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THE SYMMETRY OF UNIT IDEAL STABLE RANGE

CONDITIONS

HUANYIN CHEN AND MIAOSEN CHEN

Abstract. In this paper, we prove that unit ideal-stable range condition is
right and left symmetric.

Let I be an ideal of a ring R. Following the first author(see [1]), (a11, a12) is
an (I)-unimodular row in case there exists some invertible matrix A = (aij)2×2 ∈
GL2(R, I). We say that R satisfies unit I-stable range provided that for any (I)-
unimodular row (a11, a12), there exist u, v ∈ GL1(R, I) such that a11u + a12v =
1. The condition above is very useful in the study of algebraic K-theory and
it is more stronger than (ideal)-stable range condition. It is well known that
K1(R, I) ∼= GL1(R, I)/V (R, I) provided that R satisfies unit I-stable range, where
V (R, I) = {(1+ab)(1+ba)−1 | 1+ab ∈ U(R), (1+ab)(1+ba)−1 ≡ 1( mod I)}(see
[2, Theorem 1.2]). In [3], K2 group was studied for commutative rings satisfying
unit ideal-stable range and it was shown that K2(R, I) is generated by 〈a, b, c〉∗
provided that R is a commutative ring satisfying unit I-stable range. We refer the
reader to [4-10], the papers related to stable range conditions.

In this paper, we investigate representations of general linear groups for ideals of
a ring and show that unit ideal-stable range condition is right and left symmetric.

Throughout, all rings are associative with identity. Mn(R) denotes the ring of
n × n matrices over R and GLn(R, I) denotes the set {A ∈ GLn(R) | A ≡ In

(

mod Mn(I)
)

}, where GLn(R) is the n dimensional general linear group of R and

In = diag (1, . . . , 1)n×n. Write B12(x) =

(

1 x
0 1

)

and B21(x) =

(

1 0
x 1

)

. We

always use [u, v] to denote the matrix diag (u, v).

Theorem 1. Let I be an ideal of a ring R. Then the following properties are

equivalent:

(1) R satisfies unit I-stable range.

(2) For any A ∈ GL2(R, I), there exist u, v, w ∈ GL1(R, I) such that A =
[u, v]B21(∗)B12(∗)B21(−w).
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Proof. (1) ⇒ (2) Pick A = (aij)2×2 ∈ GL2(R, I). Then we have u1, v1 ∈

GL1(R, I) such that a11u1 + a12v1 = 1. So a11 + a12v1u
−1
1 = u−1

1 ; hence,

AB21(v1u
−1
1 ) =

(

u−1
1 a12

a21 + a22v1u
−1
1 a22

)

. Let v = a22 − (a21 + a22v1u
−1
1 )u1a12.

Then AB21(v1u
−1
1 ) = B21

(

(a21 + a22v1u
−1
1 )u1

)

(

u−1
1 a12

0 v

)

. It follows from

A,B21(v1u
−1
1 ),B21

(

(a21 + a22v1u
−1
1 )u1

)

∈ GL2(R) that

(

u−1
1 a12

0 v

)

∈ GL2(R).

In addition,

(

u−1
1 a12

0 v

)

=

(

u−1
1 0
0 v

)(

1 u1a12

0 1

)

and

(

1 u1a12

0 1

)

∈ GL2(R).

This infers that [u−1
1 , v] ∈ GL2(R), and so v ∈ U(R). Set u = u−1

1 , and
w = v1u

−1
1 . Then A = [u, v]B21(∗)B12(∗)B21(−w). Clearly, u,w ∈ GL1(R, I).

From a22 ∈ 1 + I and a12 ∈ I, we have v ∈ GL1(R, I), as required.

(2) ⇒ (1) For any (I)-unimodular row (a11, a12), we get A = (aij)2×2 ∈
GL2(R, I). So there exist u, v, w ∈ GL1(R, I) such that A = [u, v]B21(∗)B12(∗)
B21(−w). Hence AB21(w) = [u, v]B21(∗)B12(∗), and then a11 + a12w = u. That
is, a11u

−1 + a12wu
−1 = 1. As u−1, wu−1 ∈ GL1(R, I), we are done. �

Let Z be the integer domain, 4Z the principal ideal of Z. Then 1 ∈ GL1(Z, 4Z),
while −1 6∈ GL1(Z, 4Z). But we observe the following fact.

Corollary 2. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) For any A ∈ GL2(R, I), there exist u, v, w ∈ GL1(R, I) such that A =
[u, v]B21(w)B12(∗)B21(∗).

Proof. (1) ⇒ (2) Given any A = (aij)2×2 ∈ GL2(R, I), then A−1 ∈ GL2(R, I).

By Theorem 1, we have u, v, w ∈ GL1(R, I) such that A−1 = [u, v]B21(∗)B12(∗)
B21(−w). Thus A = B21(w)B12(∗)B21(∗)[u

−1, v−1] = [u−1, v−1]B21(vwu
−1)

B12(∗)B21(∗). Clearly, u−1, v−1, vwu−1 ∈ GL1(R, I), as required.

(2) ⇒ (1) Given any A = (aij)2×2 ∈ GL2(R, I), we have u, v, w ∈ GL1(R, I)

such that A−1 = [u, v]B21(w)B12(∗) B21(∗), and so A = B21(∗)B12(∗)B21(−w)
[u−1, v−1] = [u−1, v−1]B21(∗)B12(∗) B21(−vwu

−1). It follows by Theorem 1 that
R satisfies unit I-stable range. �

Theorem 3. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) For any A ∈ GL2(R, I), there exist u, v, w ∈ GL1(R, I) such that A =
[u, v]B12(∗)B21(∗)B12(−w).

(3) For any A ∈ GL2(R, I), there exist u, v, w ∈ GL1(R, I) such that A =
[u, v]B12(w)B21(∗)B12(∗).

Proof. (1) ⇒ (2) Observe that if A ∈ GL2(R, I), then the matrix P−1AP belongs

to GL2(R, I), where P =

(

0 1
1 0

)

. Thus the formula in Theorem 1 can be replaced
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by
A = (P[u, v]P−1)(PB21(∗)P

−1)(PB12(∗)P
−1)(PB21(−w)P−1) .

That is, A = [v, u]B12(∗)B21(∗)B12(−w), as required.

(2) ⇒ (1) For any (I)-unimodular (a11, a12) row,

(

∗ ∗
a12 a11

)

∈ GL2(R, I). So

we have u, v, w ∈ GL1(R, I) such that

(

∗ ∗
a12 a11

)

= [u, v]B12(∗)B21(∗) B12(−w).

Thus a11 + a12w = v; hence, a11v
−1 + a12wv

−1 = 1. Obviously, v−1, wv−1 ∈
GL1(R, I), as required.

(2) ⇔ (3) is obtained by applying (1) ⇔ (2) to the inverse matrix of an invertible
matrix A. �

Let I be an ideal of a ring R. We use Rop to denote the opposite ring of R and
use Iop to denote the corresponding ideal of I in Rop.

Corollary 4. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) Rop satisfies unit Iop-stable range.

Proof. (2) ⇒ (1) Construct a map ϕ : M2(R
op) → M2(R)op by ϕ

(

(aop
ij )2×2

)

=
(

(aij)
T
2×2

)op
. It is easy to check that ϕ is a ring isomorphism.

Given any A ∈ GL2(R, I), ϕ
−1
(

P op(A−1)op(P−1)op
)

∈ GL2(R
op, Iop), where

P = [1,−1]. By Theorem 1, there exist uop, vop, wop ∈ GL1(R
op, Iop) such

that ϕ−1
(

P op(A−1)op(P−1)op
)

= [uop, vop]B21(∗
op) B12(∗

op)B21(−w
op), whence

P−1A−1P = B12(−w)B21(∗)B12(∗)[u, v]. This means that P−1AP = [u−1, v−1]
B12(∗)B21(∗)B12(w). So A = (P [u−1, v−1]P−1)(PB12(∗)P

−1)(PB21(∗)P
−1)

(PB12(w)P−1). Hence A = [u−1, v−1]B12(∗)B21(∗)B12(−w). Clearly, u−1, v−1,
uwv−1 ∈ GL1(R, I). According to Theorem 3, R satisfies unit I-stable range.

(1) ⇒ (2) is symmetric. �

Theorem 5. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) For any (I)-unimodular (a11, a12) row, there exist u, v ∈ GL1(R, I) such

that a11u− a12v = 1.
(3) For any A ∈ GL2(R, I), there exist u, v, w ∈ GL1(R, I) such that A =

u, v]B21(∗)B12(∗)B21(w).

Proof. (1) ⇔ (2) Observe that

(

a11 a12

a21 a22

)

∈ GL2(R, I) if and only if
(

a11 −a12

−a21 a22

)

∈ GL2(R, I). Thus (a11,−a12) is an (I)-unimodular row if and

only if so is (a11, a12), as required.

(2) ⇔ (3) is similar to Theorem 1. �

Let I be an ideal of a ring R. As a consequence of Theorem 5, we prove that
R satisfies unit I-stable range if and only if for any A ∈ GL2(R, I), there exist
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u, v, w ∈ GL1(R, I) such that A = [u, v]B12(∗)B21(∗)B12(w). We say that

(

a11

a21

)

is an (I)-unimodular column in case there exists A = (aij)2×2 ∈ GL2(R, I). By
the symmetry, we can derive the following.

Corollary 6. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) For any (I)-unimodular column

(

a11

a21

)

, there exist u, v ∈ GL1(R, I) such

that ua11 + va21 = 1.

(3) For any (I)-unimodular column

(

a11

a21

)

, there exist u, v ∈ GL1(R, I) such

that ua11 − va21 = 1.

Suppose that R satisfies unit I-stable range. We claim that every element
in I is an difference of two elements in GL1(R, I). For any a ∈ I, we have
(

1 a
a 1 + a2

)

= B21(a)B12(a) ∈ GL2(R, I). This means that (1, a) is an (I)-

unimodular. So we have some u, v ∈ GL1(R, I) such that u + av = 1. Hence
a = v−1 − uv−1, as asserted.

Let I be an ideal of a ring R. Define QM2(R) =
{

(

a b
c d

)

| a + c = b +

d, a, b, c, d ∈ R
}

and QM2(I) =
{

(

a b
c d

)

| a + c = b + d, a, b, c, d ∈ I
}

. Define

QTM2(R) =
{

(

a b
c d

)

| a+ b = c + d, a, b, c, d ∈ R
}

and QTM2(I) =
{

(

a b
c d

)

| a+b = c+d, a, b, c, d ∈ I
}

. As an application of the symmetry of unit ideal-stable

range condition, we derive the following.

Theorem 7. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R satisfies unit I-stable range.

(2) QM2(R) satisfies unit QM2(I)-stable range.

(3) QMT
2 (R) satisfies unit QMT

2 (I)-stable range.

Proof. (1) ⇒ (2) Let TM2(R) denote the ring of all 2×2 lower triangular matrices
overR, and let TM2(I) denote the ideal of all 2×2 lower triangular matrices over I.

If (A11,A12) , where A11 =

(

a11 0
a21 a22

)

and A12 =

(

b11 0
b21 b22

)

, is a unimodular

row, then (a11, b11) and (a22, b22) are unimodular rows, and so a11u1 + b11v1 = 1
and a22u2+b22v2 = 1 for some u1, u2, v1, v2 ∈ GL1(R, I). Then there are matrices

U =

(

u1 0
∗∗ u2

)

,V =

(

v1 0
∗∗ v2

)

such that A11U+A12V = I. Now we construct a

map ψ : QM2(R) → TM2(R) given by

(

a b
c d

)

→

(

a+ c 0
c d− c

)

for

(

a b
c d

)

∈

QM2(R). For any

(

x 0
z y

)

∈ TM2(R), we have ψ

(

(

x− z x− y − z
z y + z

)

)

=
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(

x 0
z y

)

. Thus it is easy to verify that ψ is a ring isomorphism. Also we get that

ψ |QM2(I) is an isomorphism from QM2(I) to TM2(I). Therefore QM2(R) satisfies
unit QM2(I)-stable range.

(2) ⇒ (1) As QM2(R) satisfies unit QM2(I)-stable range, we deduce that

TM2(R) satisfies unit TM2(I)-stable range. Given any

(

a b
c d

)

∈ GL2(R, I),

then










(

a 0
0 1

) (

b 0
0 0

)

(

c 0
0 0

) (

d 0
0 1

)











∈ GL2

(

TMn(R), TMn(I)
)

.

Thus we have

(

u 0
∗∗ v

)

∈ GL1

(

TM2(R), TM2(I)
)

such that

(

a 0
0 1

)

+

(

b 0
0 0

)

(

u 0
∗∗ v

)

∈ GL1

(

TM2(R), TM2(I)
)

. Therefore a + bu ∈ GL1(R, I) and u ∈

GL1(R, I), as desired.

(1) ⇔ (3) Clearly, we have an anti-isomorphism ψ : QTM2(R) → QM2(R
op)

given by ψ

(

(

a b
c d

)

)

=

(

aop cop

bop dop

)

for any

(

a b
c d

)

∈ QTM2(R). Hence

QTM2(R) ∼=
(

QM2(R
op)
)op

. Likewise, we have QTM2(I) ∼=
(

QM2(I
op)
)op

. Thus
we complete the proof by Corollary 4. �

It follows by Theorem 7 that R satisfies unit 1-stable range if and only if so
does QM2(R) if and only if so does QMT

2 (R).
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