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ON OSCILLATION OF DIFFERENTIAL

SYSTEMS OF NEUTRAL TYPE

EVA ŠPÁNIKOVÁAbstrat. We study oscillatory properties of solutions of the systems of differential
equations of neutral type.

1. Introduction

In this paper we consider the neutral differential systems of the form

(S)
[y1(t)− a(t)y1(g(t))]

′ = p1(t)y2(t)

y′

2(t) = p2(t)f(y1(h(t))) , t ∈ R+ = [0,∞) .

The following conditions are assumed to hold throughout this paper:

(a) a : R+ → (0,∞) is a continuous function;
(b) g : R+ → R+ is a continuous and increasing function and lim

t→∞

g(t) =∞;

(c) pi : R+ → R+, i = 1, 2 are continuous functions not identically equal to
zero in every neighbourhood of infinity,

∫

∞

p1(t) dt =∞ ;

(d) h : R+ → R+ is continuous and increasing function and lim
t→∞

h(t) =∞;

(e) f : R → R is a continuous function, uf(u) > 0 for u 6= 0,

and |f(u)| ≥ K|u|, where 0 < K = const.

Let p1(t) ≡ 1 on R+ and f(u) = u, u ∈ R. Then the system (S) is equivalent
to the equation

d2

dt2
[y1(t)− a(t)y1(g(t))]− p2(t)y1(h(t)) = 0 , t ∈ R+ .
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The oscillatory properties of the solutions of the equation

d2

dt2
[y1(t)− a(t)y1(g(t))] + p2(t)y1(h(t)) = 0 , t ∈ R+ .

are studied in the paper [8].

The oscillatory theory of neutral differential systems have been studied for ex-
ample in the papers [1-5], [7], [10,11] and in the references given therein. The more
detailed list of publication of the presented topic is given in the monography [6],
where the problem of existence of the solutions of neutral differential systems is
also studied. The purpose of this paper is to establish some new criteria for the
oscillation of the systems (S). Our results are new and extend and improve the
know criteria for the oscillation of the differential systems of neutral type.

Let t0 ≥ 0. Denote

t̃0 = min {t0, g(t0), h(t0)} .

A function y = (y1, y2) is a solution of the system (S) if there exists a t0 ≥ 0
such that y is continuous on [t̃0,∞), y1(t) − a(t)y1(g(t)), y2(t), are continuously
differentiable on [t0,∞) and y satisfies (S) on [t0,∞).

Denote by W the set of all solutions y = (y1, y2) of the system (S) which exist
on some ray [Ty,∞) ⊂ R+ and satisfy

sup{|y1(t)|+ |y2(t)| : t ≥ T } > 0 for any T ≥ Ty .

A solution y ∈ W is nonoscillatory if there exists a Ty ≥ 0 such that its every
component is different from zero for all t ≥ Ty. Otherwise a solution y ∈ W is
said to be oscillatory.

Denote

P1(t) =

t
∫

0

p1(x) dx , t ≥ 0 .

For any y1(t) we define z1(t) by

(1) z1(t) = y1(t)− a(t)y1(g(t)) .

2. Some basic lemmas

The next Lemma 1 can be derived on the base of Lemma 1 in [5].

Lemma 1. Let y ∈ W be a solution of the system (S) with y1(t) 6= 0 on [t0,∞),
t0 ≥ 0. Then y is nonoscillatory, z1(t), y2(t) are monotone on some ray [T,∞),
T ≥ t0 and z1(t) 6= 0 on [T,∞).
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Lemma 2 [9, Lemma 2]. In addition to the conditions (a) and (b) suppose that

1 ≤ a(t) for t ≥ 0 .

Let y1(t) be a continuous nonoscillatory solution of the functional inequality

y1(t)[y1(t)− a(t)y1(g(t))] > 0

defined in a neighbourhood of infinity. Suppose that g(t) > t for t ≥ 0. Then
y1(t) is bounded.

Lemma 3 [9, Lemma 3]. Assume that

q : R+ → R+ , δ : R+ → R are continuous functions, lim
t→∞

δ(t) =∞

and

δ(t) < t for t ≥ 0 , lim inf
t→∞

t
∫

δ(t)

q(s) ds >
1

e
.

Then the functional inequality

x′(t) + q(t)x(δ(t)) ≤ 0 , t ≥ 0

cannot have an eventually positive solution and

x′(t) + q(t)x(δ(t)) ≥ 0 , t ≥ 0

cannot have an eventually negative solution.

3. Oscillation theorems

In this section we shall study the oscillation of the solutions of the system (S).
In the next theorems g−1(t) and h−1(t) will denote the inverse functions of
g(t), h(t) and α : R+ → R is a continuous function.

Theorem 1. Suppose that

h(t) ≤ g(t) , t < α(t) , h(α(t)) < t for t ≥ 0

and

lim inf
t→∞

t
∫

h(α(t))

Kp1(s)

α(s)
∫

s

p2(v) dv ds >
1

e
,(2)

∞
∫

p2(s) ds

a(g−1(h(s)))
< ∞ , lim sup

t→∞











KP1(t)

∞
∫

h−1(g(t))

p2(s) ds

a(g−1(h(s)))











> 1 .(3)
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Then every solution y ∈ W of (S) with y1(t) bounded is oscillatory.

Proof. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S) with y1(t)
bounded. Without loss of generality we may suppose that y1(t) is positive and
bounded for t ≥ t0. From the second equation of (S), (c), (d), (e) we get

y′

2(t) ≥ 0 for sufficiently large t1 ≥ t0 .

In view of Lemma 1 we have two cases for sufficiently large t2 ≥ t1:
1) y2(t) > 0, t ≥ t2;
2) y2(t) < 0, t ≥ t2.

Case 1. Because y2(t) is positive and nondecreasing we have

(4) y2(t) ≥ L , t ≥ t2 , 0 < L − const.

Integrating the first equation of (S) from t2 to t and using (1) and (4) we get

(5) z1(t)− z1(t2) ≥ L

t
∫

t2

p1(s) ds , t ≥ t2 .

From (5) and (c) we have lim
t→∞

z1(t) =∞. From (1) we have

z1(t) < y1(t) , t ≥ t2

and this contradicts the fact that y1(t) is bounded. The Case 1 cannot occur.

Case 2. We can consider two possibilities.

(A) Let z1(t) > 0 for t ≥ t3, where t3 ≥ t2 is sufficiently large. We have
z1(t) < y1(t) and using (e) we get

p2(t)z1(h(t)) ≤
p2(t)f(y1(h(t)))

K
, t ≥ t4 ,

where t4 ≥ t3 is sufficiently large.

Integrating the second equation of (S) from t to α(t) and then using the last
inequality and y2(α(t)) < 0 we obtain

−y2(t) ≥ K

α(t)
∫

t

p2(s)z1(h(s)) ds , t ≥ t4 .

Multiplying the last inequality by p1(t) and then using the monotonicity of z1(t)
we have

(6) z′1(t) +






Kp1(t)

α(t)
∫

t

p2(s) ds






z1(h(α(t))) ≤ 0 , t ≥ t4 .
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By condition (2) and Lemma 3 the inequality (6) cannot have an eventually positive
solution. This is a contradiction.

(B) Let z1(t) < 0 for t ≥ t3. From (1) and (e) we have

z1(t) > −a(t)y1(g(t)) , t ≥ t3

and

−
Kp2(t)z1(g

−1(h(t)))

a(g−1(h(t)))
≤ Kp2(t)y1(h(t)) ≤ p2(t)f(y1(h(t))) , t ≥ t4 ,(7)

where t4 ≥ t3 is sufficiently large.

In view of the second equation of (S) inequality (7) implies

(8) y′

2(t) +
Kp2(t)z1(g

−1(h(t)))

a(g−1(h(t)))
≥ 0 , t ≥ t4 .

Integrating (8) from t to t⋆ and then letting t⋆ → ∞ we get

(9) y2(t) ≤

∞
∫

t

Kp2(s)z1(g
−1(h(s))) ds

a(g−1(h(s)))
, t ≥ t4 .

With regard to (3) we get

(10)
1

K
< lim sup

t→∞











P1(t)

∞
∫

h−1(g(t))

p2(s) ds

a(g−1(h(s)))











≤ lim sup
t→∞

∞
∫

t

P1(s)p2(s) ds

a(g−1(h(s)))
.

We claim that the condition (3) implies

(11)

∞
∫

T

P1(s)p2(s) ds

a(g−1(h(s)))
=∞ , T ≥ 0 .

Otherwise if
∞
∫

T

P1(s)p2(s) ds

a(g−1(h(s)))
< ∞,

we can choose T1 ≥ T such large that

∞
∫

T1

P1(s)p2(s) ds

a(g−1(h(s)))
<
1

K
,
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which is a contradiction with (10).

Integrating
t
∫

T

P1(s)y
′

2(s) ds by parts we have

(12)

t
∫

T

P1(s)y
′

2(s) ds = P1(t)y2(t)− P1(T )y2(T )− z1(t) + z1(T ) .

In this case

(13) z1(t) ≤ −M , 0 < M − const.

Using the second equation of (S), (7) and (13) from (12) we get

t
∫

T

P1(s)y
′

2(s) ds =

t
∫

T

P1(s)p2(s)f(y1(h(s))) ds

≥ KM

t
∫

T

P1(s)p2(s) ds

a(g−1(h(s)))
, t ≥ T ≥ t4 .

The last inequality togethet with (12) implies

MK

t
∫

T

P1(s)p2(s) ds

a(g−1(h(s)))
≤ P1(t)y2(t)− P1(T )y2(T )− z1(t) + z1(T ) ,(14)

t ≥ T ≥ t4 .

Combining (11) with (14) we get lim
t→∞

(P1(t)y2(t)− z1(t)) =∞ and

−z1(t) ≥ −P1(t)y2(t) , t ≥ t5 , where t5 ≥ t4 is sufficiently large.

The last inequality together with (9) and the monotonicity of z1(t) implies

−z1(t) ≥ −KP1(t)

∞
∫

t

p2(s)z1(g
−1(h(s))) ds

a(g−1(h(s)))

≥ −KP1(t)z1(t)

∞
∫

h−1(g(t))

p2(s) ds

a(g−1(h(s)))
, t ≥ T ≥ t5

and

1 ≥ KP1(t)

∞
∫

h−1(g(t))

p2(s) ds

a(g−1(h(s)))
, t ≥ t5 ,

which contradicts (3). This case cannot occur. The proof is complete. �
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Theorem 2. Suppose that

1 ≤ a(t) , t < g(t) , t < α(t) , h(α(t)) < t for t ≥ 0

and the conditions (2), (3) are satisfied. Then all solutions of (S) are oscillatory.

Proof. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S). Without loss
of generality we may suppose that y1(t) is positive for t ≥ t0. As in the proof of
Theorem 1 we get two cases — Case 1 and Case 2.

Case 1. Analogously as in the Case 1 of the proof of Theorem 1 we can show
that lim

t→∞

z1(t) =∞. By Lemma 2 y1(t) is bounded and from (1) z1(t) < y1(t) for

sufficiently large t. Then z1(t) is bounded, which is a contradiction. The Case 1
cannot occur.

Case 2. We can treat this case in the same way as in the proof of Theorem 1
we only remind that h(t) < g(t) follows from the above conditions. The proof is
complete. �

Theorem 3. Suppose that

t < g(t) , t < α(t) , h(α(t)) < t , t < g(h(t)) for t ≥ 0 ,

lim sup
t→∞

t
∫

h−1(g−1(t))

K(P1(t)− P1(s))p2(s)a(h(s)) ds > 1 ,(15)

and conditions (2) and (3) hold. Then all solutions of (S) are oscillatory.

Proof. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S). Without loss of
generality we may suppose that y1(t) is positive for t ≥ t0. As in the proof of
Theorem 1 we get two cases — Case 1 and Case 2.

Case 1. In this case

y1(t) > a(t)y1(g(t)) , y1(t) > z1(t) ,

y1(h(t)) > a(h(t))y1(g(h(t))) > a(h(t))z1(g(h(t)))

and

p2(t)f(y1(h(t))) ≥ Kp2(t)y1(h(t)) > Kp2(t)a(h(t))z1(g(h(t))) ,(16)

for t ≥ t3, where t3 ≥ t2 is sufficiently large.

Combining the integral identity

z1(t) = z1(ξ) + (P1(t)− P1(ξ))y2(ξ) +

t
∫

ξ

(P1(t)− P1(s))y
′

2(s) ds
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with (16) we get

z1(t) ≥

t
∫

ξ

K(P1(t)− P1(s))p2(s)a(h(s))z1(g(h(s))) ds , t > ξ ≥ t3 .

Putting ξ = h−1(g−1(t)) and using the monotonicity of z1(t) from the last inequal-
ity we get

1 ≥

t
∫

h−1(g−1(t))

K(P1(t)− P1(s))p2(s)a(h(s)) ds ,

which contradicts the condition (15).

Case 2. We can treat this case in the same way as in the proof of Theorem 1. The
proof is complete. �

Remark 1. Theorems 1-3 remain true if we change the condition (3) by the
condition

(3′)

∞
∫

p2(s) ds

a(g−1(h(s)))
=∞

because the conditions (3′) implies (11).

Example 1. We consider the system

(17)

[

y1(t)−
1

4
y1(8t)

]

′

= t y2(t)

y′

2(t) =
c

t3
y1

(

t

4

)

, t > 0 ,

where c is a positive constant. In this example a(t) =
1

4
, g(t) = 8t , p1(t) = t,

P1(t) =
t2

2
, p2(t) =

c

t3
, h(t) =

t

4
, f(t) = t and K = 1. We choose α(t) = 2t and

calculate the conditions (2), (3) and (15) as follows

lim inf
t→∞

t
∫

t

2

s

2s
∫

s

c

v3
dv ds =

3 c ln 2

8
,

lim sup
t→∞







t2

2

∞
∫

32t

4c ds

s3







=
c

1024
,

lim sup
t→∞

t
∫

t

2

(

t2

2
−

s2

2

)

c ds

4s3
=

c

8

(

3

2
− ln 2

)

.
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For c > 1024 all conditions of Theorem 3 are satisfies and so all solutions of (17)
are oscillatory.
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