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ON SOLVABILITY OF NONLINEAR BOUNDARY VALUE
PROBLEMS FOR THE EQUATION (2’ + g(t,z,2')) = f(t,z,2')
WITH ONE-SIDED GROWTH RESTRICTIONS ON f

SVATOSLAV STANEK

ABSTRACT. We consider boundary value problems for second order differen-

tial equations of the form (z’ + g(t,z,2"))’ = f(¢,z,z’) with the boundary
conditions r(x(0),z’(0),z(T)) + ¢(z) = 0, w(x(0),z(T),z'(T)) + ¢¥(z) = 0,
where g, r, w are continuous functions, f satisfies the local Carathéodory con-

ditions and ¢, 1) are continuous and nondecreasing functionals. Existence

results are proved by the method of lower and upper functions and applying

the degree theory for a-condensing operators.

1. INTRODUCTION, NOTATION

Let J = [0,7] be a compact interval and let ||z| = max{|z(t)| : ¢ € J},
|z, = fOT |z(t)| dt and ||(x, a,b)|lo = ||| + |a| + %|b| be the norm in the Banach
spaces C°(J), Ly(J) and C°(J) x R?, respectively.

Denote by C the set of all functionals ¢ : C°(J) — R which are

a) continuous and

b) nondecreasing, that is, z,y € C°(J), z(t) < y(t) for t € J = p(x) < p(y).

Consider the boundary value problem (BVP for short)

(1) (@'(t) + g(t, x(t),2'(1))) = f(t,2(t),2'(t)) ,
(2) r(z(0),2'(0), 2(T)) + ¢(x) = 0,
(3) w(@(0),2(T),2'(T)) + ¢(x) =0,

where g € C9(J x R?), f satisfies the local Carathéodory conditions on J x R?,
rw e CO(R?) and ¢, 1) € C.
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We say that x € C1(J) is a solution of BVP (1)—(3) if 2/(t) + g(t, z(t), 2'(t)) is
absolutely continuous on J (AC(J) for short), (1) is satisfied for a.e. t € J and x
satisfies the boundary conditions (2) and (3).

There are many papers devoted to the consideration of existence results for sec-
ond order differential equations and functional differential equations with fully non-
linear two-point boundary conditions (see, e.g., [1], [3]-[8] and references therein).
Existence results are proved by a combination of the method of upper and lower
functions and methods for a priori bounds on the derivative of solutions. A priori
bounds on 2’ follow for instance if f satisfies either Bernstein-Nagumo growth
conditions with respect to the third variable ([1], [7], [8]) or one sided growth
restrictions ([3]-[5]) or only sign conditions ([6]). We observe that in [3]-[5], [7]
and [8] BVPs were also considered with boundary conditions (z(0),#(0)) € Qo,
(x(T),2'(T)) € Q1, where Qq, 1 are closed connected subsets of the plane.

In this paper we give existence results for BVP (1),(2). We shall show that
the existence of lower and upper functions of BVP (1),(2) together with some
conditions on g,r,w and one-sided growth restrictions on f guarantee a priori
estimates for the derivative of solutions. Existence results are then proved by
the Borsuk antipodal theorem and the Leray-Schauder degree for a-condensing
operators (see [2]). In our case a-condensing operators can be written in the form
K + L, where K is a compact operator and L is a strict contraction.

A function o € C1(J) is said to be a lower function of BVP (1)—(3) if o/ () +
g(t,a(t),a'(t)) € AC(J),

(o' (t) + g(t, at),d (t)) > f(t,at),d'(t)) forae.teJ

and
r(a(0),a/(0),a(T)) + p(a) > 0, w(a(0), T),a'(T)) + ¢b(cr) > 0.
Similarly, a function 8 € C*(J) is an upper function of BVP (1)—(3) if #(t) +
g(t, B(t), 3'(t)) € AC(J),
(B'(t) +g(t, B(1), B (1)) < f(t,B(t),5(t) forae tel

and

r(8(0),58(0), 3(T)) + ¢(B) < 0, w(B(0),3(T),5(T)) +¢(B) <0
For each «a, 3 € C°(J), a(t) < B(t) on J and each positive constant S, define
subsets A7 (a, §) and A5 (a, 8) of R® by
At (a,B) = {(t,z,9) = (t,2,y) € T x [a(t), B(1)] x [S, 00)},
Ag(a’lg) = {(t,x,y) : (t,x,y) €Jx [O‘(t)’ﬂ(t)] X (_OO’ _S]}
We say that w € C°(J) is the Nagumo-type function if

(i) w(u)>0foruekR
(il) w(—u) = w(u) for v € Rand w is nondecreasing on [0, o),

(iii) /OOO%ZOO

Throughout the paper we shall assume that the functions g, f,r,w and the
functionals ¢, 9 € C in (1)—(3) satisfy some of the following assumptions.
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(H;1) There exists a lower function o and an upper function § of BVP (1) — (3)
and
a(t) < B(t) forteJ;
(Hz2) g(t, alt),a'(t), g(t, B(t), 5'(t)) € AC(J);
(H3) There exist nonnegative constants m and k such that
ml +k<1

and
l9(t, z1,51) — g(t, @2, y2)| < mlz1 — 22| + kly1 — 32
for (¢t,x4,y;) € J x [a(t), B(t)] x R (i =1, 2);

(Hy4) 7 is nondecreasing in the second and third variables, w is nondecreasing
in the first variable and nonincreasing in the third one and there exists a
positive constant S,

S > max{|lo/,|5']]}

such that
r(z, =S, y)+¢(2) <0, r(x,S,y)+e(z) >0,
w(z,y,—9S) +¢¥(z) >0, w(x,y,S)+1v(z) <0
forall z,y € R |z] < A, |yl < A and z € C°J), a(t) < 2(t) < B(t) on J,

where

(4) A = max{{|all, [[B]]};

(Hs) There exist o; € {—1,1} (j = 1,2), a Nagumo-type function w and a non-
negative function h € Ly (J) such that

ojf(t,z,y) < (h(t) + |y))w(y)
for (t,z,y) € A;—g(a,ﬂ) and j =1,2.

By our assumptions, the function f satisfies the local Carathéodory conditions
on J x R?, and so from assumption (Hy) it follows that there exists a positive
function x € L;(J) such that

ot a(t). /(1) ottt )+ [ JGs.ats | < [ xcopds

t1
to

61, B062).5/ (1)) = gt Blea). 5 2)) + [ £(s 5.7 (6D ds] < [ xs) s

1
fOI‘OStl StQST
For each v,d € CO(J), v(t) < §(t) on J, a € J and n € N, define the truncation
operator Ay; 1 C°(J) — C°(J), the penalty operator p’s : C°(J) — Li(J) and
the function ¥7; : R — R by the formulas

5(t) i a(t) > ()
(Aysx)(t) = ¢ =) if () <z(t) <6(t)
(@) if x(t) <~(1),
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x(t) if z(t) >6(t) + 2
nx()(@(t) —o(t)) if o) < () < o(t) +5
(Phs)(t) = O it () <a(t) <o)
nx()(@(t) = (1) if (1) -5 < x(t) < 7(t)
—x(t) i a(t) <~(t) -5
and
0(a) if u>d(a)
(5) Wls(u) = { u if v(a) <u<é(a)
~(a) it u<~y(a).

If 7,6 € C1(J) then Ay : C(J) — AC(J) and lim (Ayszn) (£) = (Ase)(¢)
for a.e. t € J whenever z,,z € C*(J) and lim z,, = z in C(J) (see [9,

Lemma 2]).

2. LEMMAS

Let assumptions (Hy) and (Hz) be satisfied. Consider the auxiliary BVP
() + 29t (Bapn)(0),2'1)) ) = A (8 (D) (0, (Aapa) ()
(6)3 (1A ) Bl 1),
(M w(0) =901 51 (00) + 7 (Whs(@(0)),0/(0), WEs(2(T))) + p(Aas)),

(8" o(T) =W g1 (0T + w(Whs(2(0)), WE(a(T)), /(1)) + Y(Aage)
depending on the parameters A € [0,1] and n € N.

Lemma 1. Let assumptions (Hy) — (Hy) be satisfied and let x(t) be a solution of
BVP (6)% — (8)" for some A € (0,1] and n € N. Then

(9) alt) ~ = <alt) < B0+ for 1€
and
(10) (0)] <5, |(T)<S.

Proof. By (7)", (8)" and the definition of the functions W), ; and W1,
(1) a(0)~ = <#(0) < H0) + -, afT)~— <a(T) < BT) +
Let

(12) max{e(t) - B(t) s t € T} = a(€) - BE) > ~

n .
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Then (cf. (11)) £ € (0,T), and so /(£) = F'(€). In addition, z(t) — B(t) > L on
some interval [£,€ + €] (C J). Then (Aqpz)(t) = B(t), (Aapz)'(t) = F'(t) and
(phr)(t) = x(t) for t € [, + €. Hence (for t € (§,{ + ¢€])

# (1)~ F(1) = 2'(1) — (&) ~ B (1) + 5(©)
> (0= 1)(9l€, 5(E), 7€) — (1, 5(1), t/f

+A(g(t, B), (1) - g(t. B(1), @ m0+( +;)A@%m@w5

—(1=X s)ds — \k|F(t) — 2’ 1—X4+— t s)ds
>~ [ (@) ds =iz - 20+ (124 [
> —Mk|F'(t) — 2/ ()]
and
2 (t) = B (t)+ Nk|p'(t) — 2’ ()] >0 fort € (&&+¢].

From the last inequality we deduce that a/(t) > §'(t) for t € (§,£ + €], contrary to
(12).
Assume that

(13) min{z(t) — a(t) : t € J} = 2(r) — alr) < —% .

Then (cf. (11)) 7 € (0,T), and so N (1) = /(7). Moreover, there exists v €
(0, T — 7] such that x(t) —aft) < =L for t € [r,7 + v]. Hence (Aqpz)(t) = a(t),
(Aapz)'(t) = &/(t) and (pjz2)(t) = —x(t) for t € [7,7 + v], and consequently (for
te (r,7+v))

o/ (1) = /(1) = o/ (1) — /(1) = @' (1) + @/(7)
> (1= X)(g(r (). () =t a(0). () + [ f(s,als). /() d
+ A (slta(0.2'0) - g(t.a®.'0) = (1-2+7) [ Gpn)(s)ds
t 1 t

—(1— X s)ds — \k|o/(t) — 2 11—+~ s)ds
(1) [ xto)ds = €'~/ (12 1) [t

> —Mkld/(t) — 2/ (t)].

From the inequality o/(t) — 2’ (t) + Ak|a/(t) — 2/(t)| > 0 we conclude that o/ (t) >

2'(t) for t € (1,7 + v], contrary to (13).
It remains to verify (10). Assume that 2/(0) < —S Then (cf. (Hy))

(14) r(W5(2(0)),2/(0), WE5((T))) + ¢(Aasa) <0,
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and consequently (cf. (7)") z(0) = a(0) — L. Then (cf. (9)) 2/(0) > o/(0), which
yields

0 < r(a(0), '(0), a(T)) + () = (W5 5((0)), &(0), a(T)) + (@)
< r(W85(2(0)), 2'(0), WEs((T))) + p(Aasa),
contrary to (14). If 2/(0) > S then (cf. (Hy))
(15) r(W55((0)), 2/(0), \Ifzﬂ(x(T))) +@(Bapr) >0,
and consequently (cf. (7)") z(0) = 3(0) + L. Hence (cf. (9)) 2/(0) < 3'(0) and
0= 7(8(0), (0, B(T)) + 2(8) = r(W(2(0)), 8'(0), B(T) ) + (3)
> 1(00,5(2(0)), 2'(0), W15 (2(T)) + (Dasa)

contrary to (15).
Assume 2/(T) < —S. Then (cf. (Ha))

(16) w(W5(2(0)), Whs(@(T)), /(1)) + ¥(Aapz) > 0.

Therefore (cf. (8)") z(T) = B(T) + = and 2/(T) > B/(T) by (9). Hence

0> w(B(0), A(T), (1) +(8) = w(B(0), W5 (+(T)), F'(T) ) + :(9)
> w(W05((0)), W24(x(1)), /(1)) + (Basz)

contrary to (16). If #/(T) > S then

(17) w(W05(2(0)), WEs((T)),&/(T)) + ¥(Aasz) < 0.

by(Hy) and (cf. (8)") 2(T) = o(T) — L. Then (cf. (9)) #/(T) < o/(T) and

(a(0), WEs(a(1)), /(7)) + (@)

< w (W05 (2(0)), Whs(@(T)), /(1)) + ¥(Aapa),

contrary to (17). O

3 (
0 < w(a(0),a(T),a(T)) + Y(a) = w(

IN

Lemma 2. Let assumptions (Hy) — (Hs) be satisfied and xz(t) be a solution of
BVP (6)% — (8)™ for some A € (0,1] and n € N. Let P be a positive constant
satisfying the inequality

P
du 1 2||X||L1
— 2A + 2
S+24

where
A = max{|g(t,u,v)| : (t,u,v) € J x [a(t), B(t)] x [-S,S]}.
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Then x(t) satisfies (9) and

(19) |z'|| < P.

In addition, for each € > 0 there exists § > 0 independent of n and \ such that
|2/ (t1) — 2’ (t2)| < &

whenever t1,ta € J, [t1 — ta] < 4.

Proof. Let w, € C°(J) be defined by

w(utd) for uw>A
(20) wi(u) = ¢ w(ZL) for Ju| <A
w(ﬁ) for u<-—A.

Then w, is nondecreasing on [—A, 00), w.(—u) = wy(u) for v € Rand
(21) w(u) = we((1 — k)u — Asignu) for u€R.
By Lemma 1, inequalities (9) are satisfied. Set
g(t) = /(1) + )\g(t, (Aagx)(t),x/(t)) for te.J.
Observe that |2/(t9)| < S for some ¢y € J implies
(22) la(to)] < 1a'(t0) | + |9 (to, (Base) (to). (1) | < 5 + 4.

From the inequalities (cf. (H3))

9(t (Bas)®.2'®)| < Jo(t (Bas2)®).2'(®)) = g(t (Bapa) (8),0)|

+ |o(t (Basz)(®),0)]

< klz'(t)| + A
for t € J we see that
(23) qit) > 2'(t) —ka'(t) —A=(1-k)2'(t) - A
whenever 2/(t) > 0 and
(24) qt) <2'(t) —ka’(t) + A= (1—-k)2'(t)+ A
whenever 2/(¢) < 0. Hence
(25) we((1 = k)2’ (t) — A) < wi(q(t)) if 2'(t) >0
and
(26) we((L=K)2'(t) + A) <wilq(t)) if 2'(t) <0.

Assume that [|2']] = |2/(£)] > S. By Lemma 1, (10) holds, and so £ € (0,7T).
We first assume that 2/(£) > S. Then there exist (cf. (10)) 7 and 72, 0 < 71 <
& < 1 < T such that

2 (m) =8 =2/ (r)
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and
S <2(t)<2'(&) forte[m,m].
Hence (cf. (Hs), (21) and (25))

71(6) = A1 (1, (Bap)(0), (Bpa) (1)) + o1 (1= A+ = ) (o2 1)
< (h(t) + (1)) (2 () + 2x(¢)
< (M(t) + 2/ (1) Jwa (1 = K)2'(2) — A) + 2x(1)

< (h(t) + 2 (1)ws(q(t)) + 2x(¢)
for a.e. t € [11,72]. If 01 = 1 then (cf. (9) and (27))

a(&) 3 €
a _ | q) o+ 20
/&Mw‘/Qmm»ﬁS/@@+ 0+ )

2||xllz,
w4 (0)

and since |q(m1)| < S+ A by (22) with to = 71 and ¢(§) > (1 —k)||z’|| — A by (23)
with ¢t = £, we have

<|hllL, +2A+ 2+

(1-K)||z’||-A J q(&) J 2|
U u X Ly
2 < < 2N +2 4 —— 1
28) =B o e L DR Sy
S+A q(m1)
If 01 = —1 then (cf. (9) and (27))
4(5) d T2 /(t) T2 9 (t)
U q / X
[ dt < / h(t) + x'(t) + dt
| 5=/ S = o+ ro+ 2)
q(12) 13 13
2
< |Ih|lp, +2A +2+ Iz,
wy(0)
and using the inequalities |g(2)] < S + A, ¢(§) > (1 — k)||2/|| — A, we have
(1=K)||z’||-A q(&) p 2|
U u X Ly
29 < < ||h 2N 42 .
(29) | o | s s Sl
S+A q(m2)

Let 2/(§) < —S. Then there exist (cf. (10)) 14 and 12, 0 < 11 < E <1 < T
such that

(1) =-S5 =12 ()
and
—S >4 (t) >2'(€) for tev,v.
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Hence (cf. (Hs), (21) and (26))
920/ (1) = 32 (1 (Bag) (1), (D) (1) +02(1 = A4 2 ) (i) (1)
< (ht) — o' (0)(a’ (1)) +2x(1)
< (ht) — o' (1) (1 — R)a'(1) + A) + 2x(0)
< (h(t) — /() (a0) + 211

for a.e. t € [v1,v2]. If 03 =1 then

q(VQ) 12 Vo

du a0 . ()
/ we(u) / wx(q(t)) dt < /(h(t) (t) + w*(q(t))) dt
q(&) I3 :
< |Ihllz, +2A+2+ 2||X(|l)[51
and
(30) —5-A du < q72) du < ||hHL +2A+ 9 AXllzy 2||X||L1
wy(u) — ws(u) 1 ™0
—(1-k)||=’|+A A

since |q(v2)] < S + A by (22) with 9 = vo and (cf. (24) with ¢ = &) ¢(§) <
—(1=Fk)||«'|| + A. If 02 = —1 then

—S—A q(r1) /(t)
q
y = dt
T ) w(u /w*(Q(t))
_(1_k)”$/‘|+A q(&) V1
¢
2x(1) 2lx]lz,
o S/” dt < ||hllz, +2A+2+ :
(31) ( + Dty 4 < I s
Since
/—S—A du _/<1—k>|z/||—A du
—(1=k) o’ +4 Wx (1) S+A wy(u)
and (cf. (18) and (20))
(A-k)P=A " 1, 1-KP-A 4. p du
J L e
S+A Wy () S+A w(aE) si21 (u)
2lxllz, 2|Ixllz,
2A 42 > 2A + 2
> |[hllL, +2A 424+ =52 o(0) k||, + 2A + 2 + AL O

we see that (28)-(31) imply (19).
Fix e > 0 and let ¢ € Ly(J) be defined by

o(t) = sup{|f(t,u,v)| : (u,v) € [-A,A] x [-P,P]} forae te.J.
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From the continuity of g, the inequality |(pgs7)(t)| < x(t) for a.e. ¢t € J and
0 € Li(J) we see that there exists & > 0 such that

lg(t1,u,0) = g(ta,u,0)| < 5(14_ 2, /:(pgﬁx)(t) at| < SL=F)
and .
/t ot) dt‘ < 5(14— k)

whenever t,t3 € J, |t1 — t2| < 01 and (u,v) € [-A, A] X [-P, P]. Set

o= min{on, 00

(for m and k see (Hs)). Then for any t1,ts € J, |[t1 — t2| < 8, we have
@'(t2) = &/ (t2)] < |9 (11, (Baga) (), 2/ (1)) = 9(t2, (Bage)(t2), 4/ (22) )|

_|_

/ (50 (Bap) (61, (Aapa) () ds| +2] [ f?p’;ﬁx)(s) ds|
< Jo(tr, (Qap)(t). 2'(8)) = 9(t2, (Aap)(0),2'(1) )|
+ Jo(t2r (Aas@)t0),2'(1)) = g (t2: (Bape) (t2), 2/ (12)) |

/:2 o(s) ds‘ + 5(14_ k)

_|_

B | (@) (10) — (g 1)

e(1—k)
2

IN

+ k|2’ (t1) — 2’ (t2)| +
< 3e(1—k)
- 4
3e(1—k)

4
<e(l—k)+ kl2'(t1) — 2 (t2)|
which yields |z/(t1) — 2/ (t2)] < e. O

+mlz(ty) — x(t2)| + klz'(t1) — 2/ (t2)]

IN

+ mPlty — to| + k|2’ (t1) — 2/ (t2)]

Lemma 3. Let assumptions (Hy) and (Hz) be satisfied, n € N and A be defined

by (4). Set

Qo = {(m,a,b) . (x,a,b) € COJ) x R?, ||lz|| < E+8|x||z, +C,
(32) lal < B+ 4lixllz, + D, ol < A+2},
where

(33 B = max{o(T) ~ 5(0) ~ 2], [3(T) ~ a(0) + 2|}
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and C, D are positive constants. Let

KZQQHCO(J)XRQ,

a+ (1+ %) /()t(pgﬁ(/(Jux(T)dT+b))(s)ds,

atb—V0_, . <b+ T(Wgﬁ(b),x(()), qjgﬁ(/oTx(s) ds + b))

30 o[ st ae1))).
20 + /OTx(S) ds — \Pg—%,ﬂ-t,-% </0Tx(s) ds+b

+w \Ilg[,(b),\llgﬁ Tx(s) ds+b),z(T)) + ¢ (Aap tx(s) ds+b .
0 0

Then
(35) D(I - ]C,Qo,o) 7& 05

where “D” stands for the Leray-Schauder degree and I is the identity operator on
Co(J) x R?.

Proof. )y is an open, bounded and symmetric with respect to 0 subset of the
Banach space C°(.J) x R?. Let

Z:00,1] x Qo — C°(J) x R?,

a—|—(1+%)/(Jt(pgﬁ(/()ux(T)dT—Fb))(s)ds
(14 2) [ ool [ atrar—o))eas

atb— A, s <b+r(\lfgﬂ(b),x(0),\I’gﬁ(/oTx(s) ds+b))

+<p(Aa[,(/Otx(s)ds+b))>, 2b+/0

+ w(\pgﬁ(b),wgﬁ(/:x(s) ds+b).2(T)) + ¢(Aa[3(/0tx(s) ds + b)))]

Then Z(0, -z, —a, —b) = —Z(0,x, a,b) for (z,a,b) € Qp, and so Z(0,) is an odd
operator.

K(z,a,b) =

Z(\,x,a,b) =

T T
x(s)ds—/\\lfg_%)m_% </0 x(s)ds+b



140 S. STANEK

Z is easily checked to be continuous. Let {(N\;,z;,a;,b;)} C [0,1] x Q9. Then

v

‘aj + (1—|— %) /Ot(pgﬁ(/o x;(7) d7’—|—bj)>(s) ds

- (1—Aj)(1+%)/Ot(pg[,(—/ouxj(f)dr—bj))(s)ds\ < E+8|x|l, + D,

Gl [ wrarn))ras—a-n) [ (- [ asmrar—))eas

1

ta
/ x(s) ds‘
t1
T
aj + bj - /\j\Ijg—%,ﬂ-‘r% <bJ + T(\Pgﬂ(bj),l‘j(()),\ygﬁ(/o $J(S) ds + bj)>

o{dus( [ 0 1) )

T T
2bj+/ zj(s) ds—)\j\Ilg_Lm_i </ x;i(s) ds—l—bj—kw(\llgﬁ(bj),
0 mor\Jo

\Ilgﬁ(/Oij(s) ds —I—bj),xj(T)) + w(Aaﬁ(/Ot xj(s)ds —I-bj))) ‘

<3A+T(E+8|x|lz, +C)+5

for 7 € N. By the Arzela-Ascoli theorem and the Bolzano-Weierstrass theorem
{Z(A\j,x;,a;,b;)} is relatively compact. Hence Z is a compact operator.
Assume that Z(/\Q,J,‘Q,ao,bo) = (Io,ao,bo) for some ()\Q,Z‘Q,ao,bo) S [O, 1] X

ta

<2

for t,t1,t2 € J, 7 € Nand

<E+4|x||, +2A+ D +3,

0. Then
2o(t) = ap + (1 + %) /Ot(pzﬁ(/ou xo(T) d7’—|—b0)>(s) ds
(36) t v
_(1—>\0)(1+%)/0 (pgﬁ(—/o ro(r) dr — o) ) (s) ds
for t € J,

T
by = /\0‘1’2[_;[”; <bo + T(\Ilgzﬁ(bO)vIO(O)vqjgﬁ (/ wo(s)ds + bo))
ER 0

+<P(Aaﬁ(/0tx0(5) d5+bo)>> ,

(37)
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T T
b0—|—/0 $0($)d5=>\0\112_%’ﬂ+%</0 zo(s)ds + by

(38) n w(\Pgﬁ(bg), quﬁ( /O ! 2o(s) ds + bo) , xO(T))

+¢(Aaﬁ(/0txo(s) ds +b0)>> .

From the definition of ¥¢ 37) and (38) it follows that

—mBtn (
1 1
a(0) = — < b < B(0) + —,
n n
(39)

T
a(T)—lszw/ vo(s) ds < B(T) + %,
n 0

and consequently

a(T)~5(0)~= < a(T)~bo -

T
< [Fane)ds < 1) ~tt 3 < B(T)-a(0)+ 2.

n

S|

Since fOT 20(8) ds = xo(e)T for some € € J, we have
o(T) = B(0) — 2 B(T) — a(0) + 2
T T
and |zo(e)| < E. Applying the last inequality and the inequality |(p,52)()| < x(?)
which is satisfied for each z € C%(J) and a.e. t € J to (36), we have

<xo(e) <

(40) lao| < zo(e)| +4llxllL, < E +4llxl|z, ,
and consequently
(41) [zo(t)] < laol +4llx[lz, < E+ 8[|z, forte J.

From (39) — (41) we deduce that (xg, ag, bo) & 9, a contradiction.
Hence D(I — Z(0, ), ,0) # 0 by the antipodal Borsuk theorem and

D(I - 2(17 ')7 QO) O) = D(I - Z(O7 ')7 QO) O) )
by the homotopy. (35) now follows from the equality Z(1,-) = K. O

Lemma 4. Let assumptions (Hy) — (Hs) be satisfied. Then for each n € N, BVP
(6)7 — (8)™ has a solution x(t) satisfying inequalities (9) and (19).

Proof. Fix n € N. Let P be a positive constant satisfying inequality (18) and the
constant F be given by (33). Set

U = max{|g(t,z,y)|: (t,z,y) € J x [-A,A] x [-P, P]},

Q@ = {@ab): (@ab)eC) xR 2] < E+8|x|w, + P,

lal < B+ 4lxlz, + P+ U b < A+ 2}
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Let the operators
W, S:[0,1] x @ — C°(J) x R?
be defined by the formulas
W, z,a,b) =

a—|—/\/0tf<s, (Aaﬁ(/()ux(T)dT—Fb))(S),(Aaﬂ(/()ux(T)dT—Fb))/(S))dS
—|—(1—/\—|—%)/Ot(pgﬁ(/oux(T)dT+b)>(s)d5,
atb—V0_, . <b+r( 0 5(b), 2(0), \yaﬁ(/T ()ds+b)>
+p(Baal [ aterds +0) ) 2b+/0Tx

T
_\Pg_Lﬁ_Arl(/ ()dS"‘b“rw
mrr\Jo

+¢(Aa5(/0t ds+b>
S(A,x,a,b)zA(—g(t,(Aag(/ d7+b)> ) )

Then W(0,-)+S(0,-) =
in ), and so

Tx ds—|—b x(T ))

/_\
l—lc\

and

IC, where K is defined by (34) (with C = P and D = P4+U

D(I - W(Oa ) - 8(07 ')7 an) 7é 0
by (35). If we verify that

(j) W is a compact operator,
(jj) there exists u € [0,1) such that
IS\, 21, a1,b01) — S(A, 22, a2,b2) [0 < pil| (21, a1,01) —
for (A, z;,a;,b;) €[0,1] x Q (i = 1,2), and
(437) WA, z,a,b) + S(\, x,a,b) # (x,a,b) for (A, z,a,b) € [0,1] x IN
then, by the homotopy theory for a-condensing operators,

(42) D(I —W(1,)) — S(1,-),9,0) £ 0.

It is easy to check that W is a continuous operator. To prove that W([0, 1] x Q)

is a relatively compact subset of the Banach space CO(J) x R?, let {(N\j,zj,a5,b5)}
C [0,1] x . Set

(x2,a2,b2)]o

Q = max{E + 8[x|z, + P, [I[|l, |16}
and

o(t) = sup{[f(t,z,y)| : (v,9) € [-A,A] x [-Q,Q]} forae tcJ.
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Then o € Ly (J) and
a+ /Otf<s, (Aaﬁ(/ou 2y(r)dr +1;) ) (5) (Aaﬁ(/ouxj(f)dwbj))/(s)) ds
+(1—AJ—+%)/Ot(pgﬁ(/ouxj(f)dwbj))(s)ds
" /tt f<s, (Aaﬁ(/ou 2y dr +1;) ) (s), (Aaﬁ(/ou xj(f)dwbj))/(s)) ds
#(ima2) [ [ o [ i [ aisa,

T
aj+bi =W, <bj—|—7’( 0 5(bs),5(0), wgﬁ(/o zi(s)ds+1;) )

(s ([ 2400 d5+bj))>

T T
2bj+/0 xj(s)ds—\l'g_%’m_% </0 xj(s)ds—l-bj—kw(\llgﬁ(bj),

\Ilgﬁ(/Oij(s) ds —I—bj),xj(T)) + w(Aaﬁ(/Ot xj(s)ds —I-bj))) ‘

<3A+T(E+8|xllz, + P)+5

for t,t1,t2 € J and n € N. By the Arzela-Ascoli theorem and the Bolzano-
Weierstrass theorem, {W(\;,z;,a;,b;)} is relatively compact, and consequently

W is a compact operator.
Since (cf. (Hs))

HS(/\axla ai, bl) - S()Hx% az, bQ)HO

<g(t, (Aag(/()uxl(s) ds + b1)>(t),x1(t))
_ g(t, (Aaﬁ(/ou a(s) ds + bQ))(t),xQ(t)),o,o>

[t (8es ([ w185 +0)) 0.200)
~a(t (Bs ([ 0 ds+b2)) :(0)]
gmH(Aaﬁ(/O” s)ds +b1) ) (1) (Aas /0 w2(s)ds + b))

< E+6|x|lL, +P+U+| oz, »

x;(7) d7’—|—bj)> (s)ds| <

<E+4xlle, +2A+P+U + 3,

= Al

0
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+ kllzy — z2|| < (mT + k)|lzy — 22|l + m[by — by
< (mT + E)|[(x1,a1,b1) — (22, a2,b2)]o

for (A, z,a:,b;) € [0,1] x Q (i = 1,2), we see that (jj) is satisfied with p =
ml + k< 1.
Assume that

W( Ao, o, ag, bo) + S(Xo, xo, ao, bo) = (o, ao, bo)
for some (Ao, xo, ag, bo) € [0,1] x 9. If Ay = 0 then (see the proof of Lemma 3)
lzoll < E+8xllL,, [aol < E+4lxl[z,, [bo] <A+1T.
Let Ao € (0,1]. Then the function

t
uo(t):/ zo(s)ds+by for teJ
0

is a solution of BVP (6)5, — (8)" since ug(0) = bo, uo(T) = [ wo(s)ds + bo,
up(0) = 2(0) and u((T) = zo(T). By Lemma 2,

1 1

alt) — — <wup(t) < pt)+— for telJ

n n

and ||zg]] < P. Hence
|bo| = |uo(0)] < A+1,
|ag| = [x0(0) + Xog(0, ¥P5(bo), 20(0))| < P+ U,

and consequently (g, ag,bp) € 92, a contradiction. We have verified that condi-

tions (j) — (jjj) are satisfied. By (42), there exists a fixed point of the operator
W(1,)+ 8(1,-), say (u,a,b). Set

t
x(t) :/ u(s)ds+b for teJ.
0
Then z(0) = b and z(T) = fOT u(s)ds + b, and so z(t) is a solution of BVP
(6)F — (8)™. By Lemma 2, x(t) satisfies inequalities (9) and (19). O
3. MAIN RESULTS

Theorem 1. Let assumptions (Hy) — (Hs) be satisfied. Then there exists a solu-
tion x(t) of BVP (1) — (3) satisfying the inequalities

(43) a(t) <z(t) < B) for teld.

Proof. By Lemma4, for each n € N there exists a solution z,,(t) of BVP (6)}—(8)"
such that

(44) alt) — % < 2(t) < B(1) +% for ted,

(45) sl < P,

where P satisfies (18). Consider the sequence {z,(t)}. By (44) and (45), {zn}
is bounded in C*(J) and Lemma 2 implies that {z/,(¢)} is equicontinuous on J.
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Going if necessary to a subsequence, we can assume that {z,} is converging in
C(J), say lim,, o ¥, = . Then (43) is satisfied and ||2’|| < P. Taking the limit
in the equalities

20(t) = 21,(0) = gt (Bapwa) (1), () + (0. (Basza)(0).27,(0))

‘ !/ 1 i
[ 1 (50 (Basm) 9. B () ds-t - [ @) (s)ds.
2a(0) =04y <xn<o> 7 (W05 (0)), 27,(0), Whs(wa(T))) + w(Awm) ,

(1) =00 4 s <xn<T> w52 (0)), WLy (1)), (T)) + wmaﬁxn))

as n — 0o we have

(46) &'(t) = 2'(0) — g(t, 2(), 2'()) + g(0, 2(0 / f(s,(
for t € J and

(47) 2(0) = W05 ((0) + r((0),2/(0), 2(T)) + p(x))
(48) #(T) = Wy (2(T) + w(@(0), 2(T), #/(T)) + (x)) .

We see that (cf. (46)) that z(¢) is a solution of (1) on J. It remains to prove that
(47) and (48) imply satisfying the boundary conditions (2) and (3).
Assume that z(0) + r(x(0),2'(0),z(T)) + ¢(x) < «(0). By (47), z(0) = «(0)

and so
(49) r(z(0),2'(0),z(T)) + ¢(z) < 0.
From (43) we conclude that 2/(0) > o/(0), (T) > «(T) and p(x) > ¢(«). Thus
(cf. (Hy))

0 < r((0),a'(0), a(T)) + p(ax) < r(2(0),27(0), 2(T)) + (),
contrary to (49). If z(0) + r(z(0),2'(0),z(T)) + w(x) > B(0) then (cf. (47))
2(0) = 5(0) which yields
(50) r(z(0),2'(0),z(T)) + ¢(z) > 0.
On the other hand #/(0) < F/(0), z(T) < B(T) and p(z) < ¢(B) by (43), and
consequently (cf. (Hy))

0= r(B(0), 5'(0), 8(T)) + (B) = r(x(0),2'(0),2(T)) + ¢(z)

contrary to (50).
Let (T) 4+ w(x(0),2(T),2'(T)) + ¥(x) < a(T). We conclude from (48) that
2(T) = a(T); hence

(51) w(z(0),z(T), 2" (T)) +v(z) <0
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In addition (see (43)), #'(T) < &/(T), x(0) > «(0) and ¥(z) > (), and so

(T
0 < w(e(0),a(T),(T)) + 9p(a) < w(@(0), z(T), 2'(T)) + ¢(x),

contrary to (51). If 2(T) + w(z(0),z(T),2'(T)) + ¢¥(x) > B(T) then =(T) = 5(T)
which gives

(52) w(x(0), z(T),2'(T)) + (x) > 0.
From the inequalities ' (T') > 5/ (T), (0) < B(0) and ¥ (z) < ¢ (8) we deduce that
0> w(B(0),8(T), B(T)) + ¥(B) = w(z(0), z(T),2'(T)) + ¢ (),
contrary to (52). We have proved that
a(0) < z(0) + r(2(0),2(0),2(T)) + ¢(z) < B(0)
and
a(T) < x(T) + w(@(0),2(T),2(T)) + (x) < B(T).
(47) and (48) now show that x(t) satisfies (2) and (3). O

Corollary 1. Let assumptions (Hy) — (Hy) be satisfied. Suppose that there exists
a nonnegative function h € Ly (J) and a Nagumo-type function w such that at least
one of the following inequalities

(53) [tz y) < (h(t) + |y)w(y),
(54) [t xy) = —=(h(t) + |yDw(y)
(55) [tz y)signy < (h(t) + |y[)w(y)
and

(56) f(t,,y)signy > —(h(t) + ly)w(y)

is satisfied for a.e. t € J and each x € [a(t), 5(t)], y € (—o0, =S]U[S,00). Then
BVP (1) — (3) has a solution.

Proof. We see that assumption (Hs) is satisfied for (53) with o9 = 09 = 1, for (54)
with o1 = 09 = —1, for (55) with 01 = —09 = 1 and for (56) with o1 = —09 = —1.
Hence Corollary 1 follows from Theorem 1. |

Example 1. Consider BVP
(57) (J?/ + p(x) + q(l‘/))/ = fl (t7 €L, x/)x2l—1 + f2(t7 €L, J?/) + Uf3 (t7 €L, x/)(m/)n )

(58) 2'(0) + r1(z(0),z(T)) + max{z(t) : t € J} = 0,

T
(59) —2'(T) + wy (x(0), z(T)) +/O x(t) dt = 0,

where p,q € CO(R), f; : J x R* = R (i = 1,2,3) satisfy the local Carathéodory
conditions, I, n are positive integers, o € {—1,1}, r1,w; € C°(R?), 1 is nonde-
creasing in the second variable and w; is nondecreasing in the first variable.
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Suppose that there exist positive constants a, b and nonnegative constants m, k
such that mT + k < 1 and

a< filt,z,y) <b(L+y?), |folt,z,y) <b(1+y%), fa(t,z,y) >0,
Ip(z1) — p(a2)| < mlwy — z2f,  [g(y1) — q(y2)] < klyr — 32
for (t,z,y) € J x R?, z1,29 € [— 2 \1/:, Ry a} and y1,y2 € R Suppose also

I
ol e

We will show that Theorem 1 implies the existence of a solution of BVP (57) —
(59) We first observe that the functionals ¢(x) = max{z(t) : t € J} and ¢(x) =

fo t) dt belong to the set C. We next see that assumptions (Hz) is satisfied and

the constant functions
a=— 21_\1/E and (= 21_{/5
a a

are respectively upper and lower functions of BVP (57) — (59). Setting r(u, v, x) +

0(z) = v+ ri(u,z) + max{z(t) : t € J}, w(u,v,z) + ¥(z) = —z + wi(u,v) +
T

fO Z(t) dta

S1 = max{|ri(u,v)| : w,v € [, B]} + QZ_i/g
Sy = max{|wi (u,v)| : u,v € [o, B} + T * {/E

then assumption (H4) is satisfied with S > max{S,S2}. Assumption (Hs) is
satisfied with h(t) =1, w(u) = b(2 + 1)(1 + |u|) and

—0 if nis even
O’j = .

(=1Y0 if nis odd.
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