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STABILITY OF HYDRODYNAMIC MODEL FOR

SEMICONDUCTOR

MASSIMILIANO DANIELE ROSINI

Abstract. In this paper we study the stability of transonic strong shock so-
lutions of the steady state one-dimensional unipolar hydrodynamic model for
semiconductors in the isentropic case. The approach is based on the construc-
tion of a pseudo-local symmetrizer and on the paradifferential calculus with
parameters, which combines the work of Bony-Meyer and the introduction of
a large parameter.
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1. Introduction

This article is devoted to the study of strong transonic shock waves for the sta-
tionary solutions of the one-dimensional hydrodynamic model for unipolar semi-
conductors in the isentropic case. The analysis of these solutions is based on the
construction of their orbits in the electron density-electric field phase plane and on
the representation of discontinuous solutions by union of trajectory pieces. This
approach is performed by U. M. Asher, P. A. Markowich, P. Pietra, C. Schmeiser
in [1] and by P. A. Markowich in [17].

We will concentrate our attention to the transonic solutions since the study
of the subsonic solutions is rather well understood and can be found for instance
in [9], [14] and in [4]. Furthermore, for what about the proof of the existence
of weak solutions to a hydrodynamic model for semiconductors and relaxation to
drift-diffusion equation, it can be found in the papers [15], [16] of P. Marcati and
R. Natalini.

Our goal is to study the stability of the transonic solutions with a single shock
wave front Σ separating two states U+ = (ρ+, u+, E+)T and U− = (ρ−, u−, E−)T ,
obeying the Rankine-Hugoniot jump conditions and the Lax entropy conditions.
The assumption about the existence of only one shock is not too restrictive, since
in [1] has been proved for steady states that every transonic solution has either
exactly one shock or a jump at the boundary point β, which satisfies the condition

lim
x→β−

ρ(x) ≤ J2/ ρ .

Furthermore in [17] has been proved that for an infinite current relaxation time
τ only a countably many stationary transonic solutions are smooth for x ∈ [0, β]
and that all the others, which are infinite, have exactly one shock in [0, β].

For the study of the stability we use the techniques developed by H. O. Kreiss
[8], A. Majda [10], [11], [12], [13] and G. Métivier [18]. We will follow their works
taking into account that our problem is not homogeneous.

We look for the algebraic conditions which guarantee the well posedness of the
linearized equations in L2. Simple computations show that the necessary and
sufficient condition given in [11] to have a maximal L2 estimate is satisfied. To
obtain the maximal L2 estimate we follow the analysis made by G. Métivier in [18].
When these conditions are satisfied, the linearized equations are also well posed in
Hs, and, by using an iterative scheme, one can solve the nonlinear problem. We
observe that these conditions are only sufficient for the existence of solutions of
the nonlinear equations.

In the section 2, we begin giving the one-dimensional equations for a unipolar
semiconductor and showing their properties. Then we pass in the subsection 2.2 to
write down the jump conditions of Rankine-Hugoniot, the Lax entropy conditions
and equivalent conditions introducing the flow velocity relative to the shock front
u′ and the Mach number M . We show also the properties of the electron current
density J and find some explicit formulas that relate the two states U+, U− and
the speed of propagation of the shock front σ. For these results we recover some
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computations found in [7]. Finally in the subsection 2.3 we study in some more
details the stationary system for a semiconductor in a steady state.

In the section 3, we prove the stability of the transonic admissible shocks. To
achieve this result the first canonical step is to introduce the linearized system
which is obtained starting from the perturbed equations. There are two way to
perturb the boundary. The former is to consider only a temporal perturbation of
the boundary, as it is done in [11], the latter is to take a temporal-space pertur-
bation of the boundary, as it is done in [18].

The second step in both cases is the derivation of the maximal L2 estimates
for the solutions of the resulting linearized boundary value problem, finally the
stability follows from the “a priori” estimate as showed in [11] and in [18]. The
main results are given in the Theorems 3.4, 3.6 and 3.7.

We shall give in details only the temporal-space perturbation case (as in [18]).
The principal tools that we will use to obtain the maximal L2 estimate are the

Kreiss’ symmetrizers. In general one has pseudo-local symmetrizers, i.e. pseudo-
differential operators which depend not only on x but also on the frequencies γ.
For the construction of the symmetrizer we will follow that one found in [6].

The other important ingredient that we will use regards the paradifferential
calculus of J. M. Bony [2], [3] and Y. Meyer [19]. In the appendix we summarized
the results of this theory needed in our proofs.

2. One-dimensional equations for a unipolar semiconductor

The aim of this second section is to introduce the equations which govern a
transonic state of current driven n+nn+ devices with the n-region of length α+β,
where α, β > 0 are arbitrarily fixed constants.

We start providing in the first subsection the general equations for a smooth
solution of the one-dimensional hydrodynamic model for a unipolar semiconductor
in the isentropic case and observing that they represent a strictly hyperbolic and
symmetrizable system.

Then in the second subsection we pass to analyze the shock equations. Beyond
the internal equations, which are the canonical generalization of the general equa-
tions to the field of piecewise C1 solutions, they include also the Rankine-Hugoniot
jump conditions and the Lax entropy inequalities, which relate the values of an
admissible shock on both sides of the shock front. Furthermore we write down sim-
ple explicit formulas which give uL and σ as functions of the triple (uR, ρL, ρR).
Since the algebraic computations to obtain them are very simple and can be found
in [7] we omit them.

Finally in the last subsection we analyze the stationary case specializing the
results found before and also recalling a very interesting theorem given by U. M.
Asher, P. A. Markowich, P. Pietra, C. Schmeiser in [1].

2.1. One-dimensional equations for unipolar semiconductor devices. The
one-dimensional isentropic model for a unipolar semiconductor device is given by
the coupled Euler-Poisson system, where in the Poisson equation we denote by
d(x) ∈ C(−α, β), d(x) > 0, the doping profile, namely the density of positively
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charged background ions. Therefore one has


























ρt + (ρu)x = 0 −α < x < β, t > 0 ,

(ρu)t + (ρu2 + p(ρ))x = ρE − 1
τ ρu −α < x < β, t > 0 ,

Ex = ρ− d −α < x < β, t > 0 ,

ρ(t,−α) = ρ(t, β) = ρ(t) t > 0 ,

(1)

where ρ = ρ(t, x) > 0 is the electron density (namely there are no empty spaces),
u = u(t, x) is the electron velocity, p(ρ) ∈ C2(R+) is the pressure of the electron
gas, which is such that p′′(ρ) > 0, p′(ρ) > 0 for every ρ > 0 and p(0) = 0,
E = E(t, x) is the negative electric field generated by the Coulomb force of the
particles, τ > 0 is the current relaxation time and ρ > 1 is the doping concentration
in the n+-regions. The first two equations of the system (1) describe respectively
mass conservation and momentum balance, the third is the Poisson equation and
determines the electric field.

Let us assume that ρ, ρu ∈ L∞
loc, and that E(t,−α) = E(t) for t ∈ (0,+∞);

then the problem (1) is equivalent to



























ρt + (ρu)x = 0 −α<x<β, t>0 ,

(ρu)t+(ρu2+p(ρ))x =ρ
(

E+
∫ x

−α(ρ(t, y) − d(y))dy − 1
τ u
)

−α<x<β, t>0 ,

ρ(t,−α) = ρ(t, β) = ρ(t) t>0 ,

E(t,−α) = E(t) t>0 .

(2)

Let us denote by

V =

(

ρ
u

)

, f0(V ) =

(

ρ
ρu

)

, f1(V ) =

(

ρu
ρu2 + p(ρ)

)

and

F (V, x) =

(

0, ρ

(

E +

∫ x

−α

(ρ(t, y) − d(y))dy − 1

τ
u

))T

,

then the first two equations of system (2) can be written in the following conser-
vative form

f0(V )t + f1(V )x = F (V, x) − α < x < β, t > 0 ,(3)

or in the nonconservative form

A0(V )∂tV +A1(V )∂xV = F (V, x) − α < x < β, t > 0 ,(4)

where A0(V ) =

(

1 0
u ρ

)

, A1(V ) =

(

u ρ
u2 + c2 2ρu

)

are the Jacobian matrices

corresponding to f0, f1 respectively. Here c =
√

dp
dρ (ρ) > 0 is the sound speed.

We recall the following basic fact.

Proposition 2.1. The system (4) is strictly hyperbolic and symmetrizable.
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2.2. Shock equations. We shall assume the flow is subsonic in the outer n+-
regions since it is the most relevant situation in practical situations. Since we shall
concentrate only on solutions having a finite number of jumps, we shall restrict
the class of our weak solutions to the piecewise smooth case. More precisely we
consider weak solution in the sense of the following definition.

Definition 2.2. V = (ρ, u)T is a piecewise discontinuous admissible solution if
there exists a finite number of smooth orientable lines Σ in the (x, t)-space, outside
of which V is a C1 solution and across which V has a jump discontinuity satisfying
the conditions of Rankine-Hugoniot and the Lax entropy conditions.

Let V = (ρ, u)T be a piecewise discontinuous admissible solution with only one
jump across the line Σ and assume that Σ has a parameterization of the form
(t, ϕ(t)), where ϕ : t→ ϕ(t) is a C1 function such that −α < ϕ(t) < β. The usual

interpretation of σ(t) = dϕ
dt (t) is that it represents the speed of propagation of

the shock front. We denote by V − and by V + the restriction of V respectively
to the left region and to the right region with respect to the line Σ, and by
VR,L(t) = limε→0+ V ±(t∓ σε, x± ε) ∈ R, (t, x = ϕ(t)) ∈ Σ. The system resulting
from (4) is

{

A0(V
−)V −

t +A1(V
−)V −

x = F−(V −, x) −α < x < ϕ(t), t > 0 ,

A0(V
+)V +

t +A1(V
+)V +

x = F+(V −, V +, x) ϕ(t) < x < β, t > 0
(5)

and the Rankine-Hugoniot jump conditions writes

σ[f0(V )] = [f1(V )] x = ϕ(t), t > 0(6)

where the brackets denote the jump of any quantity g across the interface (namely
[g] = gR − gL),

F−(V −, x) =
(

0, ρ−
(

E +

∫ x

−α

(ρ−(t, y) − d(y)) dy − 1

τ
u−
))T

,

F+(V −, V +, x) =
(

0, ρ+
(

E +

∫ ϕ(t)

−α

(ρ−(t, y) − d(y)) dy

+

∫ x

ϕ(t)

(ρ+(t, y) − d(y)) dy − 1

τ
u+
))T

.

Since the eigenvalue of A−1
0 A1(V ) are λ1(V ) = u− c and λ2(V ) = u+ c, the Lax

entropy conditions for the 1-shock are given by
{

σ < uL − cL ,

uR − cR < σ < uR + cR
(7)

and for the 2-shock are given by
{

uL − cL < σ < uL + cL ,

uR + cR < σ .
(8)
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Remark. Note that the above conditions imply the shocks are noncharacteristic
since the speed of propagation of the shock front σ is different from the character-
istic speeds λ1(V ), λ2(V ) on both sides of the interface.

Let us introduce the flow velocity relative to the shock front u′ = u − σ, then
the Rankine-Hugoniot jump conditions can be written in the form

[f1(ρ, u
′)] = 0 .(9)

Therefore the electron current density J = ρu′ is in C
(

(0,∞)× (−α, β)
)

, further-
more algebraic computations show that on the discontinuity line Σ holds

J = −(pR − pL)/(uR − uL)(10)

and that, denoted by ν = 1/ρ the specific electron volume, on Σ holds also

J = (uR − uL)/(νR − νL) ,(11)

J2 = −(pR − pL)/(νR − νL) .(12)

Remark 2.3. Physically relevant solutions must satisfy the Lax entropy condi-
tions, hence in the case of steady shock analyzed by [1] this lead to restrict to
1-shock satisfying

ρLcL < J < ρRcR ,

therefore in particular we get J > 0, as we shall see later in the subsection 2.3.

An immediate consequence of the foregoing remark is that J > 0 along the
discontinuity line Σ, and therefore uR, uL > σ. Another consequence is that the
condition (8) must be thrown away, and so we can only have a 1-shock. Finally
from (7) and (9) it follows that

{

ρR 6= ρL ,

uR 6= uL .
(13)

Clearly an alternative form to write (7) using the Mach number M = u′/c is

ML > 1 > MR > 0 .(14)

An elementary result is given in the following proposition.

Proposition 2.4. On the discontinuity line Σ one has

uL = uR + sign {ρR − ρL}
√

(ρR − ρL)(pR − pL)

ρRρL
,(15)

σ = uR −
√

ρL(pR − pL)

ρR(ρR − ρL)
.(16)
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2.3. The stationary case. If the semiconductor is in a steady state then all its
parameters are independent of time and the equations become























(ρu)x = 0 −α < x < β ,

(ρu2 + p(ρ))x = ρE − 1
τ ρu −α < x < β ,

Ex = ρ− d −α < x < β ,

ρ(−α) = ρ(β) = ρ .

(17)

Clearly the electron current density J is a constant greater than zero and so also
the velocity u is positive. Furthermore the above system can be written in the
form















(

1
ρJ

2 + p(ρ)
)

x
= ρE − 1

τ J −α < x < β ,

Ex = ρ− d −α < x < β ,

ρ(−α) = ρ(β) = ρ .

(18)

If U = (ρ, u = J/ρ,E)T is a stationary transonic admissible shock, then it is not
limitative to assume that Σ = { x = 0 } ⊂ R2

+ is his discontinuity line.
The corresponding Rankine-Hugoniot jump conditions are

[1

ρ
J2 + p(ρ)

]

= 0 ,(19)

and the stationary Lax entropy inequalities for the 1-shock are
{

uL > cL > 0 ,

|uR| < cR ,
(20)

which can be equivalently written in the form

cLρL < J < cRρR .(21)

For the proposition 2.4 with σ = 0

uR =

√

ρL(pR − pL)

ρR(ρR − ρL)
, uL =

√

ρR(pR − pL)

ρL(ρR − ρL)
.(22)

Further in [1] it can be found the proof of the following important theorem.

Theorem 2.5. If ρ > J > 1 and the pressure is p(ρ) = ρ, namely the gas is

polytrophic, then there exists a set S of piecewise discontinuous admissible solutions

(ρ,E, α+ β) for the isentropic stationary boundary value problem















ρx

(

1 − 1
ρ2J

2
)

= ρE − 1
τ J −α < x < β ,

Ex = ρ− 1 −α < x < β ,

ρ(−α) = ρ(β) = ρ ,

(23)
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which contains a solution (ρ,E) for every α + β > 0. Furthermore if Sα,β is the

set of rescaled-translate solutions (ρα,β , Eα,β, α, β) defined by

(ρα,β(y), Eα,β(y)) = (ρ((α+ β) y − α), E((α + β) y − α)) , 0 ≤ y ≤ 1 ,(24)

then it forms a continuum subset of Lq(0, 1) × C[0, 1) × R+ × R+ for every 1 ≤
q < ∞. Finally every transonic solution ρα,β of the set Sα,β has either exactly

one shock in [0, 1] or a jump at the boundary satisfying

lim
x→1−

ρα,β(x) ≤ 1

ρ
J2 .(25)

3. Stability of the stationary solutions

To study the stability of an admissible transonic shock V solution of the problem
(5) the first difficulty we meet is due to the fact that the discontinuity line Σ =
{x = ϕ(t)} is unknown; for this reason we must add the jump conditions (6) to
the system (5), obtaining















A0(V
−)V −

t +A1(V
−)V −

x = F−(V −, x) −α < x < ϕ(t) , t > 0 ,

A0(V
+)V +

t +A1(V
+)V +

x = F+(V −, V +, x) ϕ(t) < x < β , t > 0 ,

σ[f0(V )] = [f1(V )] on x = ϕ(t), t > 0 .

(26)

The second step is to introduce the linearized system which is obtained starting
from the perturbed equations for (Vε, ψε) = (V + εW ′, ϕ− εφ′). This will be done
in the subsection 3.1.

The third step is to prove a maximal L2 estimate for the solutions of the lin-
earized boundary value problem. The principal tool that we will use to obtain the
maximal L2 estimate is the Kreiss’ symmetrizer. This will be the object of the
subsection 3.2. Finally, since the stability follows from the apriori estimate, the
aim of the section is achieved.

We will study only the stability of stationary admissible transonic shocks solu-
tion of the boundary value problem (18). Let us remark that it is always satisfied
the necessary and sufficient condition given in [11] (see Proposition 3.1 on page
26) to have a maximal L2 estimate under our hypotheses.

We have to warn the reader that many computations will be not reproduced
here to avoid overloading the section, but we shall often refer to the appendix
sections or to previous works where some details can be found.

3.1. Linearization of the equations around the stationary solution. In
this subsection we introduce the linearized system resulting form the perturbation
of the system (26).

Let us consider (V +(x), V −(x), ϕ ≡ 0) the stationary admissible transonic shock
studied in the subsection 2.3 and let us suppose that V − ∈ W 1,1(−α, 0), V + ∈
W 1,1(0, β). If furthermore d ∈ W 1,1(−α, β), then we can extend V and d to
all R in such way that the support of V and d is a subset of (−α − β, α + β)
and there exists a constant C > 0 such that ‖V ‖W 1,1(R) ≤ C‖V ‖W 1,1(−α,β)
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and ‖d‖W 1,1(R) ≤ C‖d‖W 1,1(−α,β). Now, to have that the stationary admis-
sible transonic shock is stable, we have to require that for any perturbation
(

W
′+,W

′−, φ′
)

∈ C∞
0 ({(t, x) ∈ R+ × (−α, β)}) it results that V ±

ε = V ± + εW
′±

and εφ′ satisfy, at least for ε ∈ R sufficiently close to zero and at least until to a
time T > 0 independent from ε, the system











A0(V
−

ε )∂tV
−

ε + A1(V −

ε )∂xV −

ε = F−(V −

ε , x) in − α − εφ′(t, x)<x<−εφ′(t, x), t>0 ,

A0(V
+

ε )∂tV
+
ε + A1(V

+
ε )∂xV +

ε = F+(V −

ε , V +
ε , x) in − εφ′(t, x)<x<β − εφ′(t, x), t>0 ,

ε∂tφ
′[f0(Vε)] + (1 + ε∂xφ′)[f1(Vε)] = 0 on x = −εφ′(t, x), t > 0 ,

(27)

where

F−(V −
ε , x)

=
(

0, ρ−ε (t, x)
(

E +

∫ x

φε(t, . )−1(−α)

(ρ−ε (t, y) − d(y))dy − 1

τ
u−ε (t, x)

))T

,

F+(V −
ε V +

ε , x)

=
(

0, ρ+
ε (t, x)

(

E +

∫ φε(t, . )−1(0)

φε(t, . )−1(−α)

(ρ−ε (t, y) − d(y))dy

+

∫ x

φε(t, . )−1(0)

(ρ+
ε (t, y) − d(y))dy − 1

τ
u+

ε (t, x)
))T

.

Here we have introduced the function φε(t, x) = x+ εφ′(t, x).
In the Appendix A we show the computations to obtain the linearized problem,
which is given in the following proposition.

Proposition 3.1. The corresponding linearized equations are































A0(Ṽ −)∂
t̃
(W̃

′
− + φ′∂x̃Ṽ −) + A1(Ṽ −)∂x̃(W̃

′
− + φ′∂x̃Ṽ −) =

= C̃(Ṽ −, x̃)W̃
′
−+φ′D(Ṽ −)+ρ̃−

R

x̃

−α
( 0, ρ̃

′
−( t̃, y)−φ′

x̃
(t̃,y)(ρ̃−−d)(y))T dy in −α<x̃<0, t̃>0 ,

A0(Ṽ +)∂
t̃
(W̃

′
+ + φ′∂x̃Ṽ +) + A1(Ṽ +)∂x̃(W̃

′
+ + φ′∂x̃Ṽ +) =

= C̃(Ṽ +, x̃)W̃
′
++φ′D(Ṽ +)+ρ̃+

R

x̃

−α
( 0, ρ̃′( t̃, y)−φ′

x̃
(t̃,y)(ρ̃ −d)(y))T dy in 0<x̃<β, t̃>0 ,

∂
t̃
φ′[f0(Ṽ )] + [A1(Ṽ )W̃ ′] = 0 on x̃ = 0 ,

(28)

where

Ṽ (t̃, x̃) = V (t̃, φε(t̃, . )
−1(x̃)) , W̃ ′(t̃, x̃) = W ′(t̃, φε(t̃, . )

−1(x̃)) ,

C̃(Ṽ , x̃) : =

(

0 0

E +
∫ x̃

−α(ρ̃− d)(y) dy − 1
τ ũ − 1

τ ρ̃

)

− ∂x̃A1(Ṽ )

and

D(Ṽ ) : = A1(Ṽ )∂2
x̃Ṽ .
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Let us introduce two constants α′ ∈ (0, α) and β′ ∈ (0, β) such that Ṽ is
supersonic in {−α′ ≤ x̃ < 0 } and subsonic in { 0 < x̃ ≤ β′ }, then to study
the stability of the shock it is sufficient to consider the linear equations on the
strip {−α′ < x̃ < β′, t̃ > 0 }. Furthermore it is convenient to change the above
transmission problem to a boundary value problem in a half-space. This can
be done through the changing coordinates ( t̃ , x̃) 7→ (t, x) = ( t̃ ,−x̃/α′) in the
superficial region { x̃ < 0 }, and ( t̃ , x̃) 7→ (t, x) = ( t̃ , x̃/β′) in the superficial
region { x̃ > 0 }. In fact, taking

V =

(

V +/β′

−V −/α′

)

, W ′ =

(

W
′+

W
′−

)

,

A0(V ) =

(

A0(V
+) 0

0 A0(V
−)

)

, A1(V ) =

( 1
β′
A1(V

+) 0

0 − 1
α′
A1(V

−)

)

,

C(V, x) =

(

C+(V, x) 0
0 C−(V −, x)

)

,

where

C+(V, x) =

(

0 0

E + α′
∫ α/α′

0 (ρ− − d)(y)dy + β′
∫ x

0 (ρ+ − d)(y)dy − 1
τ u

+ − 1
τ ρ

+

)

− 1

β′
∂xA1(V

+) ,

C−(V −, x) =

(

0 0

E + α′
∫ α/α′

x
(ρ− − d)(y) dy − 1

τ u
− − 1

τ ρ
−

)

+
1

α′
∂xA1(V

−) ,

D(V ) =

(

D+(V +)
D−(V −)

)

,

where

D+(V +) =
1

β′2
A1(V

+)∂2
xV

+ , D−(V −) =
1

α′2
A1(V

−)∂2
xV

− ,

L(V,W ′, x) =
(

0, ρ+
(

α′

α/α′

∫

0

(

ρ
′−(t, y) +

1

α′
φ′x(t, y)(ρ− − d)(y)

)

dy

+ β′

x
∫

0

(

ρ
′+(t, y) − 1

β′
φ′x(t, y)(ρ+ − d)(y)

)

dy
)

, 0,

α′ρ−
α/α′

∫

x

(

ρ
′−(t, y) +

1

α′
φ′x(t, y)(ρ− − d)(y)

)

dy
)T

,

b(V ) = f0(VR) − f0(VL) , M(V )W ′ = A1(VR)W ′
R −A1(VL)W ′

L ,
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the problem can be written in the form














A0(V )(W ′ + φ′∂xV )t + A1(V )(W ′ + φ′∂xV )x

= C(V, x)W ′ + D(V )φ′ + L(V,W ′, x) in 0 < x < 1, t > 0 ,

b(V )∂tφ
′ +M(V )W ′ = 0 on x = 0, t > 0 .

(29)

Let us suppose that W ′, φ′ grow at most like eγ0t as t→ +∞, where γ0 > 1. For a
fixed γ ≥ γ0, we introduce φ = e−γtφ′ and w = e−γtS(V )−1(W ′ + φ′∂xV ), where

S(V ) =

0

B

B

@

ρ+ ρ+ 0 0
−c+ c+ 0 0

0 0 ρ− ρ−

0 0 −c− c−

1

C

C

A

. Then the system for these new variables is

{

∂xw + Λ(V )∂tw + γΛ(V )w = F (V, ∂xV ;w, φ) in 0 < x < 1, t > 0 ,

b(V )∂tφ+MS(V )w + γ b(V )φ = G(V, ∂xV ;φ) on x = 0, t > 0 ,
(30)

where

Λ(V ) = S(V )−1A1(V )−1A0(V )S(V ) ,

F (V, ∂xV ;w, φ) = S(V )−1A1(V )−1
(

φ
(

D(V ) − C(V, x)∂xV
)

+
(

C(V, x)S(V ) −A1(V )∂xS(V )
)

w + L(V,S(V )w − φ∂xV, x)
)

,

G(V, ∂xV ;φ) = φM(V )∂xV .

By now we extend W ′ and φ′ to all the space R × (0, 1) taking for all t < 0
W ′(t, . ), φ′(t, . ) ≡ 0.

3.2. The symmetrizer. In this subsection we give the Kreiss’ symmetrizer for
our system.

Definition 3.2. A symmetrizer is a matrix valued function

R : (V, τ, γ) ∈ (K = V ({0 ≤ x ≤ 1})) × R × [1,∞] −→ R(V, τ, γ) ∈ Aut (4) ,

which is smooth, homogeneous of degree zero in (τ, γ) and such that

(a) there exists a constant C > 0 such that for all (V, τ, γ) ∈ K × R × [1,∞]

(

R + (ΠMS)T (ΠMS)
)

(V, τ, γ) ≥ C Id4 ,(31)

where Π(V ) is the projector on b(V )⊥;
(b) there exist a finite set of smooth matrix valued functions

Hj : (V +, τ, γ) ∈ K × R × [1,∞) −→ Hj(V, τ, γ) ∈ Aut (2) ,

Kj : (V −, τ, γ) ∈ K × R × [1,∞) −→ Kj(V, τ, γ) ∈ Aut (2) ,

Zj : (V, τ, γ) ∈ K × R × [1,∞) −→ Zj(V, τ, γ) ∈ C4×4 ,
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j = 1, . . . , l, homogeneous of degree zero in (τ, γ), and a constant C > 0
such that for all (V, τ, γ) ∈ K × R × [1,∞]

Hj(V, τ, γ) , Kj(V, τ, γ) ,
l
∑

j=1

Z∗
jZj(V, τ, γ) ≥ C Id(32)

and furthermore

(33) Im ((τ − iγ)RΛ) (V )

= γ
l
∑

j=1

Z∗
j (V, τ, γ)

(

Hj(V, τ, γ) 0

0 Kj(V, τ, γ)

)

Zj(V, τ, γ) .

Here we have denoted with Aut (k), k ∈ N, the space of self adjoint matrices
with dimension k and with C4×4 the space of the complex matrices with dimension
4 × 4. We are lucky because holds the following theorem.

Theorem 3.3. There exists a constant C ∈ (0, 1) such that the matrices

H(V ) =

(

β′

c+−u+ 0

0 (c++u+)3ρ+2β′

1+2(c−+u−)4ρ−2+(c++u+)4ρ+2

)

, K(V −) =

(

α′

u−−c− 0

0 α′

u−+c−

)

,

R(V ) =













1 0 0 0

0 − (c++u+)4ρ+2

1+2(c−+u−)4ρ−2+(c++u+)4ρ+2 0 0

0 0 1 0

0 0 0 1













, Z = Id4 ,

satisfy the conditions of Definition 3.2.

3.3. The stability estimates. Denoted by V the stationary solution analyzed
in the subsection 2.3, let us assume that

(H1) V is a Lipshitz function on (0, 1).

Remark. Let us remark again that it is always satisfied the necessary and suf-
ficient Lopatinski type condition given in [11] to have a maximal L2 estimate for
the problem (26). In fact tedious but elementary computations show that this
condition is equivalent to require J 6= −ρLcR, which is trivially true.

Theorem 3.4. There exist γ0 > 1, C > 0, such that for all γ ≥ γ0 and for any

solution (w, φ) ∈
(

H1(R × (0, 1))
)2

to the problem (30), satisfying w( . , 1) ≡ 0,
the following estimate holds

√
γ ‖w‖L2(R×(0,1)) + ‖w( . , 0)‖L2(R) + ‖ϕ‖1,γ

≤ C√
γ

‖F (V, ∂xV ;w, φ)‖L2(R×(0,1)) .(34)

Here we have denoted by ϕ the trace of φ on {x = 0} and introduced the norm

‖ϕ‖1,γ = ‖ϕt‖L2(R) + γ‖ϕ‖L2(R) .(35)
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We also introduce the weighted spaces L2
γ = eγtL2, H1

γ = eγtH1 and equip them

with the norms ‖ϕ′‖L2
γ

= ‖e−γtϕ′‖L2, ‖ϕ′‖H1
γ

= γ‖ϕ′‖L2
γ

+ ‖∂tϕ
′‖L2

γ
. Clearly

Lemma 3.5. ‖e−γ t . ‖1,γ ∼ ‖ . ‖H1
γ(R) on H1

γ(R).

And now in the following theorem we give the first maximal L2 estimate for V .

Theorem 3.6 (The first maximal L2 estimate). Let us assume that

(H2) V is a Lipschitz function such that ∂2
xV ∈ L2(0, 1).

Then there exist γ0 > 1, C > 0, such that for all γ ≥ γ0 and for any solu-

tion (W ′, φ′) ∈
(

H1
γ(R× (0, 1))

)2
to the problem (29), satisfying the conditions

φ′( . , 1),W ′( . , 1) ≡ 0, the following estimate holds

√
γ ‖W ′ + φ′∂xV ‖L2

γ(R×(0,1)) + ‖W ′( . , 0)‖L2
γ(R) + ‖ϕ′‖H1

γ(R)(36)

≤ C√
γ

∥

∥

∥

∥

C(V, x)W ′ + D(V )φ′ − L(V,W ′, x)

∥

∥

∥

∥

L2
γ(R×(0,1))

.

Proof. Let us consider (W ′, φ′) ∈
(

H1
γ(R × (0, 1))

)2
the solution of the problem

(29). If we pose w = e−γtS(V )−1(W ′ + φ′∂xV ) and φ = e−γtφ′, then the couple

(w, φ) ∈
(

H1(R × (0, 1))
)2

is a solution of the problem (30) and satisfies the
estimate (34). So (W ′, φ′) satisfies the estimate (36) for the preceding lemma and
because for γ sufficiently big hold the following two estimates

‖F (V, ∂xV ;w, φ)‖L2(R×(0,1)) ≤ C
(

‖C(V, x)W ′ + D(V )φ′ − L(V,W ′, x)‖L2
γ(R×(0,1))

+ ‖W ′ + φ′∂xV ‖L2
γ(R×(0,1))

)

,

√
γ ‖w‖L2(R×(0,1)) + ‖w( . , 0)‖L2(R) + ‖ϕ‖1,γ

≥ √
γ ‖S(V )‖−1

L∞(0,1) ‖W
′ + φ′∂xV ‖L2

γ(R×(0,1))

+ ‖S(V (0))‖−1‖W ′( . , 0) + ϕ′∂xV (0)‖L2
γ(R) + ‖ϕ‖1,γ

≥ 1

k

(√
γ ‖W ′ + φ′∂xV ‖L2

γ(R×(0,1)) + ‖W ′( . , 0)‖L2
γ(R) + ‖ϕ‖1,γ

)

.

We observe that if one takes into consideration a simple temporal perturbation
of the boundary (namely taking φ′ independent from the space variable x) then,
recovering the computations made in [11], it results that the corresponding lin-
earized problem is similar to the one we have found before, and furthermore one
has the following result.

Theorem 3.7 (The second maximal L2 estimate). Let us assume that (H2) holds

and that ρx(1)=0, then there exist γ0 > 1, C > 0, such that for all γ ≥ γ0 and for
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any solution (W ′, φ′) ∈ H1
γ(R × (0, 1)) × H1

γ(R) to the problem (29)′, such that

W ′( . , 1) ≡ 0, the following estimate holds
√
γ ‖W ′‖L2

γ(R×(0,1)) + ‖W ′( . , 0)‖L2
γ(R) + ‖φ ′‖H1

γ(R)

≤ C√
γ

∥

∥

∥

∥

C(V, x)W ′ + D(V )ϕ ′ + L(V,W ′, x)

∥

∥

∥

∥

L2
γ(R×(0,1))

.(37)

It remains now to prove of the Theorem 3.4.
By using the paradifferential theory developed in the appendix B, we can give a
paradifferential approximation of the boundary value problem (30). In order to
apply this theory we have to remark the following fact. We know that on the
boundary {x = 0} the only variable is t ∈ R and therefore the paradifferential
calculus directly applies. Instead if we have a symbol σ and a function w, defined
on R × (0, 1), we will continue to use the symbol P γ

σw to denote the tangential
paraproduct of the functions taking x as a constant, i.e.

(P γ
σw)( . , x) = P γ

σ( . ,x)w( . , x) for all x ∈ (0, 1) .

So we can consider the symbol J(x, τ, γ) = (τ − iγ)Λ(V (x)) ∈ Γ1
1 and the parad-

ifferential operator Jγ = iT γ
J . For the Theorem B.7 we have that

Proposition 3.8. If V is such that u− − c−, c+ − u+ ≥ k for a constant k > 0,
then there exists a constant C = C

(

‖Λ(V )‖L∞(0,1)

)

> 0, such that for all γ ≥ 1

and w ∈ H1(t ∈ R) ∩ L2(x ∈ (0, 1)), one has

‖Λ(V ) ∂tw + γ Λ(V )w − Jγw‖L2(R×(0,1)) ≤ C ‖w‖L2(R×(0,1)) .(38)

Let us also introduce the boundary symbols b(τ, γ) = (τ − iγ) b(V ) ∈ Γ1
1 and

M = M(V ), S = S(V (0)) ∈ Γ0
1. Another consequence of the Theorem B.7 is the

following result.

Proposition 3.9. There exists a constant C = C( ‖b‖, ‖MS‖ ) > 0, such that for

all (ϕ,w( . , 0)) ∈ H1(R) × L2(R) and γ ≥ 1, one has

‖b(V ) ∂tϕ+MSw( . , 0) + γb(V )ϕ − iT γ
b ϕ− T γ

MSw( . , 0)‖L2(R)

≤ C

γ

(

‖ϕ‖1,γ + ‖w( . , 0)‖L2(R)

)

.(39)

Therefore the next theorem implies the foregoing theorem.

Theorem 3.10. There exist γ0 > 1, C > 0 such that for all γ ≥ γ0 and for any

solution (w, φ) ∈ H1(R × (0, 1)) ×H1(R × (0, 1)) to the problem (30), satisfying

w( . , 1) ≡ 0, it follows
√
γ ‖w‖L2(R×(0,1)) + ‖w( . , 0)‖L2(R) + ‖ϕ‖1,γ

≤ C
( 1√

γ
‖(∂x+ Jγ)w‖L2(R×(0,1))+ ‖iT γ

b ϕ+T γ
MSw( . , 0)‖L2(R)

)

.(40)

Now we only need to show that this theorem is true.
Let us consider the self-adjoint paradifferential operator Rγ = Re T γ

R, where the
symbol R = R(V ) ∈ Γ0

1 is our symmetrizer. We want to show that Rγ satisfies
the hypotheses of the following elementary lemma.
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Lemma 3.11. Assume that there exist C, k > 0, such that for all γ ≥ 1 and

w ∈ H1(R × (0, 1)), with w( . , 1) ≡ 0, the following estimates hold

‖Rγw‖L2 ≤ C ‖w‖L2 ,(41)

‖[∂x, R
γ ]w‖L2 ≤ C ‖w‖L2 ,(42)

〈(RγJγ + (Jγ)∗Rγ)w,w〉L2 ≤ −k γ ‖w‖2
L2 ,(43)

〈Rγw( . , 0), w( . , 0)〉L2 + C‖T γ
ΠMSw( . , 0)‖2

L2 ≥ k‖w( . , 0)‖2
L2 ,(44)

then there are γ0 ≥ 1, C1 > 0, which depend only on C and k, such that for all

γ ≥ γ0 and w ∈ H1(R × (0, 1)) with w( . , 1) ≡ 0

√
γ‖w‖L2 + ‖w( . , 0)‖L2 ≤ C1

( 1√
γ
‖(∂x + Jγ)w‖L2 + ‖T γ

ΠMSw( . , 0)‖L2

)

.(45)

The first two estimates are immediate, so we start directly from the estimate
(43).
Let us consider the symbol P (x, γ) = −2γRΛ(V (x)) ∈ Γ1

1. Then by the Theorems
B.8, B.9 we get the next lemma.

Lemma 3.12. Let V be such that u−− c−, c+ −u+ ≥ k for some constant k > 0,
then there exists a constant C = C

(

‖Λ(V )‖L∞(0,1), ‖R(V )‖L∞(0,1)

)

> 0, such that

for all w ∈ L2(R × (0, 1)), it follows

‖(RγJγ + (Jγ)∗Rγ + T γ
P )w‖L2 ≤ C‖w‖L2 .

Let us denote F (x, γ) ∈ Γ1
1 the block diagonal matrix valued symbol with blocks

2 γH(V (x)) and 2 γK(V −(x)).

Lemma 3.13. Let V be such that u−− c−, c+ −u+ ≥ k̃ for some constant k̃ > 0,
then there exist C, k > 0, such that for every w ∈ L2(R × (0, 1)), it follows

(a) Re 〈T γ
Pw,w〉L2 − 2 Re 〈T γ

FT
γ
Zw, T

γ
Zw〉L2 ≤ C‖w‖2

L2 ,

(b) Re 〈T γ
FT

γ
Zw, T

γ
Zw〉L2 ≥ k γ‖T γ

Zw‖2
L2 ,

(c) ‖w‖2
L2 ≤ C

(

‖T γ
Zw‖2

L2 + 1
γ ‖w‖2

L2

)

.

Proof.

(a) Let us take γ sufficiently large, then our result follows from the properties
of the symmetrizer and the Theorems B.8, B.9.

(b) Since H(V (x)), K(V −(x)) ∈ Γ0
1 satisfy the hypotheses of the Theorem B.10

for m = 0, the second estimate holds.
(c) Since Z∗Z ∈ Γ0

1 satisfies the conditions of the Theorem B.10, for m = 0, by
using the Theorems B.8, B.9, we get the last estimate.

Hence by the estimates of the previous lemma, we have

Re 〈T γ
Pw,w〉L2 ≥ 2Re 〈T γ

FT
γ
Zw, T

γ
Zw〉L2 − C‖w‖2

L2 ≥ γ k

2
‖w‖2

L2 .
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Thus for γ sufficiently large

〈(RγJγ + (Jγ)∗Rγ)w,w〉L2 = −Re 〈T γ
Pw,w〉L2

+ Re 〈(RγJγ + (Jγ)∗Rγ + T γ
P )w,w〉L2 ≤ −k γ

3
‖w‖2

L2 ,

so the estimate (43) holds. Finally the estimate (44) is easily obtained by using
the next lemma.

Lemma 3.14. There exist C, k > 0, such that for all w( . , 0) ∈ L2(R), one has

(a) 〈Rγw( . , 0), w( . , 0)〉L2+C Re 〈T γ
(ΠMS)T ΠMS

w( . , 0), w( . , 0)〉L2 ≥k‖w( . , 0)‖2
L2,

(b) Re 〈T γ
(ΠMS)T ΠMS

w( . , 0), w( . , 0)〉L2 ≤ ‖T γ
ΠMSw( . , 0)‖2

L2+ 1
γC‖w‖2

L2 .

Proof. The first estimate follows from the Theorem B.10 and from the properties
of the symmetrizer. The second estimate is a consequence of the Theorems B.8,
B.9.

Since Π ∈ Γ0
1, b ∈ Γ1

1, M ∈ Γ0
1 and S ∈ Γ0

1, by the Theorem B.8, we get

‖T γ
ΠT

γ
b ϕ‖L2 = ‖(T γ

ΠT
γ
b − T γ

Πb)ϕ‖L2 ≤ C ‖ϕ‖L2 ≤ C

γ
‖ϕ‖1,γ ,

‖(T γ
ΠT

γ
MS − T γ

ΠMS)w( . , 0)‖L2 ≤ C‖w( . , 0)‖−1,γ ≤ C

γ
‖w( . , 0)‖L2 .

Because of these two estimates, it follows

‖T γ
ΠMSw( . , 0)‖L2 ≤ C‖iT γ

b ϕ+ T γ
MSw( . , 0)‖L2

+
C

γ

(

‖ϕ‖1,γ + ‖w( . , 0)‖L2

)

.(46)

In order to complete the proof of the Theorem 3.11 we need this last lemma.

Lemma 3.15. There exists γ0 ≥ 1, such that for all γ ≥ γ0 and ϕ,w( . , 0) ∈
L2(R), one has

‖ϕ‖1,γ ≤ C (‖iT γ
b ϕ+ T γ

MSw( . , 0)‖L2 + ‖w( . , 0)‖L2) .

Proof. Since the symbol p(τ, γ) = b∗ b(τ, γ) = (τ2 + γ2) (ρR − ρL)2 ∈ Γ2
1 satisfies

the hypotheses of the Theorem B.10, with m = 2, by using the Theorem B.9, one
can see there exists γ0 ≥ 1, such that for all γ ≥ γ0, it follows

(ρR − ρL)2‖ϕ‖2
1,γ ≤ 2 Re 〈T γ

p ϕ,ϕ〉L2 ≤ C

γ
‖ϕ‖2

1,γ + 2〈ϕ, T γ
p ϕ〉L2 ⇒ C

2
‖ϕ‖2

1,γ

≤ ‖T γ
b ϕ‖2

L2 ⇒
√

C

2
‖ϕ‖1,γ

≤ ‖iT γ
b ϕ+ T γ

MSw( . , 0)‖L2 + ‖w( . , 0)‖L2 .

Now by the Lemmas 3.12, 3.16 and the estimate (46) the proof of the Theorem
3.11 is achieved.
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Appendix A. Computations for the linearization

The linearized system in (W ′, φ′) will be obtained from the perturbed system
(27), that we rewrite in the following way














A0(V
−
ε )∂tV

−
ε +A1(V

−
ε )∂xV

−
ε = F−(V −

ε , x) in −α < φε(t, x) < 0, t > 0 ,

A0(V
+
ε )∂tV

+
ε +A1(V

+
ε )∂xV

+
ε = F+(V −

ε , V +
ε , x) in 0 < φε(t, x) < β, t > 0 ,

∂tφε[f0(Vε)] + ∂xφε[f1(Vε)] = 0 on φε(t, x) = 0, t > 0 ,

where φε(t, x) = x + εφ′(t, x). The dependence of the domain on ε is a problem
which can be solved turning to a fixed domain. For this purpose it is sufficient to
make the following change of coordinates

(t, x) 7→ (t̃, x̃) = (t, φε(t, x)) .

We observe that this change of coordinates makes sense for ε small enough, since
in this case ∂xφε(t̃, .) > 0, for every t̃ > 0. In the new variables the surface
{−α < φε(t, x) < 0} becomes the fixed domain {−α < x̃ < 0}, the surface
{0 < φε(t, x) < −β} becomes the fixed domain {0 < x̃ < −β} and the line
{φε(t, x) = 0} becomes {x̃ = 0}. Since moreover

∂t = ∂t̃ + ∂tφε ∂x̃ and ∂x = ∂xφε ∂x̃ ,

the previous system becomes










































A0(Ṽ
−
ε )∂t̃Ṽ

−
ε + Ã1(Ṽ

−
ε , (∇φε)(t̃, φε(t̃, . )

−1(x̃)) ∂x̃Ṽ
−
ε

= F−(Ṽ −
ε , x̃) in −α < x̃ < 0, t̃ > 0 ,

A0(Ṽ
+
ε )∂t̃Ṽ

+
ε + Ã1(Ṽ

+
ε , (∇φε)(t̃, φε(t̃, . )

−1(x̃)) ∂x̃Ṽ
+
ε

= F+(Ṽ −
ε , Ṽ +

ε , x̃) in 0 < x̃ < β, t̃ > 0 ,

(∂tφε)(t̃, φε(t̃, . )
−1(x̃)) [f0(Ṽε)]

+(∂xφε)(t̃, φε(t̃, . )
−1(x̃)) [f1(Ṽε)] = 0 on x̃ = 0, t > 0 ,

where Ṽ ±
ε (t̃, x̃) := V ±

ε (t̃, φε(t̃, . )
−1(x̃)),

F−(Ṽ −
ε , x̃)

=
(

0, ρ̃−ε (t̃, x̃)
(

E+

∫ x̃

−α

(ρ̃−ε (t̃, y)− d̃(y))
∂

∂y

(

φε(t̃, . )
−1(y)

)

dy− 1

τ
ũ−ε (t̃, x̃)

))T

,

F+(Ṽ −
ε , Ṽ +

ε , x̃) =
(

0, ρ̃+
ε (t̃, x̃)

(

E +

∫ 0

−α

(ρ̃−ε (t̃, y) − d̃(y))
∂

∂y

(

φε(t̃, .)
−1(y)

)

dy

+

∫ x̃

0

(ρ̃+
ε (t̃, y) − d̃(y))

∂

∂y

(

φε(t̃, .)
−1(y)

)

dy − 1

τ
ũ+

ε (t̃, x̃)
))T

,

and

Ã1(V
±
ε (t, x),∇φε(t, x)) : = (∂xφε)(t, x)A1(V

±
ε (t, x))

+ (∂tφε)(t, x)A0(V
±
ε (t, x)) .
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Elementary computations show that

d

dε

(

(∇φε) (t̃, φε(t̃, . )
−1(x̃))

)∣

∣

∣

ε=0
= (∇φ′) ( t̃, x̃), (∇φε) (t̃, φε(t̃, . )

−1(x̃))
∣

∣

∣

ε=0
=

(

0

1

)

,

d

dε

(

φε(t̃, . )
−1(x̃)

)∣

∣

∣

ε=0
= −φ′( t̃, x̃),

( ∂

∂y

(

φε(t, . )
−1(y)

)

)∣

∣

∣

ε=0
= 1 .

Therefore by using the foregoing equalities easily one finds that

d

dε

(

A0(Ṽε)∂t̃Ṽε + Ã1(Ṽε, (∇φε)(t̃, φε(t̃, . )
−1(x̃)) ∂x̃Ṽε

)∣

∣

∣

ε=0
= A0(Ṽ )∂t̃(W̃

′ + φ′∂x̃Ṽ )

+A1(Ṽ )∂x̃(W̃ ′+ φ′∂x̃Ṽ ) − φ′A1(Ṽ )∂2
x̃Ṽ + ∂x̃A1(Ṽ )W̃ ′ ,

d

dε

(

F−(Ṽ −
ε , φε(t̃, . )

−1(x̃))
)∣

∣

∣

ε=0
= ρ̃

′−
(

E +

∫ x̃

−α

(ρ̃− − d)(y) dy − 1

τ
ũ−
)

+ ρ̃−
(

∫ x̃

−α

(

ρ̃
′−(t̃, y) − φ′x̃(t̃, y)(ρ̃− − d)(y)

)

dy − 1

τ
ũ

′−
)

,

d

dε

(

F+(Ṽ −
ε , Ṽ +

ε , φε(t̃, . )
−1(x̃))

)

∣

∣

∣

ε=0
= ρ̃

′+
(

E +

∫ 0

−α

(

ρ̃−(y) − d(y)
)

dy

+

∫ x̃

0

(

ρ̃+(y) − d(y)
)

dy − 1

τ
ũ+
)

+ ρ̃+
(

∫ 0

−α

(

ρ̃
′−(t̃, y)−φ′x̃(t̃, y)(ρ̃−−d)(y)

)

dy

+

∫ x̃

0

(

ρ̃
′+(t̃, y) − φ′x̃(t̃, y)(ρ̃+ − d)(y)

)

d− 1

τ
ũ

′+
)

,

d

dε

(

∂t φε(t̃, φε(t̃, . )
−1(x̃)) [f0(Vε)] + ∂xφε(t̃, φε(t̃, . )

−1(x̃)) [f1(Vε)]
)

∣

∣

∣

ε=0
= 0

⇔ ∂t̃φ
′(t̃, x̃) [f0(Ṽ (t̃, x̃))] + [A1(Ṽ (t̃, x̃))W̃ ′(t̃, x̃)] = 0 ,

and the linear equations are























































A0(Ṽ
−)∂t̃(W̃

′− + φ′∂x̃Ṽ
−) +A1(Ṽ

−)∂x̃(W̃
′− + φ′∂x̃Ṽ

−)

= C̃(Ṽ −, x̃)W̃
′−+ φ′D(Ṽ −) + ρ̃−

∫ x̃

−α
(0, ρ̃

′−(t̃, y)

−φ′x̃(t̃, y)(ρ̃−− d)(y))T dy in −α < x̃ < 0, t̃ > 0

A0(Ṽ
+)∂t̃(W̃

′+ + φ′∂x̃Ṽ
+) +A1(Ṽ

+)∂x̃(W̃
′+ + φ′∂x̃Ṽ

+)

= C̃(Ṽ +, x̃)W̃
′++ φ′D(Ṽ +) + ρ̃+

∫ x̃

−α(0, ρ̃
′(t̃, y)

−φ′x̃(t̃, y)(ρ̃− d)(y))T dy in 0 < x̃ < β, t̃ > 0

∂t̃φ
′[f0(Ṽ )] + [A1(Ṽ )W̃ ′] = 0 on x̃ = 0

where

C̃(Ṽ , x̃) :=

(

0 0

E +
∫ x̃

−α
(ρ̃− d)(y) dy − 1

τ ũ − 1
τ ρ̃

)

− ∂x̃A1(Ṽ )
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and

D(Ṽ ) := A1(Ṽ )∂2
x̃Ṽ .

Appendix B. The paradifferential calculus

The purpose of this appendix is to recall the results of the paradifferential theory
that are necessary for our proofs. We will not give the proofs because they can be
found in [18] and because they are extentions of the results given in [2] and [5] to
the framework of parameter depending operators.

B.1. Introduction.

Definition B.1. For s ∈ R, we denote with Hs(R) the Sobolev space of tem-
perate distributions v ∈ S ′(R) such that (1 + ξ2)s/2Ftv ∈ L2(R). We equip this
space with the γ-family of norms

‖ v ‖2
s,γ =

∫

R

(γ2 + ξ2)s |Ftv|2(ξ) dξ .

Clearly this norm is equivalent to the norm ‖ . ‖1,γ given in the section 3 when
s = 1. Let us consider a fixed γ ≥ 1. Recalling that the spectrum of a function is
the support of its Fourier transform, we introduce the spaces Γm

k and the spaces
Σm

k of the symbols for our paradifferential operators, m∈R, k = 0,1.

Definition B.2. Let m ∈ R.

Γm
0 = { a : (t, τ, γ) ∈ R × R × [1, ∞) → a(t, τ, γ) ∈ C | a ∈ L∞

loc(R × R ×
[1, ∞)), a(t, . , γ) ∈ C∞(R) for all (t, γ) ∈ R × [1, ∞), and for all β ∈ N
there exists Cβ>0 such that |∂β

τ a|(t, τ, γ)≤Cβ(γ+ |τ |)m−β for all (t, τ, γ) ∈
R × R × [ 1, ∞) },

Γm

1
= { a ∈ Γm

0 | ∂ta ∈ Γm
0 },

Σm
0 = { σ ∈ Γm

0 | there exists ε ∈ (0, 1] such that spec σ( . , τ, γ) ⊆ { η ∈ R : |η| ≤
ε(γ2 + τ2)1/2 } for all (τ, γ) ∈ R × [1,∞) },

Σm

1
= Γm

1 ∩ Σm
0 .

Now, if a symbol σ ∈ Σm
0 , m ∈ R, the corresponding paradifferential operator

is

P γ
σ v(t) =

1√
2π

∫

R

eiτtσ(t, τ, γ)(Ftv)(τ) dτ , v ∈ S′(R) .(47)

To build a symbol starting from a Γm
k -function we need an admissible cut-off.

Definition B.3. A function ψ(η, τ, γ) ∈ C∞(R × R × [1,∞)) is an admissible
cut-off if

• 0 ≤ ψ(η, τ, γ) ≤ 1 for all (η, τ, γ) ∈ R × R × [1,∞);
• there are two constants ε1 and ε2 such that 0 < ε1 < ε2 ≤ 1 and

ψ(η, τ, γ) = 1 for |η| ≤ ε1(γ
2 + τ2)1/2 ,

ψ(η, τ, γ) = 0 for |η| ≥ ε2(γ
2 + τ2)1/2 ;
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• for all (α, β) ∈ N × N there is Cα,β > 0 such that

|∂α
τ ∂

β
ηψ|(η, τ, γ) ≤

Cα,β

(γ + |τ |)α+β

The way to associate to any function of Γm
k , k = 0, 1, a symbol of Σm

k is given
by the following proposition.

Proposition B.4. Let m ∈ R. If a ∈ Γm
k , k = 0, 1, then

σa(t, τ, γ) = (2π)−1/2(F−1
η ψ ∗t a)(t, τ, γ) ∈ Σm

k .

So we can associate to a ∈ Γm
0 , m ∈ R, the operator T γ

a : S ′(R) → S′(R)
defined by T γ

a = P γ
σa

for all γ ≥ 1.

Definition B.5. A family of operators {P γ}γ≥1 is m-regularizing, m ∈ R, if for
all s ∈ R it results that

P γ : (Hs(R), ‖ . ‖s,γ) −→ (Hs+m(R), ‖ . ‖s+m,γ)

is continuous uniformly respect to γ, i.e. P γ(Hs(R)) ⊆ Hs+m,γ(R) and there
exists a constant C > 0 such that ‖P γv‖s+m,γ ≤ C ‖v‖s,γ for all v ∈ Hs(R) and
γ ≥ 1.

Proposition B.6. If σ ∈ Σm
0 , m ∈ R, then {P γ

σ }γ≥1 is −m-regularizing.

B.2. The main theorems of paradifferential calculus. In this last subsec-
tion we give the four theorems which have been used to obtain the maximal L2

estimates.

Theorem B.7. If a(t) ∈ L∞(R) then {T γ
a }γ≥1 is 0-regularizing.

If further a ∈W 1,∞(R) then there is a constant C > 0 such that for all γ ≥ 1

‖av − T γ
a v‖L2(R) ≤

C

γ
‖v‖L2(R) ‖a‖W 1,∞(R) for all v ∈ L2(R) ,

‖a ∂tv − T γ
a ∂tv‖L2(R) ≤ C‖v‖L2(R) ‖a‖W 1,∞(R) for all v ∈ H1(R) .

Theorem B.8. If a ∈ Γm
1 , m ∈ R, b ∈ Γm′

1 , m′ ∈ N, then T γ
a ◦ T γ

b − T γ
ab is

(1 −m−m′)-regularizing.

Theorem B.9. If a ∈ Γm
1 , then (T γ

a )∗ − T γ
a is 1 −m-regularizing.

Theorem B.10. If a ∈ Γm
1 and there is a constant C > 0 such that

Re a(t, τ, γ) ≥ C(γ2 + τ2)m/2 for all (t, τ, γ) ∈ R × R × [1,∞) ,

then there exists a constant γ0 ≥ 1 such that

C

2
‖v‖2

m/2,γ ≤ Re 〈T γ
a v, v〉L2(R) for all v ∈ Hm(R) and γ ≥ γ0 .
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