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ON THE POWERFULL PART OF n2 + 1

JAN-CHRISTOPH PUCHTA

Abstract. We show that n2 + 1 is powerfull for O(x2/5+ǫ) integers n ≤ x

at most, thus answering a question of P. Ribenboim.

The distribution of powerfull integers, i.e. integers such that every prime factor
occurs at least twice, is quiet obscure. In [4], P. Ribenboim posed the following
problem: Show that for almost all m, m4 − 1 is not powerfull. In his review, D.
R. Heath-Brown [2] pointed out that this and the more general statement, that
for every polynomial f , not powerfull as a polynomial, f(m) is not powerfull for
almost all m, can be obtained using a simple sieve. In fact, if n is powerfull
and p prime, n mod p2 is restricted to p2 − p + 1 residue classes. By a standard
application of the arithmetic large sieve one gets that the number N of m ≤ x such
that f(m) is powerfull is N ≪ x

log x . In this note we will use a diferent approach

to this problem to prove the following theorem. For an integer n we write P (n)
for the powerfull part of n, i.e. the product of all pk with k ≥ 2, where pk|n, but
pk+1 6 |n, ω(n) for the number of distinct prime divisors of n, and d+(n) for the
number of squarefree divisors of n.

Theorem 1. Let A and x be real numbers. Then there are at most cx2/5A4/5 logC x
integers n ≤ x, such that P (n2 + 1) > n2A−1 where C = 18730.

Choosing A = 2 resp. A = x2/3−ǫ we obtain the following statements.

Corollary 2. For almost all n we have P (n2 + 1) < n4/3+ǫ.

Corollary 3. There are ≪ x2/5 logC x integers m ≤ x such that m2 + 1 is pow-

erfull or twice a powerfull integer.

Note that lim sup P (n2+1)
n = ∞, thus the exponent 4/3 is not too bad. It seems

that the gap stems from the fact that the equation x2 + 1 = D · z3 considered in
Lemma 5 may very well have no integral solutions at all for many values of D.

To prove our theorem, we need some Lemmata. First we have to count solutions
of diophantine equations.
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Lemma 4. For any D, the equation x2 − Dy2 = −1 has ≤ 4 solutions with x, y
integers and X ≤ x ≤ 2X, X arbitrary real.

Proof. We may assume that D is not a perfect square, since for D = 1 there
are only the solutions x = 0, y = ±1, and for D > 1, x +

√
Dy would be a

rational integral divisor of -1. The solutions of the equation correspond to units
in Q(

√
D). If (x1, y1) is a minimal solution, all solutions are obtained by the

recursion xn+1 = xnx1 + Dyny1, yn+1 = x1yn + y1xn. We may assume that x1, y1

are positive, thus xn+1 > xnx1. Further we trivially have x1 ≥ 2, thus in every
interval of the form [X, 2X ], there is at most one solution with both variables
positive. Taking signs into account, the total number of solutions with xn ≤ X is
therefore ≤ 4.

Lemma 5. For any D, the equation x2 + 1 = Dz3 has c · d+(D)c0 solutions at

most, where c0 = 2 log 17+4 log 3
log 2 ≤ 14.6.

Proof. This is a special case of theorem 1 in [1], proven by J. H. Evertse and J.
H. Silverman. In their notation we have n = 3, d = 2, m = 1, L = Q(i), M = 2

and K3(L) = 0. We consider the equation x2+1
D = y3, which is integral at all

but ω(D) places, thus s = ω(D) + 1. Applying their theorem we obtain for the
number N of solutions the bound N ≤ 1714+2ω(D)34+4ω(D) ≪ (17234)ω(D). Since

d+(D) = 2ω(D), we get N ≪ d+(n)c0 , where c0 = 2 log 17+4 log 3
log 2 ≤ 14.6.

Note that the actual value of c0 is of lesser importance, since only the exponent
of the logarithm is concerned. In fact, we have C = 2c0 . Note further that we
can prove theorem 1 with a bound of x2/3A2/3 without appealing to the very deep
theorem of Evertse and Silverman.

Lemma 6. We have for any positive real number c the bound
∑

n≤x d(n)c ≪c

x log2c−1 x.

This was proven by C. Mardjanichvili [3].
Now we can prove theorem 1. Every integer k ≥ 2 can be written as a nonneg-

ative integral linear combination of 2 and 3, thus every powerfull number n can
be written as n = y2z3 with y, z integral. Thus every integer n can be written as
n = ay2z3 with y, z integral and a = n

P (n) . Thus to prove theorem 1, it suffices to

show that the equation

n2 + 1 = ay2z3(1)

has ≪ x2/5A2/5 logC x integral solutions with n ≤ x and a ≤ A. Now we count
the solutions within the range Y ≤ y < 2Y , B ≤ a < 2B and Z ≤ z < 2Z.

Fix a and z, and set D = az3. Now n is restricted to an interval of the form
[x, 8x], thus by lemma 4 there are ≪ 1 solutions of the equation n2 − Dy2 = −1
with these restrictions. Thus the total number of solutions is ≪ BZ.

Now we fix a and y, and set D = ay2. Then by lemma 5 the equation n2 + 1 =
Dz3 has ≪ d+(D)c0 solutions, where c0 is defined as above. We set c1 = 2c0 =
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23709. Thus the total number of solutions in this range is therefore bounded by

≪
∑

B≤a<2B

∑

Y ≤y≤2Y

d+(ay2)c0 ≤
∑

B≤a≤2B

d(a)c0

∑

Y ≤y<2Y

d(y)c0 .

Using Lemma 6 and replacing the occuring log-factors by log x, these sums are
≪ BY log2c1−2 x. With these two estimates we obtain for the total number N of
solutions the estimate

N ≪ log3 x max
Y,Z>1

B<A

AY 2Z3<x

min
(

BY log2c1−2 x, BZ
)

≪ log3 xmax
Y >1

min

(

AY log2c1−2 x, A

(

x2

AY 2

)1/3
)

≪ A4/5x2/5 log
4

5
(c1−1)+3 x

which gives the bound of theorem 1, since 4
5 (c1 − 1) + 3 = 18729.4.
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