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CHARACTERIZATIONS OF LAMBEK-CARLITZ TYPE

EMIL DANIEL SCHWAB

Abstract. We give Lambek-Carlitz type characterization for completely
multiplicative reduced incidence functions in Möbius categories of full bi-
nomial type. The q-analog of the Lambek-Carlitz type characterization of
exponential series is also established.

1. An arithmetical function f is called multiplicative if

(1.1) f(mn) = f(m)f(n) whenever (m, n) = 1

and it is called completely multiplicative if

(1.2) f(mn) = f(m)f(n) for all m and n .

Lambek [5] proved that the arithmetical function f is completely multiplicative
if and only if it distributes over every Dirichlet product:

(1.3) f(g ∗D h) = fg ∗D fh , for all arithmetical functions g and h.
(

g ∗D h is defined by: (g ∗D h)(n) =
∑

d|n

g(d)h
(n

d

)

)

.

Problems of Carlitz [1] and Sivaramakrishnan [12] concern the equivalence be-
tween the complete multiplicativity of the function f and the way it distributes
over certain particular Dirichlet products. For example, Carlitz’s Problem E 2268
[1] asks us to show that f is completely multiplicative if and only if

(1.4) f(n)τ(n) =
∑

d|n

f(d)f
(n

d

)

(∀n ∈ N
∗) ,

that is if and only if f distributes over ζ ∗D ζ = τ , where ζ(n) = 1, ∀n ∈ N∗, and
τ(n) is the number of positive divisors of n ∈ N∗.

2. Möbius categories were introduced in [7] to provide a unified setting for
Möbius inversion. We refer the reader to [2] and [8] for the definitions of a Möbius
category and of a Möbius category of full binomial type, respectively. In the
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incidence algebra A(⌣C) of a Möbius category ⌣C the convolution of two incidence
function f and g is defined by:

(2.1) (f ∗ g)(α) =
∑

α′α′′=α

f(α′)g(α′′) ∀α ∈ Mor ⌣C .

The incidence function f is called completely multiplicative (see [11]) if for any
morphism α ∈ Mor ⌣C

(2.2) f(α) = f(α′)f(α′′) whenever α′α′′ = α .

Lambek’s characterization can be generalized to the convolution of the incidence
functions: f ∈ A(⌣C) is completely multiplicative if and only if

(2.3) f(g ∗ h) = fg ∗ fh ∀g, h ∈ A(⌣C) ,

but if ζ(α) = 1, ∀α ∈ Mor ⌣C, and ζ ∗ ζ = τ⌣C , then the condition (Carlitz’s
characterization)

(2.4) fτ⌣C = f ∗ f

is not sufficient for f ∈ A(⌣C) to be completely multiplicative (see [11]).

3. Let ⌣C be a Möbius category of full binomial type with the surjective
“length function” l : Mor ⌣C → N (see [2], [8]) and with the parameters B(n)
(B(n) represent the total number of decompositions into indecomposable fac-
tors of length 1 of a morphism of length n). If α ∈ Mor ⌣C and k ≤ l(α) then

|{α′, α′′)|α′α′′ = α, l(α′) = k}| is denoted by

(

α

k

)

and for any α, β ∈ Mor ⌣C with

l(α) = l(β) = n, the following holds

(

α

k

)

=

(

β

k

)(

not

(

n

k

))

and

(

n

k

)

l

=
B(n)

B(k)B(n − k)
(∀k ∈ N, k ≤ n) .

(3.1)

If A(⌣C) is the incidence algebra of ⌣C (with the usual pointwise addition and
scalar multiplication and the convolution defined by (2.1)) then

(3.2) Al(
⌣C) = {f ∈ A(⌣C) | l(α) = l(β) ⇒ f(α) = f(β)}

is a subalgebra of A(⌣C), called the reduced incidence algebra of ⌣C. For f, g ∈ Al(
⌣C)

considered as arithmetical functions (f(n) = f(α) if l(α) = n), the convolution
f ∗ g is given by

(3.3) (f ∗ g)(n) =
n
∑

k=0

(

n

k

)

l

f(k)g(n − k) , (∀n ∈ N)
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and X⌣C : C [[X ]] → Al(
⌣C) defined by

X⌣C

(

∞
∑

n=0

anXn

)

(α) = al(α)B(l(α)) , ∀α ∈ Mor ⌣C

(

X⌣C

(

∞
∑

n=0

anXn

)

(m) = amB(m) , ∀m ∈ N

)

(3.4.)

is a C -algebra isomorphism.

4. In general, a completely multiplicative reduced incidence function f of ⌣C
(that is an element of the subalgebra Al(

⌣C)), is not completely multiplicative as
arithmetical function. We have:

Theorem 1. Let ⌣C be a Möbius category of full binomial type. The reduced in-

cidence function f ∈ Al(
⌣C), with f(1A) = 1 for an identity morphism 1A, is

completely multiplicative if and only if the arithmetical function f ◦ ω is multi-

plicative, where ω(n) denotes the number of distinct prime factors of n.

Proof. Suppose that f is completely multiplicative as incidence function. Let m

and n be positive integers with (m, n) = 1 and let α, α′, α′′ morphisms of ⌣C such
that α′α′′ = α, l(α′) = ω(m) and l(α′′) = ω(n). Since ⌣C is of binomial type,
l(α) = ω(m) + ω(n) and therefore:

(f ◦ ω)(mn) = f(α) = f(α′)f(α′′) = (f ◦ ω)(m) · (f ◦ ω)(n) .

Conversely, suppose that the arithmetical function f ◦ ω is multiplicative. Let α

be a morphism of ⌣C with a factorization α = α′α′′, l(α′) = m and l(α′′) = n and
let the primes p of IN∗ be listed in any definite order p1, p2, p3, . . . Then

f(α) = (f ◦ ω)(p1 . . . pmpm+1 . . . pm+n)

= (f ◦ ω)(p1 . . . pm)(f ◦ ω)(pm+1 . . . pm+n) = f(α′)f(α′′) .

5. Let us see now a Lambek-Carlitz type characterization of completely multi-
plicative reduced incidence functions of a Möbius category of full binomial type.

Theorem 2. Let ⌣C be a Möbius category of full binomial type and f a reduced

incidence function with f(α) = a 6= 0 for a non-identity indecomposable morphism

α. Then the following statements are equivalent:

(1) f ∈ Al(
⌣C) is completely multiplicative;

(2) f(α) = an if l(α) = n;

(3) f(g ∗ h) = fg ∗ fh, for all g, h ∈ Al(
⌣C);

(4) fτ⌣C = f ∗ f , where τ⌣C(α) =
l(α)
∑

k=0

(

l(α)
k

)

l
.

Proof. (1) ⇔ (2). Since a 6= 0 and since the identity morphism 1A is a morphism
of length 0, we have f(1A) = 1, ∀A ∈ Ob ⌣C, and by induction on the length of α

it follows both (1) ⇒ (2) and (2) ⇒ (1).
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(1) ⇒ (3).

[f(g ∗ h)](α) = f(α)
∑

α′α′′=α

g(α′)h(α′′) =
∑

α′α′′=α

f(α′)g(α′)f(α′′)h(α′′)

= (fg ∗ fh)(α) , ∀α ∈ Mor ⌣C .

(3) ⇒ (4).

τ⌣C(α) =

l(α)
∑

k=0

(

l(α)

k

)

l

= |(α′, α′′) : α′α′′ = α}|

=
∑

α′α′′=α

ζ(α′)ζ(α′′) = (ζ ∗ ζ)(α) , ∀α ∈ Mor ⌣C ,

and so (4) follows by using (3) for g = ζ and h = ζ.
(4)⇒ (2). It follows by induction on the length of α using (3.3).

6. Note that Theorem 2, via the (inverse of the) C -algebra isomorphism X⌣C :
C [[X ]] → Al(

⌣C) defined by (3.4), gives rise to characterizations of Lambek-Carlitz
type for special classes of formal power series ( see also [11, Theorem 3.3.]).

Let ⌣C be a Möbius category of full binomial type and
(6.1.)

S(⌣C)=







∞
∑

n=0
anXn ∈ C [[X ]] | X⌣C

(

∞
∑

n=0
anXn

)

are completely multiplicative

as incidence functions







We remark:

(i) If
∞
∑

n=0
anXn ∈ S(⌣C) and if α is a non-identity indecomposable morphism

than X⌣C

( ∞
∑

n=0

anXn
)

(α) = a1. Thus, for α ∈ Mor ⌣C with l(α) = m we have

X⌣C

( ∞
∑

n=0
anXn

)

(α) = am
1 and using (3.4), X⌣C

( ∞
∑

n=0
anXn

)

(α) = amB(m),

where B(m), m ∈ N, are the parameters of ⌣C. It follows that
∞
∑

n=0
anXn ∈

S(⌣C) if and only if am =
am
1

B(m)
, ∀m ∈ N.

(ii) If ⊙C denotes the corresponding binary operation on Cl [[X ]] of the usual

multiplication of incidence functions
(

that is X⌣C

( ∞
∑

n=0
anXn⊙C

∞
∑

n=0
bnXn

)

=

X⌣C

( ∞
∑

n=0

anXn
)

· X⌣C

( ∞
∑

n=0

bnXn
)

)

then, by (3.4), we have

∞
∑

n=0
anXn ⊙C

∞
∑

n=0
bnXn =

∞
∑

n=0
B(n)anbnXn.

In the following section we use these remarks to obtain the q-analog of the Lambek-
Carlitz type characterization of exponential series.
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7. In [10], using an embedding of the algebra C [[X ]] into the unitary algebra of
arithmetical functions, it is proved the following Lambek-Carlitz type characteri-
zation of exponential series:

Theorem 3 ([10]). Let
∞
∑

n=0
anXn ∈ Cl [[X ]] such that a1 6= 0. The following state-

ments are equivalent:

(i) an =
an
1

n!
, ∀n ∈ N;

(ii)
∞
∑

n=0
anXn ⊙

( ∞
∑

n=0
bnXn ·

∞
∑

n=0
cnXn

)

=
( ∞
∑

n=0
anXn ⊙

∞
∑

n=0
bnXn

)

·
( ∞
∑

n=0
anXn ⊙

∞
∑

n=0
cnXn

)

, ∀
∞
∑

n=0
bnXn,

∞
∑

n=0
cnXn ∈ C [[X ]]

(distributivity over the product of series);

(iii)
∞
∑

n=0
2nanXn =

∞
∑

n=0
anXn ·

∞
∑

n=0
anXn,

where
∞
∑

n=0
anXn ⊙

∞
∑

n=0
bnXn =

∞
∑

n=0
n!anbnXn.

The aim of this section is to establish a q-analog of Theorem 3.
Let K be a finite field with |K| = q. Then the matrix A = (aij)m×n over K is

called reduced matrix if:

(1) rang A = m,
(2) for any i the first nonzero element (called pivot) of the line i equals 1:

aihi
= 1, aij = 0 if j < hi,

(3) h1 < h2 < · · · < hm,
(4) pivot columns contain only 0 with the exception of the pivot.

We denote the category of reduced matrices by R. The objects of R are the
non-negative integers with 0 as initial object, the set of morphisms from n to m

is the set of reduced m × n matrices over K, and the composition of morphisms
is the matrix multiplication. R is a Möbius category of full binomial type with
(

n

k

)

l

=

[

n

k

]

q

=
[n]q!

[k]q![n − k]q!
and B(n) = [n]q!, where [0]q! = 1 and [n]q! =

(1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1) (see [8]). Now, from Theorem 2 and the
remarks of Section 6 we obtain the following Lambek-Carlitz type characterization:

Theorem 4. Let
∞
∑

n=0
anXn ∈ C [[X ]] such that a1 6= 0. The following statements

are equivalent:

(1)
∞
∑

n=0
anXn ∈ S(R);

(2) an =
an
1

[n]q!
, ∀n ∈ N;
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(3)
∞
∑

n=0
anXn ⊙R

( ∞
∑

n=0
bnXn ·

∞
∑

n=0
cnXn

)

=
( ∞
∑

n=0
anXn ⊙R

∞
∑

n=0
bnXn

)

·
( ∞
∑

n=0
anXn ⊙R

∞
∑

n=0
cnXn

)

, ∀
∞
∑

n=0
bnXn,

∞
∑

n=0
cnXn ∈ C [[X ]]

(distributivity over the product of series);

(4)
∞
∑

n=0
Gn(q)anXn =

∞
∑

n=0
anXn ·

∞
∑

n=0
anXn,

where Gn(q) are the Galois numbers and
∞
∑

n=0
an Xn⊙R

∞
∑

n=0
bnXn =

∞
∑

n=0
[n]q!anbnXn.
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