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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 38 (2002), 81 – 94

SOME PROPERTIES OF THE WEAK SUBALGEBRA LATTICE
OF A PARTIAL ALGEBRA OF A FIXED TYPE

KONRAD PIÓRO

Abstract. We investigate, using results from [9], when a given lattice is

isomorphic to the weak subalgebra lattice of a partial algebra of a fixed
type. First, we reduce this problem to the question when hyperedges of a

hypergraph can be directed to a form of directed hypergraph of a fixed type.
Secondly, we show that it is enough to consider some special hypergraphs. Fi-

nally, translating these results onto the lattice language, we obtain necessary
conditions for our algebraic problem, and also, we completely characterize

the weak subalgebra lattice for algebras of some types.

1.

Since the present paper is strongly related to [9], we use the notation and
definitions from there. For basic concepts concerning hypergraphs see e.g. [3];
concerning algebras (partial and total) and lattices of subalgebras see e.g. [2], [4],
[6] and [7]; concerning lattice theory see e.g. [5] and [7].

It is known that a lattice L = 〈L,≤L〉 is isomorphic to the weak subalgebra
lattice Sw(A) of a partial algebra A, or equivalently, to the weak subhypergraph
lattice of an algebraic, directed or undirected hypergraph (see Theorem 3.16 in [9];
see also [1]) iff

(W.1) L is algebraic and distributive,
(W.2) every element of L is a join of join-irreducible elements,
(W.3) for each non-zero and non-atomic join-irreducible element i, the set of all

atoms contained in i is finite and non-empty,
(W.4) the set of all non-zero and non-atomic join-irreducible elements of L is an

antichain with respect to the lattice ordering ≤L.
An element i is join-irreducible iff for each k1, k2, i = k1 ∨ k2 implies i = k1

or i = k2.
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In [9] the following result, fundamental for our investigations, is given (Proposition
3.19).

Proposition 1.1. Let a lattice L satisfy (W.1)–(W.4), and 〈K,κ〉 be an algebra
type. Then there is a partial algebra A of type 〈K,κ〉 such that Sw(A) ' L iff
there is an algebraic hypergraph G of type

(
κ−1(0), κ−1(1), κ−1(2), . . .

)
such that

G∗∗ ' U(L).

The first aim of the paper (section 2) is to show that in the above fact such
an algebraic hypergraph may be replaced by a directed hypergraph D of type τ ,
where τ depends, in a simple combinatorial way, on

(
κ−1(0), κ−1(1), κ−1(2), . . .

)
.

The second aim (section 3) is to prove that it is sufficient to restrict our attention
to some special hypergraphs. Next, we will translate hypergraph results onto the
lattice language, and thus we will obtain some necessary condition for lattices
to be isomorphic to the weak subalgebra lattice of a partial algebra of a fixed
type. Further, we will characterize the weak subalgebra lattice for algebras of
some types. Although these results are solutions only for some types, it seems,
having experiences and ideas from [8], that main hypergraph results of the paper
(Theorems 2.2 and 3.3) will be also useful to obtain solutions of our problem for
other types. Recall that in [8] we have solved this problem for unary algebras.

Obviously there are lattices satisfying (W.1)–(W.4), being not isomorphic to the
weak subalgebra lattice of any partial algebra of a fixed type. For example, take
type 〈K,κ〉 consisting of exactly one constant (i.e. K = {k} and κ(k) = 0), and
let L be the family of sets

{
∅, {1}, {1, 2},{1,3},{1,2,3}

}
with set-inclusion. Then

L satisfies (W.1)–(W.4), and L has one atom and two non-zero and non-atomic
join-irreducible elements. Thus U(L) contains one vertex and two hyperedges, so
there is not an algebraic hypergraph G of type (1, 0, 0, . . .) such that G∗∗ ' H.
Hence, L 6' Sw(A) for each partial algebra A of type 〈K,κ〉.

Let G be an algebraic hypergraph of type τ , and H = G∗∗. Then obviously for
any weak subhypergraph K of H, there is an algebraic hypergraph D of type τ
such that D∗∗ = K. As in [8] (Propositions 2.8 and 2.9) we can translate this result
onto the lattice language. In [8] we have considered only lattices satisfying (W.1),
(W.2), (W.4), and such that any non-zero non-atomic join-irreducible element
contains one or two atoms. But it does not matter in the proof of Proposition
2.8. Thus for a lattice L satisfying (W.1)–(W.4), and sets A ⊆ A(L), I ⊆ I(L)
such that A(i) ⊆ A for i ∈ I, the complete sublattice [A ∪ I]L generated by the
set {0} ∪A ∪ I consists only of joins of elements from {0} ∪A ∪ I. In particular,
A
(
[A ∪ I]L

)
= A, I

(
[A ∪ I]L

)
= I, and [A ∪ I]L satisfies (W.1)–(W.4). Hence,

Proposition 1.2. Let 〈K,κ〉 be an algebra type, and let L be a lattice isomorphic
to the weak subalgebra lattice of a partial algebra of type 〈K,κ〉. Then for any sets
A ⊆ A(L) and I ⊆ I(L) such that A(i) ⊆ A for all i ∈ I, there is a partial algebra
A of type 〈K,κ〉 such that Sw(A) ' [A ∪ I]L.

Here, A(L) and I(L) are the sets of all atoms and of all non-zero and non-
atomic join-irreducible elements, respectively. For any element i, A(i) is the set of



THE WEAK SUBALGEBRA LATTICE 83

all atoms contained in i. Recall also (see Definition 3.17 in [9]) that V U(L) = A(L),
EU(L) = I(L) and IU(L)(e) = A(e) for e ∈ I(L).

2.

For any sets A and B, let Sur (A,B) be the set of all surjections from A onto
B. Further, for k,m ∈ N, Sur (m,A) = Sur

(
{1, . . . ,m}, A

)
and Sur fin(A) =⋃

n∈N Sur (n,A) and Sur (m, k) = Sur
(
{1, . . . ,m}, {1, . . . , k}

)
and s(m, k)

=
∣∣Sur (m, k)

∣∣ (where {1, . . . , 0} denotes the empty set).
Obviously

∣∣Sur (m,A)
∣∣ =

∣∣Sur (m, |A|)
∣∣ = s

(
m, |A|

)
, s(m, k) = 0 for m ≤ k− 1,

s(0,m) = s(m, 0) = 0 for m ≥ 1, Sur (∅, ∅) = {∅} and s(0, 0) = 1, in particular,
Sur fin(∅) = {∅}.

It is also well-known that for any k,m ∈ N with m ≥ k, s(m, k) =
∑j=k
j=0(−1)j

· k!
j!(k−j)!(k−j)m; or equivalently, s(m, k) = k!S(m, k), where S(m, k) are Stirling’s

numbers of the second kind, i.e. S(m,m) = 1 for m ≥ 0, S(m, 0) = 0 for m ≥ 1,
S(m, k) = S(m − 1, k − 1) + S(m − 1, k) for 0 < k < m.

Definition 2.1. Let τ = (τ0, τ1, τ2, . . . ) be a sequence of cardinal numbers. Then
T(τ ) =

(
T0(τ ), T1(τ ), T2(τ ), . . .

)
is the sequence such that Tk(τ ) =

∑
m∈N τm ·

s(m, k) =
∑
m≥k τm · s(m, k) for any k ∈ N.

The following facts are immediate (see the notation in [9]; recall that NNf is the
family of all sequences of non-negative integers, in which almost all terms are equal
zero): T0(τ ) = τ0 and Tm(τ ) ≥ Tm+1(τ ) for allm ∈ N\{0}. If

∣∣{i ∈ N : τi ≥ 1}
∣∣ <

ℵ0 and τi ∈ N for each i ≥ k, then Tk(τ ) < ℵ0. If
∣∣{i ∈ N : τi ≥ 1}

∣∣ = ℵ0 or there
is i ≥ k such that τi ≥ ℵ0, then Tk(τ ) = sup{ℵ0, τk, τk+1, . . .}. If τ ∈ NN \ NNf ,
then Tm(τ ) = ℵ0 for all m ≥ 1. If τ ∈ CardN \NNf , then T(τ ) 6∈ NN.

Theorem 2.2. Let τ = (τ0, τ1, τ2, . . . ) be a sequence of cardinal numbers, and D
a directed hypergraph. Then there is an algebraic hypergraph G of type τ such that
G∗ ' D iff D is of type T(τ ).

Proof. =⇒ It is sufficient to show that the directed hypergraph G∗ is of type
T(τ ).

Take a finite set V ∈ Pfin(V G). Then

EG∗

s (V ) =
⋃{

EG
s (v) : v ∈ Sur fin(V )

}
(1)

=
⋃
m∈N

(⋃{
EG
s (v) : v ∈ Sur (m,V )

})
.

Let e ∈ EG and IG
1 (e) = 〈v1, . . . , vk〉. It is easy to see e ∈ EG∗

s (V ) iff {v1, . . . , vk} =
V . Moreover, 〈v1, . . . , vk〉 can be considered as a surjection of {1, . . . , k} onto
{v1, . . . , vk}. These facts imply (1).
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Since G is of type τ ,
∣∣EG

s (v)
∣∣ = sG(v) ≤ τm for any v = 〈v1, . . . , vm〉 ∈ Vm.

Hence,∣∣∣⋃{EG
s (v) : v ∈ Sur (m,V )

}∣∣∣
=

∑
v∈Sur (m,V )

sG(v) ≤ τm ·
∣∣Sur (m,V )

∣∣ = τm · s
(
m, |V |

)
,

because EG
s (v) and EG

s (w) are disjoint for v 6= w.
Thus by (1), sG

∗
(V ) =

∣∣EG∗

s (V )
∣∣ =

∣∣⋃
m∈N

(⋃{
EG
s (v) : v ∈ Sur (m,V )

})∣∣ =∑
m∈N

∣∣⋃{EG
s (v) : v ∈ Sur (m,V )

}∣∣ ≤∑m∈N τm · s
(
m, |V |

)
= T|V |(τ ).

⇐= Let V ∈ Pfin(V D). Then
∣∣ED

s (V )
∣∣ = sD(V ) ≤ T|V |(τ ) =

∑
m∈N τm ·s

(
m, |V |

)
,

so there is a family F(V ) =
{
F (V,m) ∈ P (VD) : m ∈ N

}
such that

F (V,m) ∩ F (V, k) = ∅ for each m, k ∈ N with m 6= k ,

ED
s (V ) =

⋃
m∈N

F (V,m) ,

∣∣F (V,m)
∣∣ ≤ τm · s

(
m, |V |

)
for each m ∈ N .

Observe, F (V,m) = ∅ for m ≤ |V | − 1. If V = ∅, then F (∅,m) = ∅ for m ≥ 1,
F (∅, 0) = ED

s (∅) = ED(0) (where ED(0) is the set of all 0-edges) and
∣∣F (∅, 0)

∣∣ =
τ0 · s(0, 0) = τ0.

Since s
(
m, |V |

)
=
∣∣Sur (m,V )

∣∣, we obtain by the last condition that for any
m ∈ N, there is a family F(V,m) =

{
F (V,m,v) ∈ P (VD) : v ∈ Sur (m,V )

}
such

that

F (V,m,v)∩ F (V,m,w) = ∅ for each v,w ∈ Sur (m,V ) with v 6= w ,

F (V,m) =
⋃

v∈Sur (m,V )

F (V,m,v) ,

∣∣F (V,m,v)
∣∣ ≤ τm for each v ∈ Sur (m,V ) .

First, for m ≤ |V | − 1, F(V,m) is the empty family. Secondly, if V = ∅, then
F(∅,m) is empty for all m ≥ 1, F(∅, 0) =

{
F (∅, 0, ∅)

}
and F (∅, 0) = F (∅, 0, ∅).

Thirdly, if τm ≥ ℵ0, then
∣∣F (V,m)

∣∣ ≤ τm, so in this case F(V,m) may consists of
exactly one set.

Now, for each v = 〈v1, . . . , vm〉 ∈
∏

fin(VD), let

F (v) = F
(
{v1, . . . , vm},m,v

)
.

Then it easily follows from properties of F(V ) and F(V,m) that

(1)
∣∣F (v)

∣∣ ≤ τm for each v = 〈v1, . . . , vm〉 ∈
∏

fin(V D) .

(2) ED
s (V ) =

⋃{
F (v) : v ∈ Sur fin(V )

}
for all V ∈ Pfin(V D) .

Further, for any v = 〈v1, . . . , vm〉,w = 〈w1, . . . , wk〉 ∈
∏

fin(V D) with v 6= w,

(3) F (v) ∩ F (w) = ∅ .
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If {v1, . . . , vm} = {w1, . . . , wk}, then this is implied by the following two facts
F
(
{v1, . . . , vm},m

)
∩F
(
{w1, . . . , wk}, k

)
= ∅ ifm 6= k, and F

(
{v1, . . . , vm},m,v

)
∩

F
(
{w1, . . . , wk}, k,w

)
= ∅ if m = k.

If {v1, . . . , vm} 6= {w1, . . . , wk}, then ED
s

(
{v1, . . . , vm}

)
∩ED

s

(
{w1, . . . , wk}

)
=

∅. Hence, F (v) ∩ F (w) = ∅, because F (v) ⊆ ED
s

(
{v1, . . . , vm}

)
and F (w) ⊆

ED
s

(
{w1, . . . , wk}

)
.

It is easily shown ED =
⋃{

ED
s (V ) : V ∈ Pfin(V D)

}
. Hence and by (2) we

have

(4) ED =
⋃{

F (v) : v ∈
∏

fin(V D)
}
.

For any v ∈
∏

fin(VD), let I(v) =
〈
I1(v), I2(v)

〉
: F (v) −→

∏
fin(VD) × VD be

the function such that

I1(v)(e) = v and I2(v)(e) = ID2 (e) for each e ∈ F (v) .

Of course, if F (v) = ∅, then I(v) is the empty function.
Next, let

I =
〈
I1, I2

〉
=
⋃{

I(v) : v ∈
∏

fin(V D)
}
.

By (3), I is a well-defined function, and by (4), I is defined for all elements of ED.
Thus the ordered triple G = 〈VD, ED, I〉 is an algebraic hypergraph.

Take e ∈ ED. Then e ∈ F (v) for some v = 〈v1, . . . , vm〉 ∈
∏

fin(VD). Thus
IG
2 (e) = I2(v)(e) = ID2 (e), and IG

1 (e) = I1(v)(e) = v, and by (2), ID1 (e) =
{v1, . . . , vm}. Hence, IG∗(e) = ID(e), so

(5) G∗ = D .

Finally, we show

(6) EG
s (v) = F (v) for each v ∈

∏
fin(V D) .

The inclusion ⊇ is trivial. To see the inverse inclusion, take e ∈ EG
s (v). By (3),

there is exactly one w ∈
∏

fin(VD) such that e ∈ F (w). Then v = IG1 (e) =
I1(e) = I1(w)(e) = w. Thus e ∈ F (v).

By (1) and (6) we obtain that for each v = 〈v1, . . . , vm〉 ∈
∏

fin(VD),

sG(v) =
∣∣F (v)

∣∣ ≤ τm .

Thus G is an algebraic hypergraph of type τ .

The following fact is an immediate consequence of the above theorem.

Corollary 2.3. Let τ be a (hypergraph) type, and H a hypergraph. Then there
is an algebraic hypergraph G of type τ such that G∗∗ ' H iff there is a directed
hypergraph D of type T(τ ) such that D∗ 'H.

Hence and by Proposition 1.1 we obtain that our algebraic problem can be
reduced in the following way.
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Corollary 2.4. Let a lattice L satisfy (W.1)–(W.4), and 〈K,κ〉 be an algebra
type. Then there is a partial algebra A of type 〈K,κ〉 such that L ' Sw(A) iff
there is a directed hypergraph D of type T(K,κ) such that D∗ ' U(L), where
T(K,κ) = T

(
κ−1(0), κ−1(1), κ−1(2), . . .

)
.

3.

In the previous section we have reduced our algebraic problem to the question
when hyperedges of a hypergraph can be directed to a form of directed hyper-
graph of a fixed type. Observe also that each hypergraph represents some lattice
satisfying (W.1)–(W.4). (To see it take a hypergraph H, and let L be the weak
subhypergraph lattice of H. Then U(L) ' H, see Theorem 3.18 in [9].) Now we
show that it is sufficient to investigate some special hypergraphs.

Let D be a directed hypergraph and k ∈ N. Then D is said to be a directed
k-hypergraph iff D contains only k-edges, i.e. ED = ED(k) (or equivalently, for
each e ∈ ED,

∣∣ID
1 (e)

∣∣ = k). Obviously a directed 1-hypergraph can be easily
identified with usual directed graph. Moreover, for a directed k-hypergraph, each
of its weak subhypergraphs is also a directed k-hypergraph.

Let H be a hypergraph and k ∈ N. Then H is said to be a (k, k+1)-hypergraph
iff for any e ∈ V H, IH(e) has k or k + 1 vertices. H is a k-hypergraph iff for
any e ∈ EH,

∣∣IH(e)
∣∣ = k. First, 0-hypergraphs are just discrete hypergraphs.

Secondly, k-hypergraphs and k + 1-hypergraphs are, in particular, (k, k + 1)-
hypergraphs. Thirdly, for a (k, k + 1)-hypergraph (k-hypergraph), each of its
weak subhypergraphs is also a (k, k+ 1)-hypergraph (k-hypergraph). Of course, a
(1, 2)-hypergraph is a graph.

Obviously if D is a directed k-hypergraph, then D∗ is a (k, k+ 1)-hypergraph.
Conversely, for any (k, k + 1)-hypergraph H, we can construct (by the axiom of
choice) a directed k-hypergraph D such that D∗ = H (for each hyperedge it is
enough to take one of its endpoints as the final vertex).

Since for any directed k-hypergraph D, sD(V ) = 0 for all V 6∈ Pk(V ), we can a
little modify, in this case, the concept of type of directed hypergraph.

Definition 3.1. Let η be a cardinal number, and D a directed k-hypergraph.
Then D is said to be of k-type η iff sD(V ) ≤ η for each V ∈ Pk(V D).

Remark 3.1. (a) Let H be a k-hypergraph and η a cardinal number. Then
there is a directed k-hypergraph D of k-type η such that D∗ ' H iff

∣∣{e ∈
EH : IH(e) = V }

∣∣ ≤ η for V ∈ Pk(V H).
(b) Let H be a (0, 1)-hypergraph and η a cardinal number. Then there is a

directed 0-hypergraph D of 0-type η such that D∗ ' H iff |EH| ≤ η.

Proof. It is easily shown that for any directed k-hypergraph D, if D∗ is a k-
hypergraph, then {e ∈ ED∗ : ID∗(e) = V } = ED

s (V ) for any V ∈ Pk(VD). This
fact implies (a).
(b) =⇒ Of course, we can assume D∗ = H. Then EH = ED = ED

s (∅) and∣∣ED
s (∅)

∣∣ = sD(∅) ≤ η.
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⇐= H can be regarded as a directed 0-hypergraph D. Then ED
s (∅) = EH, so

sD(∅) = |EH| ≤ η.
Let D be a directed hypergraph and k ∈ N. Then D(k) ≤w D is the weak

subhypergraph of D consisting of all vertices of D and all k-edges, i.e. VD(k) = VD

and ED(k) = ED(k). Obviously D(k) is a directed k-hypergraph. If D is a directed
k-hypergraph, then D(k) = D, and for l 6= k, D(l) is a discrete hypergraph. It is
also easy to see

D =
∨
m∈ND(m) and sD(V ) = sD(k)(V ) for each V ∈ Pk(VD) .

Further, D is a directed hypergraph of type τ = (τ0, τ1, τ2, . . . ) iff for each m ∈ N,
D(m) is a directed m-hypergraph of m-type τm. If D is a directed k-hypergraph,
then D is of type τ iff D is of k-type τk.

By these facts and Theorem 2.2 we deduce

Proposition 3.2. Let τ = (τ0, τ1, τ2, . . . ) be a sequence of cardinal numbers, and
D a directed hypergraph. Then the following conditions are equivalent:

(a) There is an algebraic hypergraph G of type τ such that G∗ 'D.
(b) For each m ∈ N, D(m) is a directed m-hypergraph of m-type Tm(τ ).
(c) For each m ∈ N, there is an algebraic hypergraph Gm of type τ such that

G∗m ' D(m).

Note that (a) ⇐⇒ (c) may be proved independently. First, the implication =⇒
is trivial, because D(m) is a weak subhypergraph of D. Secondly, for each k ∈ N,
take an algebraic hypergraph Gk of type τ such that G∗k 'D(k). We can assume
that G∗k = D(k) (see the next proof). Now it is sufficient to verify that the triple〈
V D, ED,

⋃
k∈N I

Gk
〉

is the desired algebraic hypergraph.

Now we prove the main result of this section.

Theorem 3.3. Let τ = (τ0, τ1, τ2, . . . ) be a sequence of cardinal numbers, and H
be a hypergraph. Then the following conditions are equivalent:

(a) There is a directed hypergraph D of type τ such that D∗ ' H.
(b) There is a family {Hk}k∈N of weak subhypergraphs of H such that

(b.1) For each k ∈ N, Hk is a (k, k+ 1)-hypergraph.
(b.2) EH =

⋃
k∈N

EHk .

(b.3) For any k ∈ N, there is a directed k-hypergraph Dk of k-type τk such
that D∗k ' Hk.

The analogous result for algebraic hypergraphs can also be formulated. More
precisely, a directed hypergraph may be replaced by an algebraic hypergraph.
Then, in (b), τ should be replaced by T(τ ).

This theorem and Corollary 2.4 reduce our algebraic problem to the question
about the orientation of hyperedges of a (k, k+1)-hypergraph to a form of directed
k-hypergraph of a fixed k-type.
Proof. (a) =⇒ (b) Let D be a directed hypergraph of type τ such that D∗ ' H.
We can assume D∗ = H. It is sufficient to transport the structure of directed
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hypergraph onto H by any hypergraph isomorphism. For each k ∈ N, let

Hk = D(k)∗ .

First, Hk is a (k, k+ 1)-hypergraph. Secondly, D(k) is of k-type τk. Thirdly, (see
Theorem 2.10 in [9]) ∗ preserves weak subhypergraphs, so

Hk = D(k)∗ ≤w D∗ = H .

Moreover,

VHk = VD(k) = VD = V H and
⋃
k∈N

EHk =
⋃
k∈N

ED(k) = ED = EH ,

because a hyperedge e of D belongs to D(m), where m =
∣∣ID

1 (e)
∣∣.

Thus the family {Hk}k∈N satisfies (b).
(b) =⇒ (a) Obviously if we add to each Hk all vertices of H outside Hk, then the
family {Hk}k∈N also satisfies (b.1)–(b.3). Thus we can assume that VHk = VH

for any k ∈ N.
Now for each k ∈ N, let Mk ≤w Hk be the weak subhypergraph such that

VMk = VHk and EMk = EHk \
j=k−1⋃
j=0

EHj

(of course, EM0 = EH0).
Then first, EMk ∩EMl = ∅ for k, l ∈ N with k 6= l. Secondly, by (b.2),⋃

k∈N
EMk =

⋃
k∈N

EHk = EH .

Thirdly, Mk is a (k, k + 1)-hypergraph. Further, by (b.3), there is a directed
k-hypergraph Dk of k-type τk such that D∗k 'Mk, because Mk is a weak subhy-
pergraph of Hk. As above we can assume D∗k = Mk.

Now take the directed hypergraph D such that

V D = VH , ED = EH and ID =
⋃
k∈N

IDk .

ID is well-defined, because
⋃
k∈NE

Dk =
⋃
k∈NE

Mk = EH and EDk ∩ EDl =
EMk ∩EMl = ∅ for all k, l ∈ N with k 6= l.

Let e ∈ EH = ED be a hyperedge. Then there is exactly one m ∈ N such that
e ∈ EDm = EMm . Hence, ID

∗
(e) = ID1 (e) ∪

{
ID
2 (e)

}
= IDm

1 (e) ∪
{
IDm
2 (e)

}
=

ID∗m(e) = IMm(e) = IH(e). Thus

D∗ = H .

It is easy to see that for any k ∈ N, Dk ≤w D, and also ED(k) = EDk , V Dk =
V D = VD(k). These facts imply D(k) = Dk for k ∈ N. Hence we infer that D is
of type τ , because Dk is of k-type τk.

Take the directed hypergraph D with two vertices v1, v2, and three hyperedges
e1, e2, e3 such that ID(e1) =

〈
∅, v1

〉
, ID =

〈
{v2}, v2

〉
, ID(e3) =

〈
{v1}, v2

〉
. Then

H = D∗ satisfies (b) of Theorem 3.3 for (1, 1, 0, 0, . . .), because D is of this type.
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On the other hand, take two weak subhypergraphs H′ and H′′ of H such that
H′ consists of all vertices and e1, e2; and H′′ consists of all vertices and e3. In
other words, H′ contains all hyperedges of H with exactly one endpoint, and H′′

contains all hyperedges of H with exactly two endpoints. By Remark 3.1(b), there
is not a directed 0-hypergraph C of 0-type 1 such that C∗ ' H′. Hence, {H′,H′′}
does not satisfy (b) of Theorem 3.3. Thus, unfortunately, it is sometimes difficult
to find a suitable family.

4.

Now we give one necessary (but not sufficient) and one sufficient (but not nec-
essary) condition for a hypergraph H to exist a directed hypergraph D of a fixed
type τ such that D∗ ' H. Hence we obtain necessary and sufficient conditions,
but only for some (hypergraph) types. Of course, using Theorem 2.2, and also
Corollary 2.3, analogous results for algebraic hypergraphs can be formulated.

For a hypergraph H and V ∈ Pfin(V H), EH
h (V ) =

{
e ∈ EH : IH(e) = V

}
and

hH(V ) =
∣∣EH

h (V )
∣∣.

Theorem 4.1. Let D be a directed hypergraph of type τ = (τ0, τ1, τ2, . . . ). Then
for each V ∈ Pfin(V D),

hD∗(V ) ≤ |V | · τ|V |−1 + τ|V | .

If τ|V |−1 ≥ ℵ0 or τ|V | ≥ ℵ0, then hD∗(V ) ≤ max{τ|V |−1, τ|V |}.

Proof. Obviously the second part follows from the first.
Take a finite and non-empty subset V ⊆ VD and let k = |V | − 1. First,

(1) ED∗

h (V ) = E
D(k)∗

h (V ) ∪ED(k+1)∗

h (V ) .

The inclusion ⊇ is trivial, because D(k)∗ and D(k+ 1)∗ are weak subhypergraphs
of D∗. On the other hand, take e ∈ ED∗

h (V ). Then ID1 (e)∪
{
ID
2 (e)

}
= V , so e is a

k-edge or a k+1-edge. Hence, e belongs to D(k) or D(k+1). Thus e ∈ ED(k)∗

h (V )
or e ∈ ED(k+1)∗

h (V ).
Secondly, it is easy to see

E
D(k)∗

h (V ) =
{
e ∈ ED(k) : ID(k)

1 (e) ∪ {ID(k)
2 (e)} = V

}
⊆
{
e ∈ ED(k) : ID(k)

1 (e) ∈ Pk(V )
}

=
⋃{

ED(k)
s (W ) : W ∈ Pk(V )

}
,

because D(k) contains only k-edges.
Analogously,

E
D(k+1)∗

h (V ) =
{
e ∈ ED(k+1) : ID(k+1)

1 (e) ∪ {ID(k+1)
2 (e)} = V

}
⊆
{
e ∈ ED(k+1) : ID(k+1)

1 (e) ∈ Pk+1(V )
}

= ED(k+1)
s (V ) ,

because D(k+ 1) contains only k+ 1-edges, and V has exactly k+ 1 vertices, i.e.
Pk+1(V ) = {V }.
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Moreover, D(k) is of k-type τk and D(k + 1) is of k + 1-type τk+1, because D
is of type τ . Thus by the above two facts we obtain

hD(k)∗(V ) ≤
∑

W∈Pk (V )

sD(k)(W ) ≤
∣∣Pk(V )

∣∣ · τk = (k + 1) · τk = |V | · τ|V |−1

and
hD(k+1)∗(V ) ≤

∣∣ED(k+1)
s (V )

∣∣ = sD(k+1)(V ) ≤ τ|V | .

Hence and by (1) we have hD∗(V ) ≤ hD(k)∗(V )+hD(k+1)∗(V ) ≤ |V | ·τ|V |−1 +τ|V |.

Let τ be a sequence of cardinal numbers and k ∈ N.
Take a family of pairwise disjoint sets {Ei}i=k+1

i=0 such that |Ei| = τk for i =
0, . . . , k and |Ek+1| = τk+1. Next, let D be the directed hypergraph with VD =
{v0, . . . , vk}, ED = E0 ∪ E1 ∪ . . . ∪ Ek ∪ Ek+1, and ID(e) =

〈
V D \ {vi}, vi

〉
for

e ∈ Ei and 0 ≤ i ≤ k, ID(e) = 〈VD, v0〉 for e ∈ Ek+1. Then sD(W ) = τk for
W ∈ Pk(VD), sD(V D) = τk+1 and sD(W ) = 0 for W 6∈ Pk(VD) ∪ Pk+1(V D).
Hence, D is of type τ . Further, hD∗(V D) = |ED| = |E0| + |E1| + . . . + |Ek| +
|Ek+1| = (k + 1) · τk + τk+1, since E0, . . . , Ek+1 are pairwise disjoint. Thus a
stronger inequality than in Theorem 4.1 does not hold.

Having Theorem 4.1 we can also construct a hypergraph H such that H has only
(k+1)-edges, and D∗ 6' H for any directed hypergraph D of type τ . More precisely,
let H be the hypergraph such that |VH| = k + 1, |EH| > max{ℵ0, τk, τk+1} and
IH(e) = VH for e ∈ EH. Then hH(V H) = |EH| > (k + 1) · τk + τk+1. Now it is
remained to use Theorem 4.1.

Unfortunately, the condition in Theorem 4.1 is not sufficient. Let τ = (0, 1, 0, 0,
. . . ) and let H be the usual graph with VH = {v1, v2}, EH = {e1, e2, e3} and
IH(e1) = IH(e2) = {v1, v2}, IH(e3) = {v2}. Then hH

(
{v1, v2}

)
= 2, hH

(
{v1}

)
=

0 and hH
(
{v2}

)
= 1. Thus H and τ satisfy the inequality of Theorem 4.1. But,

there is not a directed hypergraph D of type τ such that D∗ ' H (note that D
would have to be a functional directed graph).

Proposition 4.2. Let a sequence τ = (τ0, τ1, τ2, . . .) and a hypergraph H be such
that hH(V ) ≤ τ|V | for each V ∈ Pfin(VH). Then there is a directed hypergraph D
of type τ such that D∗ ' H.

Proof. For any k ∈ N, let Hk be the weak subhypergraph of H consisting of
all vertices and all hyperedges with exactly k endpoints. Obviously the family
{Hk}k∈N satisfies (b.1) and (b.2) of Theorem 3.3.

Further, for any k ∈ N, there is a directed k-hypergraph Dk of k-type τk such
that Dk 'Hk. It follows from Remark 3.1(a), and the equality hHk(V ) = hH(V )
for any V ∈ Pk(VH) and k ∈ N. Hence and by Theorem 3.3, there is the desired
hypergraph D.

Let τ = (0, 1, 0, . . .) and H be the graph with two vertices v1, v2 and one
hyperedge e between them. Then hH

(
{v1, v2}

)
= 1 > τ2, but obviously there is

a directed hypergraph D of type τ (i.e. a functional directed graph) such that
D∗ = H. Thus the condition in Proposition 4.2 is not necessary.
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By Theorem 4.1 and Proposition 4.2 we immediate obtain the following result.

Proposition 4.3. Let H be a hypergraph, and let τ = (τ0, τ1, τ2, . . . ) be a sequence
such that

(∗) τk ≤ τk+1 for each k ∈ N,
(∗∗) there is m ∈ N such that τm = 0 for k ≤ m − 1 and τk ≥ ℵ0 for k ≥ m + 1.

Then there is a directed hypergraph D of type τ such that D∗ ' H iff hH(V ) ≤ τ|V |
for V ∈ Pfin(V H).

If τ does not satisfy (∗) or (∗∗), then there is k ∈ N such that τk > τk+1, or
τk, τk+1 < ℵ0 and τk ≥ 1. Hence, there is k ∈ N such that (k+1)·τk+τk+1 > τk+1.
Thus by the first example under Theorem 4.1, these assumptions cannot be weaker.
More formally, this example implies that if τ does not satisfy (∗) or (∗∗), then the
implication =⇒ is not true. Hence also, the sufficient condition in Proposition 4.2
is not necessary for any type τ which does not satisfy (∗) or (∗∗).

Take a sequence τ = (τ0, τ1, τ2, . . . ) of cardinal numbers. Then by Definition
2.1, Tk(τ ) ≥ Tk+1(τ ) for any k ∈ N \ {0}. Thus T(τ ) satisfies (∗) and (∗∗) of
Proposition 4.3 iff
(∗′) T0(τ ) ≤ T1(τ ),

(∗∗′) Tk(τ ) = Tk+1(τ ) ≥ ℵ0 for each k ∈ N \ {0}.
Hence and by Theorem 2.2, if T(τ ) satisfies (∗′) and (∗∗′), then for a hypergraph
H, there is an algebraic hypergraph G of type τ such that G∗∗ ' H iff hH(V ) ≤
T|V |(τ ) for all V ∈ Pfin(VH).

If T(τ ) satisfies (∗′) and (∗∗′), then we have two cases (c.1): Tk(τ ) > ℵ0 for each
k ∈ N \ {0}, or (c.2): Tk(τ ) = ℵ0 for each k ∈ N \ {0}. Moreover, it is well-known
that if Tk(τ ) =

∑
m≥k τm · s(m, k) > ℵ0, then Tk(τ ) = sup{τk, τk+1, . . .}. Thus

T(τ ) satisfies (∗′) and (∗∗′) iff one from the following two facts hold (the first for
the case (c.1); and the second for (c.2))

(h.1) sup{τm : m ∈ N}> ℵ0 and τk ≤ sup{τm : m ≥ k + 1} for each k ∈ N;
then Tk(τ ) = sup{τm : m ≥ k} = sup{τm : m ∈ N} for k ∈ N \ {0}.

(h.2)
∣∣{m ∈ N : τm 6= 0}

∣∣ = ℵ0 and sup{τm : m ∈ N} ≤ ℵ0;
then Tk(τ ) = ℵ0 for k ∈ N \ {0}.

Thus we obtain

Proposition 4.4. Let H be a hypergraph, and let τ = (τ0, τ1, τ2, . . . ) be a sequence
such that

sup{τm : m ∈ N}> ℵ0 and τk ≤ sup{τm : m ≥ k + 1} for each k ∈ N
or ∣∣{m ∈ N : τm 6= 0}

∣∣ = ℵ0 and sup{τm : m ∈ N} ≤ ℵ0 .

Then there is an algebraic hypergraph G of type τ such that G∗∗ ' H iff hH(V ) ≤
sup{τm : m ∈ N} for any V ∈ Pfin(VH).

Corollary 4.5. Let H be a hypergraph, and let a sequence of non-negative integers
τ contain infinitely many non-zero elements (i.e. τ ∈ NN \NNf). Then there is an
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algebraic hypergraph G of type τ such that G∗∗ ' H iff hH(V ) ≤ sup{τm : m ∈ N}
for any V ∈ Pfin(VH).

Unfortunately, for each type τ ∈ NNf , T(τ ) does not satisfy (∗′), (∗∗′). There are
also sequences τ 6∈ NNf such that T(τ ) does not satisfy (∗′), (∗∗′); for instance,
τ = (0,ℵ0, 0, 0, . . .), then T(τ ) = τ .

5.

Now we translate hypergraph results onto the lattice language, and thus we
obtain one necessary (but not sufficient) condition and one sufficient (but not
necessary) condition for lattices that are isomorphic to the weak subalgebra lattice
of a partial algebra of a fixed type. Next, we completely characterize the weak
subalgebra lattice of a partial algebra of a fixed type, but only for special types.

By Corollary 2.4, Theorem 4.1 and the definition of U(L) (see Definition 3.17
in [9]) we obtain

Theorem 5.1. Let L be a lattice isomorphic to the weak subalgebra lattice of a
partial algebra of type 〈K,κ〉. Then for B ∈ Pfin

(
A(L)

)
,∣∣{i ∈ I(L) : A(i) = B}

∣∣ ≤ |B| · T|B|−1(K,κ) + T|B|(K,κ) .

If T|B|−1(K,κ) ≥ ℵ0 or T|B|(K,κ) ≥ ℵ0, then∣∣{i ∈ I(L) : A(i) = B}
∣∣ ≤ max

{
T|B|−1(K,κ), T|B|(K,κ)

}
.

Let 〈K,κ〉 be an arbitrary algebra type and k ∈ N.
Take pairwise disjoint sets V , E0, E1, . . . , Ek, Ek+1 such that |V | = k + 1 and

|Ei| = Tk(K,κ) for i = 0, . . . , k, and |Ek+1| = Tk+1(K,κ). Let L = 〈L,≤L〉 be
the sublattice of the powerset lattice of V ∪ E0 ∪ . . .∪Ek+1 such that L =

{
B ∈

P (V ∪ E0 ∪ . . . ∪ Ek+1) : B ⊆ V or V ⊆ B
}

. Then A(L) =
{
{v} : v ∈ V

}
and I(L) =

{
V ∪ {e} : e ∈ E0 ∪ E1 ∪ . . . ∪ Ek+1

}
. Thus L satisfies (W.1)–

(W.4), and U(L) is isomorphic to the hypergraph D∗ from the first example under
Theorem 4.1 (where we replace τ by T(K,κ)). Hence and by Corollary 2.4, there
is A ∈ PAlg(K,κ) such that Sw(A) ' L. Further,

∣∣{i ∈ I(L) : A(i) = A(L)
}∣∣ =

|E0∪ . . .∪Ek∪Ek+1| = (k+ 1) ·Tk(K,κ) +Tk+1(K,κ), since E0, E1, . . . , Ek+1 are
pairwise disjoint. Thus a stronger inequality than in Theorem 5.1 does not hold.

We can also construct a lattice L such that L satisfies (W.1)–(W.4), and each
non-zero and non-atomic join-irreducible element of L contains k + 1 atoms, and
L 6' Sw(A) for all partial algebra A of type 〈K,κ〉. Take disjoint sets V , W such
that |V | = k + 1 and |W | > max

{
ℵ0, Tk(K,κ), Tk+1(K,κ)

}
. Let L = 〈L,≤L〉 be

the sublattice of the powerset lattice of V ∪W such that L =
{
B ∈ P (V ∪W ) :

B ⊆ V or V ⊆ B}. Then A(L) =
{
{v} : v ∈ V

}
, I(L) =

{
V ∪ {w} : w ∈ W

}
,

A(i) = A(L) for i ∈ I(L). Hence, L satisfies (W.1)–(W.4), and
∣∣{i ∈ I(L) :

A(i) = A(L)}
∣∣ =

∣∣I(L)
∣∣ = |W | >

∣∣A(L)
∣∣ · Tk(K,κ) + Tk+1(K,κ). Thus by

Theorem 5.1, there is not A ∈ PAlg(K,κ) such that L ' Sw(A).
Let 〈K,κ〉 be a monounary type (i.e. K = {k} and κ(k) = 1) and let L be the

sublattice of the powerset lattice of {0, 1, 2, 3, 4} generated by
{
{0}, {1}, {0, 1,2},
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{0, 1, 3}, {1, 4}
}
. Then A(L) =

{
{0}, {1}

}
and I(L) =

{
{0, 1, 2}, {0, 1,3},{1, 4}

}
.

Hence, L satisfies (W.1)–(W.4), and it easily follows that L and T(K,κ) satisfy the
inequality of Theorem 5.1, because T(K,κ) = (0, 1, 0, 0, . . .). Hence also, U(L)
is isomorphic to the graph H from the example before Proposition 4.2 (where τ
should be replaced by T(K,κ)). Thus by Corollary 2.4, L 6' Sw(A) for each partial
algebra A of type 〈K,κ〉. Thus the condition in Theorem 5.1 is not sufficient in
general.

By Corollary 2.4 and Proposition 4.2 we also obtain

Proposition 5.2. Let 〈K,κ〉 be any type, and let a lattice L satisfy (W.1)–(W.4),
and

∣∣{i ∈ I(L) : A(i) = B}
∣∣ ≤ T|B|(K,κ) for each B ∈ Pfin

(
A(L)

)
. Then there is

A ∈ PAlg(K,κ) such that L ' Sw(A).

Let 〈K,κ〉 be a monounary type and L be the lattice of subsets
{
∅, {0}, {1},

{0, 1}, {0, 1, 2}
}

with set-inclusion. ThenA(L)=
{
{0}, {1}

}
and I(L)=

{
{0, 1, 2}

}
.

Hence, L satisfies (W.1)–(W.4) and
∣∣{i ∈ I(L) : A(i)={{0}, {1}}

}∣∣= ∣∣{{0, 1, 2}}∣∣
= 1 > 0 = T2(K,κ). Hence also, U(L) is isomorphic to the hypergraph H from the
example before Proposition 4.3. (where τ should be replaced by T(K,κ)). Thus
by Corollary 2.4, there is A ∈ PAlg(K,κ) such that Sw(A) ' L. This example
shows that the condition in Proposition 5.2 is not necessary.

By Corollary 2.4, Proposition 4.3, if 〈K,κ〉 is a type such that T(K,κ) satisfies
(∗′) and (∗∗′), then for any lattice L satisfying (W.1)–(W.4), there is a partial
algebra A of type 〈K,κ〉 such that Sw(A) ' L iff

∣∣{i ∈ I(L) : A(i) = B}
∣∣ ≤

T|B|(K,κ) for B ∈ Pfin

(
A(L)

)
.

By (h.1) and (h.2) (because K =
⋃
m∈N κ

−1(m), and obviously for pairwise dis-
joint sets B0, B1, B2, . . . , if sup

{
|B0|, |B1|, . . .

}
≥ ℵ0, then sup

{
|B0|, |B1|, . . .

}
=∣∣⋃

n∈NBn
∣∣) we obtain that for any type 〈K,κ〉, T(K,κ) satisfies (∗′) and (∗∗′) iff

one from the following two conditions hold:

(a.1) |K| > ℵ0 and
∣∣κ−1(k)

∣∣ ≤ ∣∣κ−1({m ∈ N : m ≥ k + 1}
∣∣ for each k ∈ N,

(a.2) |K| = ℵ0 and
∣∣{m ∈ N : κ−1(m) 6= ∅}

∣∣ = ℵ0.
In both cases Tk(K,κ) = |K| for any k ∈ N \ {0}.

Thus we obtain

Proposition 5.3. Let L be a lattice satisfying (W.1)–(W.4), and let 〈K,κ〉 be a
type such that

|K| > ℵ0 and
∣∣κ−1(k)

∣∣ ≤ ∣∣κ−1
(
{m ∈ N : m ≥ k + 1}

)∣∣ for each k ∈ N
or
|K| = ℵ0 and

∣∣{m ∈ N : κ−1(m) 6= ∅}
∣∣ = ℵ0 .

Then there is A∈PAlg(K,κ) such that Sw(A)'L iff
∣∣{i ∈ I(L) : A(i) = B

}∣∣ ≤
|K| for B∈Pfin

(
A(L)

)
.

Corollary 5.4. Let L be a lattice satisfying (W.1)–(W.4), and let 〈K,κ〉 be a type
such that

|K| = ℵ0 and
∣∣κ−1(i)

∣∣ < ℵ0 for each i ∈ N .
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Then there is A∈PAlg(K,κ) such that Sw(A)'L iff
∣∣{i ∈ I(L) : A(i) = B

}∣∣ ≤
|K| for B∈Pfin

(
A(L)

)
.

The above results give only partial solutions of our algebraic problem, because
many algebra types do not satisfy (∗′) and (∗∗′). More precisely, for any finite type
〈K,κ〉, T(K,κ) does not satisfy these conditions (see Definition 2.1). Moreover,
there are also infinite types 〈K,κ〉 such that T(K,κ) does not satisfy these two
conditions; for instance, take a countable unary type 〈K,κ〉, then T(K,κ) =
(0,ℵ0, 0, 0, . . .).

Finally, we characterize the weak subalgebra lattice for nullary types 〈K,κ〉 (i.e.
κ(K) ⊆ {0}).
Proposition 5.5. Let L be a lattice satisfying (W.1)–(W.4), and 〈K,κ〉 a nullary
type. Then there is A ∈ PAlg(K,κ) such that Sw(A) ' L iff

∣∣I(L)
∣∣ ≤ |K| and∣∣A(i)

∣∣ = 1 for each i ∈ I(L).

Proof. By Corollary 2.4, there is A ∈ PAlg(K,κ) such that Sw(A) ' L iff L
is a lattice satisfying (W.1)–(W.4), and there is a directed hypergraph D of type
T(K,κ) such that D∗ ' U(L).

Since T0(K,κ) = |K| and Ti(K,κ) = 0 for i ≥ 1, there is a directed hypergraph
D of type T(K,κ) such that D∗ ' U(L) iff U(L) is a 1-hypergraph, and there
is a directed 0-hypergraph D of 0-type |K| such that D∗ ' U(L). Hence and
by Remark 3.1(b), there is A ∈ PAlg(K,κ) such that Sw(A) ' L iff L satisfies
(W.1)–(W.4), U(L) is a 1-hypergraph, and

∣∣I(L)
∣∣ =

∣∣EU(L)
∣∣ ≤ |K|. Further,

U(L) is a 1-hypergraph iff
∣∣A(i)

∣∣ = 1 for i ∈ I(L).
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[2] Bartol, W., Rosselló, F., Rudak, L., Lectures on Algebras, Equations and Partiality, Tech-

nical report B–006, Univ. Illes Balears, Dept. Ciencies Mat. Inf., ed. Rosselló F., 1992.
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[9] Pióro, K., On connections between hypergraphs and algebras, Arch. Math. (Brno) 36

(2000), 45–60.

Institute of Mathematics, Warsaw University

ul. Banacha 2, PL-02-097 Warsaw
POLAND

E-mail: kpioro@mimuw.edu.pl


		webmaster@dml.cz
	2012-05-10T14:24:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




