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THE DIFFERENCE MATRICES OF THE CLASSES

OF A SHARMA–KAUSHIK PARTITION

BHU DEV SHARMA AND NORRIS SOOKOOAbstrat. Sharma-Kaushik partitions have been used to define distances between
vectors with n-coordinates. In this paper, “difference matrices” for the partitioning
classes have been introduced and investigated. It has been shown that the difference
matrices are circulant and that the entries of a product of matrices is an extended
intersection number of a distance scheme. The sum of the entries of each row or
columns of the product matrix has been obtained.
The algebra of matrices generated by the difference matrices of the classes of an

SK-partition have another natural basis. The relationship between these two bases
has been given.

1. Introduction

Sharma-Kaushik partitions were introduced by Sharma and Kaushik [10], who
defined matrics in terms of these partitions. Metrics so obtained were used in
the study of error-corresponding codes by Kaushik [3, 4, 5, 6, 7, 8], Sharma and
Dial [9] and Sharma and Kaushik [11]. Sharma and Kaushik [12] also studied the
algebra of Sharma-Kaushik partitions.

Matrices such as incidence matrices have proven useful in the study of graphs
and other combinatorial structures. In this paper, we introduce and study “differ-
ence matrices” for the classes of a Sharma-Kaushik partition.

In Section 2, we present definitions used in this paper. In Section 3, we prove
that difference matrices are circulant and that the entries of the product of dif-
ference matrices are extended intersection numbers of a distance scheme. We also
obtain the sum of the entries in each row or column. Section 5 is devoted to the
algebra of matrices generated by the set of difference matrices of the classes of a
Sharma-Kaushik partition.
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2. Definitions and notations

Delsarte’s [2] definition of association schemes, adopted by us, is as follows:

Definition. Given a set X with at least two elements, and a set of relations
R = {R0, R1, . . . , RN}, whereN is a positive integer, (X,R) is called an association
scheme if

1. R0 = {(x, x) | x ∈ X}.
2. For each i = 0, 1, . . . , N

R−1
i = {(y, x) | (x, y) ∈ Ri} ∈ R .

3. For any three integers i, j, k = 0, 1, . . . , N , there exists a number cijk such
that

∣

∣{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}
∣

∣ = cijk for any (x, y) ∈ Rk.

Also cijk = cjik.

In this paper, X shall be the ring of integers modulo q, q ≥ 2, i.e.,

X = Fq = {0, 1, . . . , q − 1}, addition (+) mod q .

SK-partitions, introduced by Sharma and Kaushik [7], are defined next.

Definition. Given Fq, q ≥ 2, a partition

P = {B0, B1, . . . , Bm−1}

of Fq is called an SK-partition if

1. B0 = {0}, and q − a ∈ Bi if a ∈ Bi, i = 1, 2, . . . ,m− 1.
2. If a ∈ Bi and b ∈ Bj , i, j = 0, 1,m . . . ,m − 1, and if j precedes i in the
order of the partition P , written as i > j, then

min{a, q − a} > min{b, q − b} .

3. If i > j (i, j = 0, 1, . . . ,m− 1) and i 6= m− 1, then

|Bi| > |Bj | and |Bm−1| >
1

2
|Bm−2| ,

where |Bi| stands for the size of the set Bi.
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Weight of an element with respect to an SK-partition P .

Given an SK-partition P of Fq , the weight WP (a) of any element a of Fq is
given by

Wp(a) = i , if a ∈ Bi , i = 0, 1, . . . ,m− 1 .
Also, if Fnq is the direct product of n copies of Fq and x = (x1, x2, . . . , xn) ∈ Fnq ,

then the weight of x with respect to P is given by

WP (x) =

n
∑

i=1

WP (xi) .

If y = (y1, y2, . . . , yn) ∈ Fnq , then the distance between x and y with respect to
P is given by

dP (x,y) =WP (x− y) .

Definition. Given an SK-partition P of Fq, let

Rd,n,P =
{

R
d,n,P
0 , R

d,n,P
1 , . . . , R

d,n,P
n(m−1)

}

,

where

R
d,n,P
i =

{

(x,y) ∈ (Fnq )2 | dP (x,y) = i
}

, i = 0, 1, . . . ,m(n− 1)

(Fnq , R
d,n,P ) is called the distance scheme over Fnq .

Definition. An extended intersection number of (Fq, R
d,l,P ) is given by

C
d,l,P
i1,i2,...,ia

(x, y) =
∣

∣

{

(z1, z2, . . . , zh) ∈ Fhq | (x1, z1) ∈ R
d,l,P
il

,

(z1, z2) ∈ R
d,l,P
i2

, . . . , (zh, y) ∈ R
d,l,P
ih+1

}∣

∣

Notation. If T is a q×q matrix, the entry in the (x+1)-th row and the (y+1)-th
column is called the (x, y) entry of T , (x, y = 0, 1, . . . , q − 1), (cf. Delsarte [2]).
Definition. Given an SK-partition P = {B0, B1, . . . , Bm−1} of Fq (the ring of
integers modulo q), the q×q matrix Bi (i = 0, 1, . . . ,m−1) is called the difference
matrix of Bi, if the (x, y) entry of Bi =

{

1, if x− y ∈ Bi

0, otherwise.

3. Difference matrices

Theorem 3.1. The difference matrix Bi (i = 0, 1, . . . ,m−1) is a circulant matrix,
for any SK-partition P = {B0, B1, . . . , Bm−1} of Fq.
Proof. Since

x−q y = (x+q 1)− (y +q 1)
the (x, y) entry and the (x+q 1, y+q 1) entries of Bi (i = 0, 1, . . . ,m−1) are equal
for x, y = 0, 1, . . . ,m− 1. �
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Corollary. For any positive integer a, Bi1 × Bi1 × · · · × Bin (i1, i2, . . . , in =
0, 1, . . . ,m− 1) is a circulant matrix.
Proof. From the fact that the product of any two circulant matrices is circulant
(Davis [1]), it follows that Bi1 ×Bi2 × · · · ×Bin (i1, i2, . . . , in = 0, 1, . . . ,m− 1) is
circulant. �

We next show the relationship between difference matrices and extended inter-
section numbers (cf. Sharma and Sookoo [13]).

Theorem 3.2. Let P = {B0, B1, . . . , Bm−1} be an SK-partition of Fq. The (x, y)
entry of Bi1×Bi2×· · ·×Bia (i1, i2, . . . , ia = 0, 1, . . . ,m−1) is equal to the extended
intersection number C

d,l,P
i1,i1,...,ia

, . . . , ia(x, y) of (Fq, R
d,l,P ) for a ∈ {2, 3, . . .}.

Proof. First we establish the result for a = 2. The (x, y) entry of

Bi1 ×Bi2

=

q−1
∑

z=0

[

(the (x, z) entry of Bi1)× (the (z, y) entry of Bi2)
]

=
∣

∣

{

z ∈ Fq | the (x, z) entry of Bi1 is one of the (z, y) entry of Bi2 is one
}∣

∣

=
∣

∣

{

z ∈ Fq | (x− z) ∈ Biq , (z − y) ∈ Bi2
}∣

∣ .

Assuming that the result is true for a (a > 2), we have

C
d,l,P
i1,i2,...,ia

(x, za)

=
∣

∣

{

(z1, z2, . . . , za−1) ∈ F a−1q | (x, z1) ∈ R
d,l,P
i1

, (z1, z2) ∈ R
d,l,P
i2

,

(z2, z3) ∈ R
d,l,P
i3

, . . . , (za−1, za) ∈ R
d,l,P
ia

}∣

∣ .

Next we have the (x, y) entry of

Bi1 ×Bi2 × · · · ×Bia+1

=
∑

za∈Fq

[

(the (x, za) entry of Bi1 ×Bi2 × · · · ×Bia)

× (the (za, y) entry of Bia+1)
]

=
∑

za∈Fq

[∣

∣

{

(z1, z2, . . . , za−1) ∈ F a−1q | (x, z1) ∈ R
d,l,P
i ,

(z1, z2) ∈ R
d,l,P
i2

, (z2, z3) ∈ R
d,l,P
i3

, . . . , (za−1, za) ∈ R
d,l,P
ia

}∣

∣

× (the (za, y) entry of Bia+1)
]

=
∣

∣

{

(z1, z2, . . . , za) ∈ F aq | (x, z1) ∈ R
d,l,P
i1

, (z1, z2) ∈ R
d,l,P
i2

,

(z2, z3) ∈ R
d,l,P
i3

, . . . , (za, y) ∈ R
d,l,P
ia+1

}∣

∣ = Cd,l,Pi1,i2,ia+1
(x, y)

showing that the result is true for a+1. By induction the result holds for a ∈
{2, 3, . . .}. �

We next look at the sums of the entries in the rows and columns of Bi1 ×Bi2 ×
· · · ×Bia to determine the relationship these sums bear to the SK-partition P .
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Theorem 3.3. Let P = {B0, B1, . . . , Bm−1} be an SK-partition of Fq, and let
Bi be the difference matrix of Bi (i = 0, 1, . . . ,m − 1). For any positive integer
a > 1, the sum of the entries of each row and column of Bi1 × Bi2 × · · · × Bia
(i1, i2, . . . , ia = 0, 1, . . . ,m− 1) is |Bi1 | × |Bi2 | × · · · × |Bia |.
Proof. From the previous theorem, it is clear that for x ∈ {0, 1, . . . ,m− 1}, the
sum of the entries in the x-th row of

Bi1 ×Bi2 × · · · ×Bia

=
∑

y∈Fq

C
d,l,P
i1,i2,...,ia

(x, y)

=
∑

y∈Fq

∣

∣

{

b1, b2, . . . , ba ∈ F aq | x− y = b1 + b2 + · · ·+ ba

and WP (bα) = iα (α = 1, 2, . . . , a)
}∣

∣

(refer Theorem 4 of Sharma and Sookoo [13])

=
∣

∣

{

(b1, b2, . . . , ba) ∈ F aq | bα ≡ Biα (α = 1, 2, . . . , a)
}∣

∣

=
∣

∣Bi1
∣

∣×
∣

∣Bi1
∣

∣× · · · ×
∣

∣Bia
∣

∣ .

Since Bi (i = 0, 1, . . . ,m−1) is symmetric, the sum of the entries of each column
is also

∣

∣Bi1
∣

∣×
∣

∣Bi2
∣

∣× · · · ×
∣

∣Bia
∣

∣. �

4. Algebra generated by the difference

matrices of the classes of an SK-partition

The following definitions and notation (cf. Delsarte [2]) are now required.

Definition. Let P = {B0, B1, . . . , Bm−1} be an SK-partition of Fq and let Bi
(i = 0, 1, . . . ,m− 1) be the difference matrices of P . The Bose-Mesner algebra of
P is the algebra generated by the Bi (i = 0, 1, . . . ,m− 1).
Definition. Given an SK-partition {P = B0, B1, . . . , Bm−1} of Fq, the matrix τk
is called the representer matrix of Bk (k = 0, 1, . . . ,m− 1) if

τk(x, x) =

{

1 , x ∈ Bk, x ∈ Fq

0 , otherwise

τk(x, y) = 0 , x 6= y, x, y,∈ Fq

Remark. Clearly τrτs = δr,sτr, 0 6 r, s 6 n where δr,s is the Kronecker symbol.

Notation. Given q × q matrix S and the partition P = {B0, B1, . . . , Bm−1} of
Fq, let

Jk = q
−1SτkS

∗ (k = 0, 1, . . . ,m− 1)

where τk is the representer matrix of Bk, and S
∗ is the conjugate transpose of S.

We make use of the following matrix (cf. Wallis, Street and Wallis [14]).
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Definition. The matrix S of order q is













1 1 1 1 . . . 1
1 ω ω2 ω(n−1)

1 ω2 ω4 ω2(n−1)

...
...

...
...

1 ω(n−1) ω2(n−1) ω(n−1)(n−1)













where ω = cos 2πq + i sin
2π
q .

Remark. Let F = q−1/2S. F is unitary. Also S diagonalizes B (i = 0, 1,
. . . ,m− 1).
This can be shown as follows:
From the history of circulant matrices (refer Davis [1] ), we know that if C is a

circulant matrix, then
C = F ∗ΛF ,

where Λ is a diagonal matrix having the eigenvalues of C on its main diagonal.
Hence

Bi = F
∗ΛiF ,

where Λi is the diagonal matrix of eigenvalues of Bi. Therefore

Bi =

(

1√
q
S

)

Λi

(

1√
q
S∗

)

=
1

q
SΛiS

∗ . �

In the following theorem, which is based on Theorem 2.2 of Delsarte [2], we
show that {Jk | k = 0, 1, . . . ,m− 1} is a basis of the Bose-Mesner algebra and we
show the relationship between this basis and {Bk | k = 0, 1, . . . ,m− 1}.
Theorem 4.1. Let P = {B0, B1, . . . , Bm−1} be an SK-partition of Fq. There
exists an SK-partition P ′ = {B′

o, B
′

1, . . . , B
′

m−1} of Fq such that the set of J ′

is

(i = 0, 1, . . . ,m − 1) form a basis of the Bose-Mesner algebra of P , where Ji =
q−1SτiS

∗ and τi is the representer matrix of B
′

i. Also, if Bi (i = 0, 1, . . . ,m− 1)
is the difference matrix of Bi and λ

i
k (i = 0, 1, . . . ,m − 1) are the eigenvalues of

Bk, then

Bk =

m−1
∑

i=0

λikJi (k = 0, 1, . . . ,m− 1) .

Proof. Let A be the Bose-Mesner algebra of P . Every matrix in A is circulant,
since the sum or product of circulant matrices is also circulant (refer Davis [1]).
Hence each matrix B in A is diagonalized by S. Therefore there is a diagonal
matrix ΛB having the eigenvalues of B on the main diagonal such that B =
q−1SΛBS

∗ As B varies over A, ΛB varies over a subset A
′ of the algebra Q of

q× q matrices with complex entries. It is easy to show that A′ is a sub-algebra of
Q and that
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I: A′ → A is an isomorphism if
I(Λ) = q−1SΛS∗, ∀Λ ∈ A′.
Let B(e)A have the maximal number n′ of distinct eigenvalues, the eigenvalues

of B(e) being λ0, λ1, . . . , λn′−1 and let ΛB(e) be the matrix in A
′ corresponding to

B(e). There exists a partition P ′ of Fq into n
′ classes B′

ψ (ψ = 0, 2, . . . , n
′ − 1)

such that

ΛB(e) =

n′
−1
∑

ψ=0

λψτψ

where τψ is the representer matrix of B
′

ψ.

If ΛB(e) has the eigenvalues λi in rows j
i
i , j

i
2, . . . , j

i
a, then B

′

i consists of the
following elements of Fq : j

i
1, j

i
2, . . . , j

i
a.

We show that the τψ ’s are all in A
′, by showing that each is a linear combination

of powers of ΛB(e) .
Since the Λi are all distinct, there exist polynomials fr(z) such that

fr(λi) = δr,i for r, i = 0, 1, . . . , n′ − 1 .

Let fr(z) =
(z − λ0)(z − λ1) . . . ̂(z − λr) . . . (z − λn′−1)

(λr − λ0)(λr − λ1) . . . ̂(λr − λr) . . . (λr − λn′−1)
where the factors

with the cap are the factors missing.
It is easy to see that τψ ’s are mutually orthogonal and so

(ΛB(e))
t
= λt0τ0 + λ

t
1τ1 + · · ·+ λtn′−1τn′−1

for any natural number t. Hence

fr (ΛB(e)) = fr(λ0)τ0 + fr(λ1)τ1 + · · ·+ fr(λn′−1)τn′−1 = τr ,

since fr(λi) = δr,i.
Since ΛB(e) ∈ A′, τψ (ψ ∈ {0, 1, . . . , n′ − 1}) is also in A′, as it is a linear

combination of powers of ΛB(e) . Since the τψ’s are linearly independent, n
′ 6 m,

because the dimension of A is m.

We now show that the τψ generate the whole of A
′, so that n′ = m. Let ΛB be

an arbitrary element of A′ having n′′ distinct eigenvalues, αψ (ψ = 0, 1, . . . , n
′′−1).

Clearly there exists a partition Q′′ of Fq with n
′′ classes ∋

ΛB =

n−1
∑

ψ=0

αψτψ

where {τψ | ψ = 0, 1, . . . , n′′ − 1} is the set of representer matrices of Q′′.
It is easy to show that τψ is a function of ΛB in the same way that we showed

that τr is a function of ΛB(e) . Hence τψ ∈ A′.
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We show by contradiction that each τψ (ψ = 1, 2, . . . , n
′′) is a linear combination

of the τψ’s (ψ = 1, 2, . . . , n
′).

Suppose that there exists some ψ such that τψ is not a linear combination of

the τψ. Clearly

Λ = τ1 + 2τ2 + · · ·+ n′τn′ + 10n′τψ

has more than n′ distinct numbers on the main diagonal. So the matrix in A
corresponding to Λ has more than n′ eigenvalues, contradicting the maximality
of n′. Hence each τψ (ψ = 1, 2, . . . , n

′′) is a linear combination of the τψ (ψ =
1, 2, . . . , n′).
Thus each element in A can be expressed in terms of the τψ (ψ = 1, 2, . . . , n

′).
Therefore m 6 n′.
Since we have already shown that n′ 6 m, we have n′ = m. So the τψ form a

basis of A′ and so the Jψ are a basis of A.
Finally,

Bk = q
−1SΛBk

S∗ ,

where ΛBk
is the diagonal matrix of eigenvalues of Bk. Therefore

Bk = q
−1S

(

m−1
∑

i=0

λikτi

)

S∗

where the λik are the eigenvalues of Bk. Hence

Bk =

m−1
∑

i=0

λikq
−1SτiS

∗ =

m−1
∑

i=0

λikJi .
�
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