |{z eN: 7, > 1}| = Ny or there
is i > k such that 7, > N, then Tj(7) = sup{No, 7%, Tks1,---}. If 7 € NV\ NI
then T, () = N for all m > 1. If 7 € Card" \ NY, then T(r) ¢ NV,

Theorem 2.2. Let 7 = (19,71, T2,...) be a sequence of cardinal numbers, and D
a directed hypergraph. Then there is an algebraic hypergraph G of type T such that
G* ~ D iff D is of type T(1).

Proof. = It is sufficient to show that the directed hypergraph G* is of type
T(z).
Take a finite set V € Ps,(VE). Then

(1) ESG(V) = U{ESG(V) VvV E Surﬁn(V)}
= U (U{ESG(V) : v € Sur (m, V)}) )
meN

Let e € ES and I€ (e) = (vy,... ,v;). Itiseasy tosee e € ES (V) iff {vy,... 04} =
V. Moreover, (vi,...,v;) can be considered as a surjection of {1,...,k} onto
{v1,...,vr}. These facts imply (1).
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Since G is of type T,
Hence,

S(v)| = sG(v) < 7 for any v = (v1,...,v,) € V™.

‘U{ES(V) : v € Sur (m, V)}‘

= Z sE(V) < T - |Sur(m,V)| :Tm-s(m,|V|),

veSur (m,V)
because E¢ (v) and EG( ) are disjoint for v # w.
Thus by (1), s =|EE (V)| = |Upen (U{EE(v) : v €Sur(m,V)})| =
Lmen|U{EE (V) v 6 Sur (m, V)}| <32, en T - s (ms V) = Ty (2)-

<= Let V € Psn(VP). Then |[EP (V)| = sP(V) < Tjv (1) = 3,0en Tm - s (m, [V]),
so there is a family F(V) = {F(V,m) € P(VP) : m € N} such that

FV,m)NF(V,k)=0 foreach m,keN withm #k,
E2(V)=J F(v.m),
meN
(V,m)| < 7y - s(m,|V|)  foreach m eN.

I3
Observe, F( ,m) =0 form < |[V|—1. TV =0, then F(0,m) = 0 for m > 1,
F(0,0) = EP(0) = EP(0) (where EP(0) is the set of all 0-edges) and |F(0,0)| =
70 - $(0,0) = 70.
Since s(m, [V|) = |Sur (m, V)|, we obtain by the last condition that for any
m € N, there is a family F(V,m) = {F(V,m,v) € P(VP): v € Sur (m,V)} such
that

FV,m,v)NF(V,m,w)=0 foreach v,we&Sur(m,V) with v#w,
Fv,m)=  |J FVim,v),
veSur (m,V)
|F(V7 m,v)| <7, foreach v & Sur(m,V).

First, for m < |V| — 1, F(V,m) is the empty family. Secondly, if V = @, then
F(0,m) is empty for all m > 1, F(0,0) = {F(0,0,0)} and F(0,0) = F(0,0,0).
Thirdly, if 7,, > R, then |F(V,m)| < 7y, so in this case F(V,m) may consists of
exactly one set.

Now, for each v = (vi,...,v) € [[5,(VP), let

F(v) :F({vl,... 7vm},m,v).

Then it easily follows from properties of (V') and F(V,m) that

(1) |F(v)| < 7m foreach v = (vi,... ,vm) € [[4.(VP).
(2) EP(V)=|J{F(v): veSura(V)} forall Ve Pu(VP).
Further, for any v = (vi,..., ), W = (w1, ... ,wg) € [[4,(VP) with v # w,

(3) Fv)NF(w)=0.
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If {vi,...,9m} = {wi,...,wi}, then this is implied by the following two facts
F({v1,...,om}p,m)NF ({wi,...,wi}, k) =0if m # k,and F ({vy,... ,vm}, m, v)N
F({wy,...,wp}, k,w) =0if m = k.

If {v1,...,om} # {wi,... ,wg}, then E?({vl, . ,vm})ﬁE?({wl, . ,wk}) =
0. Hence, F(v)N F(w) = 0, because F(v) C EP({v1,...,vm}) and F(w) C
E?({wl, . ,wk}).

It is easily shown EP = [J{EP(V): V € P, (VP)}. Hence and by (2) we
have

(4) EP = J{F(v): v ellm(V™)}-
For any v € [[4,(VP), let I(v) = (Li(v), L(v)): F(v) — [[5.(VP) x VP be
the function such that

Li(v)(e)=v and L(v)(e)=IP(e) foreach e € F(v).

Of course, if F(v) =0, then I(v) is the empty function.
Next, let

I=(L,L)=J{IV): vellu(VP)}.

By (3), I is a well-defined function, and by (4), I is defined for all elements of EP.
Thus the ordered triple G = (VP, EP | I) is an algebraic hypergraph.

Take e € EP. Then e € F(v) for some v = (vi,...,vm) € [[4,(VP). Thus
IS (e) = L(v)(e) = IP(e), and IE(e) = I;(v)(e) = v, and by (2), IP(e) =
{v1,...,vm}. Hence, IS (e) = IP(e), so

(5) G*=D.
Finally, we show
(6) ES(v)=F(v) foreach ve[],, (VP).

The inclusion D is trivial. To see the inverse inclusion, take e € E&(v). By (3),
there is exactly one w € [[g (VP) such that e € F(w). Then v = IS (e) =
Li(e) = I (w)(e) =w. Thus e € F(v).

By (1) and (6) we obtain that for each v = (v, ... ,vm) € [[5,(VP),

Thus G is an algebraic hypergraph of type 7. |

The following fact is an immediate consequence of the above theorem.

Corollary 2.3. Let T be a (hypergraph) type, and H a hypergraph. Then there
is an algebraic hypergraph G of type T such that G** ~ H iff there is a directed
hypergraph D of type T(z) such that D* ~ H.

Hence and by Proposition 1.1 we obtain that our algebraic problem can be
reduced in the following way.
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Corollary 2.4. Let a lattice L satisfy (W.1)-(W.4), and (K,k) be an algebra
type. Then there is a partial algebra A of type (K, k) such that L ~ S, (A) iff
there is a directed hypergraph D of type T (K, k) such that D* ~ U(L), where
T(K,r) = T(k70),s71(1),s71(2),...).

3.

In the previous section we have reduced our algebraic problem to the question
when hyperedges of a hypergraph can be directed to a form of directed hyper-
graph of a fixed type. Observe also that each hypergraph represents some lattice
satisfying (W.1)-(W.4). (To see it take a hypergraph H, and let L be the weak
subhypergraph lattice of H. Then U(L) ~ H, see Theorem 3.18 in [9].) Now we
show that it is sufficient to investigate some special hypergraphs.

Let D be a directed hypergraph and k¥ € N. Then D is said to be a directed
k-hypergraph iff D contains only k-edges, i.e. EP = EP(k) (or equivalently, for
cach e € EP, |IP(e)| = k). Obviously a directed 1-hypergraph can be casily
identified with usual directed graph. Moreover, for a directed k-hypergraph, each
of its weak subhypergraphs is also a directed k-hypergraph.

Let H be a hypergraph and & € N. Then H is said to be a (k, k4 1)-hypergraph
iff for any e € VH, I™(e) has k or k + 1 vertices. H is a k-hypergraph iff for
any e € EX, |I®(e)| = k. First, O-hypergraphs are just discrete hypergraphs.
Secondly, k-hypergraphs and k + 1-hypergraphs are, in particular, (k,k + 1)-
hypergraphs. Thirdly, for a (k,k + 1)-hypergraph (k-hypergraph), each of its
weak subhypergraphs is also a (k, k + 1)-hypergraph (k-hypergraph). Of course, a
(1,2)-hypergraph is a graph.

Obviously if D is a directed k-hypergraph, then D* is a (k, k + 1)-hypergraph.
Conversely, for any (k, k + 1)-hypergraph H, we can construct (by the axiom of
choice) a directed k-hypergraph D such that D* = H (for each hyperedge it is
enough to take one of its endpoints as the final vertex).

Since for any directed k-hypergraph D, sP (V) = 0for all V & P(V), we can a
little modify, in this case, the concept of type of directed hypergraph.

Definition 3.1. Let n be a cardinal number, and D a directed k-hypergraph.
Then D is said to be of k-type 7 iff sP (V) < n for each V € P,(VP).

Remark 3.1. (a) Let H be a k-hypergraph and 7 a cardinal number. Then
there is a directed k-hypergraph D of k-type n such that D* ~ H iff |{e €
EH™: [H(e) =V} <nfor Ve Py(VH).
(b) Let H be a (0,1)-hypergraph and 7 a cardinal number. Then there is a
directed 0-hypergraph D of 0-type 1 such that D* ~ H iff |[E¥| < ».

Proof. It is easily shown that for any directed k-hypergraph D, if D* is a k-
hypergraph, then {e € EP" : IP"(e) = V} = EP(V) for any V € P,(VP). This
fact implies (a).

(b) = Of course, we can assume D* = H. Then EH = EP = EP(()) and
|E2(0)] = sP(0) < n.
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<= H can be regarded as a directed 0-hypergraph D. Then EP(0)) = E®, so
sP(0) = [ER| <. O

Let D be a directed hypergraph and & € N. Then D(k) <,, D is the weak
subhypergraph of D consisting of all vertices of D and all k-edges, i.e. VP*) = P
and EP*) = EP (k). Obviously D(k) is a directed k-hypergraph. If D is a directed
k-hypergraph, then D(k) = D, and for I # k, D(I) is a discrete hypergraph. It is
also easy to see

D=\, yD(m) and sP(V)=sPH® (V) foreach V € PB,(VP).

Further, D is a directed hypergraph of type 7 = (1, 71, 72, . .. ) iff for each m € N,
D(m) is a directed m-hypergraph of m-type 7,. If D is a directed k-hypergraph,
then D is of type 7 iff D is of k-type 7.

By these facts and Theorem 2.2 we deduce

Proposition 3.2. Let 7 = (19,71, T2,...) be a sequence of cardinal numbers, and
D a directed hypergraph. Then the following conditions are equivalent:

(a) There is an algebraic hypergraph G of type T such that G* ~ D.

(b) For each m € N, D(m) is a directed m-hypergraph of m-type Tp, (7).

(¢) For each m € N, there is an algebraic hypergraph G, of type T such that
G ~D(m).

Note that (a) <= (c) may be proved independently. First, the implication =
is trivial, because D(m) is a weak subhypergraph of D. Secondly, for each k € N,
take an algebraic hypergraph Gy, of type 7 such that Gj ~ D(k). We can assume
that G; = D(k) (see the next proof). Now it is sufficient to verify that the triple
(VP,EP, Uyen I6*) is the desired algebraic hypergraph.

Now we prove the main result of this section.

Theorem 3.3. Let 7 = (19,71, 72,...) be a sequence of cardinal numbers, and H
be a hypergraph. Then the following conditions are equivalent:

(a) There is a directed hypergraph D of type T such that D* ~ H.
(b) There is a family {Hy}ren of weak subhypergraphs of H such that
(b.1) For each k € N, Hy, is a (k,k + 1)-hypergraph.
(b.2) EH = |J EH*,
kEN
(b.3) For any k € N, there is a directed k-hypergraph Dy, of k-type 1, such
that D7 ~ H..

The analogous result for algebraic hypergraphs can also be formulated. More
precisely, a directed hypergraph may be replaced by an algebraic hypergraph.
Then, in (b), 7 should be replaced by T(r).

This theorem and Corollary 2.4 reduce our algebraic problem to the question
about the orientation of hyperedges of a (k, k+1)-hypergraph to a form of directed
k-hypergraph of a fixed k-type.

Proof. (a) = (b) Let D be a directed hypergraph of type 7 such that D* ~ H.
We can assume D* = H. It is sufficient to transport the structure of directed
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hypergraph onto H by any hypergraph isomorphism. For each k € N, let
H, =D(k)".
First, Hy, is a (k, k + 1)-hypergraph. Secondly, D(k) is of k-type 7. Thirdly, (see
Theorem 2.10 in [9]) * preserves weak subhypergraphs, so
H, =D(k)* <, D*=H.
Moreover,

VEe = yP® —yP —yHand | ) EM = | EPW = EP = EY,
keN kEN

because a hyperedge e of D belongs to D(m), where m =|IP(e)|.

Thus the family {Hj, }ren satisfies (b).
(b) = (a) Obviously if we add to each Hy, all vertices of H outside Hy, then the
family {Hj}ren also satisfies (b.1)-(b.3). Thus we can assume that VHr = VH
for any k£ € N.

Now for each k € N, let M, <,, Hy be the weak subhypergraph such that

j=k—1
VMe = yHeand  EME = PR | ) E™
j=0

(of course, EMo = FHo),

Then first, EM* N EMt = () for k,I € N with k # [. Secondly, by (b.2),

U ™ = | E™ = EY.
keN kEN

Thirdly, My, is a (k,k + 1)-hypergraph. Further, by (b.3), there is a directed
k-hypergraph Dy, of k-type 73 such that D} ~ Mj, because My is a weak subhy-
pergraph of Hj,. As above we can assume D} = M.

Now take the directed hypergraph D such that

yP—yH EP_FEH and IP = UIDk.
kEN

IP is well-defined, because |J,cy EP* = Upeny EMF = E® and EPx 0 EPr =
EMr N EMi — () for all k,l € N with k # L.

Let e € EH = EP be a hyperedge. Then there is exactly one m € N such that
e € EPm = EMn._ Hence, IP () = IP(e) U {IP(e)} = IP™(e) U {I;Dm(e)} =
IPn(e) = M (e) = IM(e). Thus

D*=H.

It is easy to see that for any k € N, D;, <, D, and also EP (k) = EP*, VPr =
VP = VP®*), These facts imply D(k) = Dy, for k € N. Hence we infer that D is
of type 7, because Dy, is of k-type 7%. O

Take the directed hypergraph D with two vertices v, v2, and three hyperedges
e1, ea, ez such that IP(e;) = <(/),111>, IP = <{02},v2>, IP (e3) = <{vl},v2>. Then
H = D* satisfies (b) of Theorem 3.3 for (1,1,0,0,...), because D is of this type.
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On the other hand, take two weak subhypergraphs H and H” of H such that
H’ consists of all vertices and e, es; and H” consists of all vertices and e3. In
other words, H' contains all hyperedges of H with exactly one endpoint, and H’
contains all hyperedges of H with exactly two endpoints. By Remark 3.1(b), there
is not a directed 0-hypergraph C of 0-type 1 such that C* ~ H’'. Hence, {H',H"}
does not satisfy (b) of Theorem 3.3. Thus, unfortunately, it is sometimes difficult
to find a suitable family.

4.

Now we give one necessary (but not sufficient) and one sufficient (but not nec-
essary) condition for a hypergraph H to exist a directed hypergraph D of a fixed
type 7 such that D* ~ H. Hence we obtain necessary and sufficient conditions,
but only for some (hypergraph) types. Of course, using Theorem 2.2, and also
Corollary 2.3, analogous results for algebraic hypergraphs can be forrnulated

For a hypergraph H and V € P, (VH), EH {e c BH: H(e V} and
p(Y) = B V)|

Theorem 4.1. Let D be a directed hypergraph of type T = (19,71, 72,...). Then
for each V € Pgo(VP),

WP (V) < V] 71+ 7y -
If Ty =1 > Rg or 1y| > R, then hD*(V) < max{7y|—1, T|v|}-
Proof. Obviously the second part follows from the first.
Take a finite and non-empty subset V' C VP and let k = |V/| — 1. First,
» D(k)* D(k+1
(1) ER (V) = B (V) u By (v).

The inclusion D is trivial, because D(k)* and D(k + 1)* are weak subhypergraphs
of D*. On the other hand, take e € EP” (V). Then IP(e)U{IP(e)} =V,soeisa
k-edge or a k+ 1-edge. Hence, e belongs to D(k) or D(k+1). Thus e € E,?(k)*(V)
oree EPFTY (V).

Secondly, it is easy to see
EP® (V) ={ee EPW . IPW(e)u{y®(e)} =V}
- {e c Pk . IP(k (e) € P(V } U{ED(k : We Pk(V)},

because D(k) contains only k-edges.
Analogously,

D(ki1)* D(k D(k
Eh( vy = {ee EPG+D . b Fe) U {I; ( +1)(€)} =V}
Clee EP(H+) . IP(kJrl)(e) € Pyi(V)} = ERI(v),

because D(k + 1) contains only k + 1-edges, and V has exactly k + 1 vertices, i.e.
Pea (V) ={V}.
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Moreover, D(k) is of k-type 7, and D(k + 1) is of k + 1-type 7x41, because D
is of type 7. Thus by the above two facts we obtain

PO wvy< Y SPEW) <PV = (k+ 1) = Vv
WEP, (V)

and
hD(k“)*(V) < |E?(k+1)(v)| _ SD(k+1)(V) <Tv|-

Hence and by (1) we have hP" (V) < hP®" (V) + pPEHD™ (V) <|V|- 711 + 7y
|

Let 7 be a sequence of cardinal numbers and k& € N.

Take a family of pairwise disjoint sets {Ei}ﬁzlgH such that |E;| = 7 for i =
0,...,k and |Egy1| = 7e41. Next, let D be the directed hypergraph with VP =
{’Uo, L. ,’Uk}, EP = EyUEU...UELUE;4, and ID(e) e <VD \ {Ui},’l]i> for
e € E;iand 0 < i <k, IP(e) = (VP vg) for e € Exy1. Then sP (W) = 7, for
W € P,(VP), sP(VP) = 7441 and sP(W) = 0 for W & Pu(VP) U P 1(VP).
Hence, D is of type 7. Further, hP"(VP) = |EP| = |Eg| + |E1| + ... + |Ex| +
|Ext1] = (K 4+ 1) - 7% + Tit1, since Ey, ..., Ep4q are pairwise disjoint. Thus a
stronger inequality than in Theorem 4.1 does not hold.

Having Theorem 4.1 we can also construct a hypergraph H such that H has only
(k+1)-edges, and D* % H for any directed hypergraph D of type 7. More precisely,
let H be the hypergraph such that [VH| = k + 1, |EH| > max{X, 7, 7x+1} and
I(e) = VH for e € EY. Then hH(VH) = |[E®| > (kK +1) - 7 + Tk+1. Now it is
remained to use Theorem 4.1.

Unfortunately, the condition in Theorem 4.1 is not sufficient. Let 7 = (0, 1,0, 0,

..) and let H be the usual graph with VE = {v;,ve}, E® = {e1,e2,e3} and
IM(ey) = M (eq) = {v1,v2}, IH(e3) = {va}. Then hH({vl,vz}) =2, hH({vl}) =
0 and hH({v2}) = 1. Thus H and 7 satisfy the inequality of Theorem 4.1. But,
there is not a directed hypergraph D of type 7 such that D* ~ H (note that D
would have to be a functional directed graph).

Proposition 4.2. Let a sequence T = (19,71, T2, -..) and a hypergraph H be such
that W (V') < 7yv| for each V € Psy(VH). Then there is a directed hypergraph D
of type T such that D* ~ H.

Proof. For any k € N, let H; be the weak subhypergraph of H consisting of
all vertices and all hyperedges with exactly k endpoints. Obviously the family
{H}, } ken satisfies (b.1) and (b.2) of Theorem 3.3.

Further, for any k& € N, there is a directed k-hypergraph Dy of k-type 7 such
that Dy ~ Hy. It follows from Remark 3.1(a), and the equality h®* (V) = hH(V)
for any V € Py(VH) and k € N. Hence and by Theorem 3.3, there is the desired
hypergraph D. |

Let 7 = (0,1,0,...) and H be the graph with two vertices v, v2 and one
hyperedge e between them. Then hH<{U1,U2}) =1 > 7, but obviously there is
a directed hypergraph D of type 7 (i.e. a functional directed graph) such that
D* = H. Thus the condition in Proposition 4.2 is not necessary.
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By Theorem 4.1 and Proposition 4.2 we immediate obtain the following result.

Proposition 4.3. Let H be a hypergraph, and let 7 = (10,71, T2, - . . ) be a sequence
such that

(%) 76 < Tg41 for each k €N,
(xx) there is m € N such that 7, =0 for k <m —1 and 7, > Rg for k> m + 1.

Then there is a directed hypergraph D of type T such that D* ~ H iff (V) < V|
for V € Pg,(VH),

If 7 does not satisfy (x) or (xx), then there is k € N such that 7, > 7541, or
Tiey Tke+1 < No and 7, > 1. Hence, there is k € Nsuch that (k+1) 76 +7g4+1 > Tht1-
Thus by the first example under Theorem 4.1, these assumptions cannot be weaker.
More formally, this example implies that if 7 does not satisfy (%) or (xx), then the
implication = is not true. Hence also, the sufficient condition in Proposition 4.2
is not necessary for any type 7 which does not satisfy (x) or ().

Take a sequence 7 = (7,71, T2,...) of cardinal numbers. Then by Definition
2.1, Ti(r) > Tiy1(r) for any k € N\ {0}. Thus T(r) satisfies (x) and (*%) of
Proposition 4.3 iff

(«') To(z) < Ta(x),
(#+") Ti(7) = Thy1(1) > Vo for each k € N\ {0}.

Hence and by Theorem 2.2, if T(7) satisfies (¥') and (x%’), then for a hypergraph
H, there is an algebraic hypergraph G of type 7 such that G** ~ H iff hH(V) <
T|V\(I) forall V € Pﬁn(VH).
If T(7) satisfies (¥') and (xx’), then we have two cases (c.1): Ti(7) > Ny for each
k € N\ {0}, or (c.2): Tx(1) =Yg for each k € N\ {0}. Moreover, it is well-known
that if Ty(7) = >, > Tm - s(m, k) > N, then Ty (7) = sup{7m, Tk+1,...}. Thus
T(r) satisfies (¥) and (x+') iff one from the following two facts hold (the first for
the case (c.1); and the second for (c.2))
(h.1) sup{7n: m €N} >Ry and 7; <sup{r,: m >k+1} for each k € N;
then Ty (1) = sup{7m : m > k} = sup{7, : m € N} for k € N\ {0}.
(h.2) {m eN: 7, # 0} =R and sup{r, : m € N} < Rg;
then T (1) = Ry for k € N\ {0}.

Thus we obtain

Proposition 4.4. Let H be a hypergraph, and let 7 = (19,71, T2, - . . ) be a sequence
such that
sup{7m : m € N} >Ry and 7, <sup{7m,: m >k+1} foreach k€N
or
[{m eN: 7, # 0} =Rg and sup{m,: m e N} <.
Then there is an algebraic hypergraph G of type T such that G** ~ H iff (V) <
sup{7m : m € N} for any V € P, (VH).

Corollary 4.5. Let H be a hypergraph, and let a sequence of non-negative integers
T contain infinitely many non-zero elements (i.e. 7 € NV\ Nlﬁ). Then there is an
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algebraic hypergraph G of type T such that G** ~ H iff KE(V) < sup{7,, : m € N}
for any V € Pa,(VE).

Unfortunately, for each type 7 € Nlﬁ, T(7) does not satisfy («'), (**). There are
also sequences 7 ¢ Nlﬁ such that T(7) does not satisfy (¥), (xx'); for instance,
7= (0,80,0,0,...), then T(z) =1

5.

Now we translate hypergraph results onto the lattice language, and thus we
obtain one necessary (but not sufficient) condition and one sufficient (but not
necessary) condition for lattices that are isomorphic to the weak subalgebra lattice
of a partial algebra of a fixed type. Next, we completely characterize the weak
subalgebra lattice of a partial algebra of a fixed type, but only for special types.

By Corollary 2.4, Theorem 4.1 and the definition of U(L) (see Definition 3.17
in [9]) we obtain

Theorem 5.1. Let L be a lattice isomorphic to the weak subalgebra lattice of a
partial algebra of type (K, k). Then for B € P, (A(L)),

)
i € Z(L) - A() = BY| <|B| Tipj-1(K. 5) + Tip (K. ).
If Tig—1 (K, k) > Xg or Tip|(K, k) > N, then
[{i e Z(L) : A(i) = BY| < max{Tip|-1(K, k), Tip|(K,k)}.

Let (K, k) be an arbitrary algebra type and k € N.

Take pairwise disjoint sets V', Fy, E1, ..., Eg, Exy1 such that |V| =k + 1 and
|E;| = Th(K, k) for i = 0,...,k, and |Ex11| = Tey1(K, k). Let L = (L,<g,) be
the sublattice of the powerset lattice of VU EFpU ... U Eiyq such that L = {B S

(Vquu .UEy11): BCVorV C B} ThenA ={{v}: veVv}
and Z(L) = {V Ufe}: e€ EgUEU... U Ek+1} Thus L satisfies (W.1)-
(W.4), and U( ) is isomorphic to the hypergraph D* from the first example under
Theorem 4.1 (where we replace 7 by T(K, k)). Hence and by Corollary 2.4, there
is A € PAIlg(K, k) such that S, (A) ~ (L) : A(i) = AL)}| =
|E0U .. .UEkUEk+1| = (k—|— 1) 'Tk(K, /i) +Tk+1(K, /{)7 since Ey, Ey, ..., Erq1 are
pairwise disjoint. Thus a stronger inequality than in Theorem 5.1 does not hold.

We can also construct a lattice L such that L satisfies (W.1)—-(W.4), and each
non-zero and non-atomic join-irreducible element of L contains k 4 1 atoms, and
L # S, (A) for all partial algebra A of type (K, k). Take disjoint sets V, W such
that |[V| = k+ 1 and |[W| > max{Ro, Tx(K, k), Ty+1(K, k) }. Let L = (L, <r) be
the sublattice of the powerset lattice of VUW such that L ={B € P(VUW):
BCVorV C B} Then AL)={{v}: veV}, I(L) = {VU{w}: we W},
A(i) = AL) for ¢ € Z(L). Hence L satisfies (W.1)-(W.4), and |{z € I(L) :
A(i) = AL} = |ZL)| = [W| > |AL)| - Tu(K, &) + Tht1(K, k). Thus by
Theorem 5.1, there is not A € PAlg(K, ) such that L ~ S,,(A).

Let (K, k) be a monounary type (i.e. K = {k} and k(k) = 1) and let L be the
sublattice of the powerset lattice of {0,1,2,3,4} generated by {{0}, {1},{0,1,2},
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{0,1,3},{1,4}}. Then A(L) = {{0},{1}} and Z(L) = {{0,1,2},{0,1,3},{1,4} }.
Hence, L satisfies (W.1)— (W 4), and it easily follovvs that L and T(K, k) satisfy the
inequality of Theorem 5.1, because T(K,x) = (0,1,0,0,...). Hence also, U(L)
is isomorphic to the graph H from the example before Proposition 4.2 (where 7
should be replaced by T(K, k)). Thus by Corollary 2.4, L 2 S,,(A) for each partial
algebra A of type (K, k). Thus the condition in Theorem 5.1 is not sufficient in
general.

By Corollary 2.4 and Proposition 4.2 we also obtain

Proposition 5.2. Let (K, k) be any type, and let a lattice L satisfy (W.1)-(W.4),
and |{z eZ(L): A(x) = B}| < Tip|(K, k) for each B € Pan(A(L)). Then there is
A € PAlg(K, k) such that L ~ S,,(A).

Let (K, k) be a monounary type and L be the lattice of subsets {@, {0}, {1},
{0,1}, {0,1, 2} } with set-inclusion. Then A(L)={{0},{1}} and Z(L)={{0,1,2} }.
Hence, L satisfies (W.1)~(W.4) and |{i € Z(L) : A(:)={{0},{1}} }| =|{{0, 1,2} }|
= 1> 0=Ty(K, k). Hence also, U(L) is isomorphic to the hypergraph H from the
example before Proposition 4.3. (where 7 should be replaced by T(K,)). Thus
by Corollary 2.4, there is A € PAlg(K, k) such that S,,(A) ~ L. This example
shows that the condition in Proposition 5.2 is not necessary.

By Corollary 2.4, Proposition 4.3, if (K, k) is a type such that T(K, k) satisfies
(+) and (*+'), then for any lattice L satisfying (W.1)—(W.4), there is a partial
algebra A of type (K, ) such that S,(A) ~ Liff [{i € Z(L) : A(i) = B}| <
Tip|(K, k) for B € Ps,(A(L)).

By (h.1) and (h.2) (because K =J,,cn 51 (m
joint sets B(),Bl,BQ,...7 if sup{|B0 |B1 }
|UnGN B, | ) we obtain that for any type (K, n)
one from the following two conditions hold:
(a.l) |[K|>Rp and |/£_1 | < |/£ ({meN: m >k—|—1}| for each k € N,
(a.2) |[K|=Xg and |{m eN: k7 1(m) # ®}| = Ny.

In both cases Tj,(K, k) = | K| for any k € N\ {0}.

Thus we obtain

), and obviously for pairwise dis-
> Ry, then sup{|Bol. | Bil....} =
T(K, k) satisfies (¥) and (x«') iff

Proposition 5.3. Let L be a lattice satisfying (W.1)-(W.4), and let (K, k) be a
type such that

|K| >N and |/£_1(k)| < |/€‘1({m eN: m>k+ 1})| for each k € N

or

|K| =N and |{m eN: k= (m) # ®}| =Ny .
Then there is A € PAlg(K, k) such that S,,(A)~L iff |{z eZ(L): A(i) = B}| <
|K| for B€ Pan(A(L)).
Corollary 5.4. Let L be a lattice satisfying (W.1)—(W.4), and let (K, k) be a type
such that

|[K| =Xy and |/£_1()|<N0 for each i€ N.
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Then there is A € PAlg(K, k) such that S,,(A)~L iff |{z eZ(L): A(i) = B}| <
|K| for B€ P, (A(L)).

The above results give only partial solutions of our algebraic problem, because
many algebra types do not satisfy (*') and (**’). More precisely, for any finite type
(K, k), T(K, k) does not satisfy these conditions (see Definition 2.1). Moreover,
there are also infinite types (K, x) such that T(K,«) does not satisfy these two
conditions; for instance, take a countable unary type (K, k), then T(K, k) =
(0,%0,0,0,...).

Finally, we characterize the weak subalgebra lattice for nullary types (K, ) (i.e.
r(K) € {0}).

Proposition 5.5. Let L be a lattice satisfying (W.1)-(W.4), and (K, k) a nullary
type. Then there is A € PAlg(K, k) such that S, (A) ~ L iff |I(L)| < |K| and
|.A(z)| =1 for each i € Z(L).

Proof. By Corollary 2.4, there is A € PAlg(K, k) such that S,(A) ~ L iff L
is a lattice satisfying (W.1)—(W.4), and there is a directed hypergraph D of type
T (K, k) such that D* ~ U(L).

Since Ty (K, k) = | K| and T;(K, k) = 0 for ¢ > 1, there is a directed hypergraph
D of type T(K, ) such that D* ~ U(L) iff U(L) is a 1-hypergraph, and there
is a directed 0-hypergraph D of O-type |K| such that D* ~ U(L). Hence and
by Remark 3.1(b), there is A € PAlg(K, k) such that S, (A) ~ L iff L satisfies
(W.1)~(W.4), U(L) is a 1-hypergraph, and |Z(L)| = |[EY®™| < |K|. Further,
U(L) is a 1-hypergraph iff | A(i)| = 1 for i € Z(L). O
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