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SOLUTIONS OF A MULTI-POINT BOUNDARY VALUE
PROBLEM FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS
AT RESONANCE (IT)

YUJI LIUL2 AND WEIGAO GE!

ABSTRACT. In this paper, we are concerned with the existence of solutions
of the following multi-point boundary value problem consisting of the higher-
order differential equation

®) e = (a2 (@), ..,a D @B) +e(t), 0<t<1,

and the following multi-point boundary value conditions

+D0)=0 for i=0,1,...,n—3,
(**) 20 (0) = az™ V), 2D (A) =D B ().
=1

Sufficient conditions for the existence of at least one solution of the BVP (x)
and (x*) at resonance are established. The results obtained generalize and
complement those in [13, 14]. This paper is directly motivated by Liu and Yu
[J. Pure Appl. Math. 33 (4)(2002), 475-494 and Appl. Math. Comput. 136
(2003), 353-377].

1. INTRODUCTION

Recently, there has been considerable interest in the solvability of multi-point
boundary value problems for second order differential equations, which can arise in
many applications, we refer the reader to the monographs [1-3] and the references
[6-11, 19-21].

In [14], Liu and Yu studied the existence of solutions of the following multi-point
boundary value problem

2'(t) = f(t,x(t),2' () +e(t), 0<t<1,

1

W 7(0) = aa'(6), (1) = f(n).
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where f is continuous, o > 0 and 8 > 0, e € L[0,1]. They proved that, under
some assumptions, BVP (1) has at least one solution in the following cases:

Case 1. a =1, 3 =0 (see [14, Theorem 2.2]);
Case 2. a =1, =1/n (see [14, Theorem 2.4]);
Case 3. a=1, =1 (see [14, Theorem 2.6));
Case 4. a =0, =1 (see [14, Theorem 2.8]).

In [14], Liu studied the solvability of the following multi-point boundary value
problem

) {z”(t) = f(t,z(t),2'(t)) +e(t), O0<t<1,

'(0) = az'(£), z(1) = 321 Bix(m),

where 0 < < - <np <1, 8, € R,0<E <1, a>0and f is continuous. He
established the existence results for the following cases:

Case 1. a=1,>" 03=0 %", 6n #1 (see [15, Theorem 3.1]);
Case 2'. a=1,>" Bin=1,>" Bin? #1 (see [15, Theorem 3.2]);
Case 3. a=1,1->" 8= ", Bimi —1#1 (see [15, Theorem 3.3]);
Case 4’. o = 07 Z?ll 61 = 1, Z?ll ﬁﬂh —1=1and Z:il 617]742 7& 1

(see [15, Theorem 3.4]).

We note that if
11—« 0 .
1300 B 1=300 5

then the linear operator Lz(t) = z”/(t) defined in a suitable Banach space is not
invertible, i.e. the problem

2’(t) =0, 0<t<1,
a'(0) = aa'(§),  x(1) =331, Biw(ns)

has non-trivial solutions, which is called resonance case, i.e. dimKerZ > 1. In
Cases 1’ — 4’ and 1-4 mentioned above, we find dim Ker L = 1. It is easy to check

that if
a=1, Y fmi=1 and ) fi=1,
i=1 i=1

then dim Ker L = 2. However, this case was not discussed in [14, 15] by Liu and
Yu.

Furthermore, to the best of our knowledge, there has been no paper concerned
with the existence of solutions of the multi-point boundary value problems for
higher-order differential equations at resonance, although there were considerable
papers concerned with the existence of positive solutions or solutions of higher-
order differential equations at non-resonance cases, we refer the reader to [1-3]
and the papers [4, 5, 16].

0,
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Motivated and inspired by Liu [14, 15], we are concerned with the following
higher-order differential equation

(3) e (t) = f(t,z(t), 2’ (t),...,2"V@) +e(t), 0<t<1,

subjected to the following multi-point boundary value conditions
z@D(0) =0 for ¢+=0,1,...,n—3,

(4) (=10} = qz(»=1) (n=2)(1) = S (n—2)
a"(0) = ax"H(E), 2TH(1) =300, BT (i),

where 0 < (< 1,0<m < - <npn<l,a€R, B, € Ri=1,...,m) are fixed
and f is continuous, e € L*[0,1]. The purpose of this paper is to generalize and
complement the results in [14, 15]. By the way, we, in [17, 18], investigated the
solvability of the following boundary value problems for higher-order differential
equations

e (t) = f(t,z(t),2't),...,a" V(@) +e(t), 0<t<l,
z@D0)=0 for i=0,1,...,n—3,
2D(0) = ax™D(¢),  2V(1) =38, B (i)
and
2™ (t) = f(t,z(t), 2’ t),..., 2" V(t) +e(t), 0<t<l |,
z@D0)=0 for i=0,1,...,n—3,
272(0) = ax=D(¢),  2"V(1) = B2 (1),
respectively. Using the similar method in this paper, we can study the solvability
of the following boundary value problem similar to BVP (3) and (4)
M (t) = f(tz(t),2'(t),...,.2""D@) +e(t), 0<t<l,
z@D0)=0 for i=0,1,...,n—3,
2 D(1) = az D), aV(0) = 2, Bia D () -
We omit the details.
To obtain the main results, we need the following notations and an abstract
existence theorem by Gaines and Mawhin [22, 23].
Let X and Y be Banach spaces, L : D(L) C X — Y be a Fredholm operator
of index zero, P: X — X, @ : Y — Y be projectors such that
ImP=KerL, KerQ=ImL, X =KerL&KerP, Y=ImL&ImQ.

It follows that

L|prynkerp : D(L) NKer P — Im L
is invertible, we denote the inverse of that map by K.
If © is an open bounded subset of X, D(L)NQ # (), map N : X — Y will
be called L-compact on Q if QN(€) is bounded and K,(I — Q)N : Q — X is
compact.

Theorem GM ([22, 23]). Let L be a Fredholm operator of index zero and let N
be L-compact on Q. Assume that the following conditions are satisfied:
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(i) Lz # ANz for every (z,A) € [(D(L)/Ker L) N 99 x (0,1);
(ii) Nx ¢ Im L for every x € Ker L N 08Y;
(iii) deg(AQN |kerr » Q2N KerL,0) # 0, where A : Y/ImL — KerL is the
isomorphism.

Then the equation Lz = Nx has at least one solution in D(L) N Q.

We use the classical Banach space C*[0, 1], let X = C"~1[0,1] and Y = L[0, 1].
C°[0,1] is endowed with the norm ||y||oc = max;e(o.1]|y(t)], X is endowed with the
norm [|z|| = max {||z||s, [|2'][ocs - - -, 2V }. L[0,1] is endowed the norm
|lz||y for z € L[0,1]. We also use the Sobolev space W™1(0,1) defined by

W™0,1) = {z:[0,1] — R such that z,2" ... , 2"~ are absolutely continuous
on [0,1] with z™ e L|0, 1]}.
Define the linear operator L and the nonlinear operator N by
L: XNndomL —Y, Lx(t)=xzM™(t) forze XnNdomL,
N: X—>Y, Nz(t) = f(t,z(t),2'(t),...,a"7I(t)) + e(t) for v € X,

respectively. This paper can be placed in the existence theory of boundary value
problems for ordinary differential equations, The foundation and the most vital
impact on this theory are closely related to mathematicians: Agarwal, O’Regan
and Wong, whose scientific output is represented in monographs [1-3]. It is ob-
served that this particular branch of differential equations has been constantly
developed and gained prominence since the early 1980s.

2. EXISTENCE OF SOLUTIONS OF BVP (3) AND (4)

In this section, we establish the existence results for BVP (3) and (4) in the
following cases:

Case (i) a=1, 221 Bi =1, 2211 Bini = 1;

Case (ii) a=0,>", 6 =1,

Case (iii) a=1,Y " 3=1, X", Bimi #1;

Case (iv) a=1, 37" 8 #1, X0 Bimi = L.

We first consider Case (i). Let

dom L = {a: e W™(0,1), 2D(0)=0for i=0,1,...,n—3,
2=D(1) = 2=V (¢), 2= (1 Zﬁx(" 2)( }

Lemma 2.1. The following results hold.
(i) KerL = {at" L +bt" 2, t €[0,1], a,b € R};
(i) ImL = {y € Y,fo§ y(s)ds = 0, >0 Bi [ (mi — s)y(s)ds = fol(l -
s)y(s) ds};

(iii) L is a Fredholm operator of index zero;
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(iv) There is k € {0,1,...,m} such that

Zﬂz =1 and ) BT #£1;
i=1
(v) There are projectors P: X — X and @ : Y — Y such that Ker L = Im P,
Ker@ = Im L. Furthermore, let Q0 C X be an open bounded subset with
QNdom L #, then N is L-compact on €;
(vi) z(t) is a solution of BVP (3)—(4) if and only if © is a solution of the
operator equation Lx = Nx in dom L.

Proof. (i) Let = € Ker L, then (™ (t) = 0 and 2 (0) = 0 for i = 0,1,...,n — 3
and 2"~V (0) = 2*=V(¢) and 22 (1) = 3", Bz (n;). Tt is easy to get
z(t) = at™ ' +bt" 2, thus x € {at" ' +bt""2: t €[0,1], c € R }. On the other
hand, if z(t) = at"~! + bt" =2, then we find that = € Ker L. This completes the
proof of (i).

(ii) For y € ImL, then there is 2 € dom L such that (™ (t) = y(t) and
zP(0) = 0 for i = 0,1,...,n — 3 and 2" D(0) = (2 (&) and 2"~V (1) =
ST A ™D (). Thus

t _s n—1
x(t) = /0 %y(s) ds 4 at™ ' +bt" 2.

It follows from the boundary value conditions that

1
5 s)ds =0, ) - ds— | (1— ds.
© [ o= Zﬁ/n s = [ (1= syt ds
On the other hand, if (5) holds, let

x(t) = /0 %y(s) ds+at™ ' +0t"" 2, te [0,1].

Then z € dom L N X and Lz = y. Thus the proof of (ii) is completed.

(iii) and (iv) For an integer k, let

¢ sk ds fog sk ds

A =
F 3 Ay

3

where

mzlh—s w—Zm/nrswma
AQ:/O1< )s* 1 ds — Z@/ (i — s)s* ' ds,
Agz/ 1—sst—Z@/ (n; — s)sF ds .
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From (i), dim Ker L = 2. On the other hand, we claim that thereis k € {0,1,...

such that
m i 1
Zﬁi/ (m—s)skds;é/ (1—s)s*ds.
i=1 0 0

In fact, if for all £ € {0,1,...,m}, we have

Zﬁl/ (i — 5)s ds—/ol(l—s)skds.

Consider the equations

1 m ni
xo/ (1—s)skds+2xi/ (i —s)s®ds =0, i=0,1,...,m
0 Pt 0
Since the determinant of coefficients of above equations is
fol(l —s8)ds JHm —s)ds ... " (g — s)ds
D=| s ]
fol(l —s)s™ds [ (m —s)s™ds ... [ ( s™ds

,m}

it is easy to check that D # 0 since 0 < & < & < -+ < §m < 1. We get xg =
Ty = - = &, = 0, this contradicts > ', 3; = 1. Together eith Y ", Bm; = 1,

the proof of (iv) is complete.
If y €Y, let k be defined in (iv), suppose

y— (AtF + Bt 1) e Im L.
It follows that

/01(1_8 2@/ (1 — s)y(s)ds
ot fin o
8( [ a-9sas- Z@/ (1 — )5 ds).

It is easy to see Ay # 0 from (iv). Then we get

fﬁ s)ds fﬁ k=1lds fg skds f(fy(s)ds

Ak A1 AQ ’ Ak A3 Al
Fory €Y, let
k _ h—
o=y — t f(f y(s)ds f(f sk—1ds n g f(f sk ds f(f y(s)ds
Ak Al Az Ak A3 A1
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It is easy to check that yg € Im L. Let
R={at" +0t*1: tc[0,1,ceR}.

We get Y = R+ ImL. Again, RNImL = {0}, so Y = R® ImL. Hence
dimY/Im L = 2. On the other hand, Im L is closed. So L is a Fredholm operator
of index zero. This completes the proof of (iii).

(v) Define the projectors Q@ : ¥ - Y and P: X — X by

Qy(t) = Ll f(f y(s)ds fof =1 dg

Jostds  [yy(s)ds| ooy
Ak A1 2 Al Y ’

tk71
+—— o
Ay As

and

2" D0) oy, 272(0)

Pa(t) = =i (n—2)!

"2 for zeX,

respectively. It is easy to prove that Ker L = Im P and Im L = Ker ). Then the
inverse K, : Im L — dom L N Ker P of the map L : dom L NKer P — Im L can be
written by

t —_s n—1
Kpy(t) :/0 %y(s) ds for yelmlL.

In fact, for y € Im L, we have (LK,)y(t) = y(t). On the other hand, for = €
Ker P Ndom L, it follows that

(K Lyate) = K, e 0) = [ a5 s

S(n=1) £(n-2)
T 1()0!) O T 2(;),) 72 () = alt).

Furthermore, let A : Ker L — R be the isomophism with A(at"~1 + bt""2) =
at® +bt*~1. One has

QNz(t) = Q(f(t,x(t), 2 (t), ...,V () + e(t))

_ S ()2 @), 2t (@) ) ds [ sE ds
k Al AQ
LT shds 5 (a0 2@, 2D (0) 4 eft)) ds| |
Ay As A
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Ky(I = QNa(t) = Ky | (f(t,0(0), (1), .. 2" D (1)) + (1))

(L 0,0, s 0) 4 ) ds S

Ak 1 A2

LTS st s S5 (Fa(t), 2 (), 2D (@) + e(t)) d )]
A | As A

- / %(f(s, w(s),a'(s),. .., 2"V (s)) + e(s)) ds

— (g o (ot @), 270 (0) + e(t) ds JE st ds

A1 AQ
(t—s)
/ e 1 kds
41 € sk ds fo (ft,2(@), 2" (t),...,2"" V(1)) + e(t)) ds
Ak. A3 Ay

t t— n—1
X / ¢3k71 ds).
Since f is continuous, using the Ascoli-Arzela theorem, we can prove that QN (Q)
is bounded and K,(I — Q)N : Q — X is compact, thus N is L-compact on Q.

(vi) The proof is simple and is omitted. O
Theorem 2.1. For Case (i), assume the following conditions hold.
(A1) There exist functions a;(i = 0,1,...,n —1), b and r € L'[0,1] and a
1,.

constant 0 € [0,1) such that for all z; € R(i = 0, 1), the following
inequality hold:

|
—

n

|t 20, 21,2,y 2n—1)] <Y ai()]ai] + b(t)|xn—1]? +r(t);

7—

(A2) There is M > 0 such that for any x € dom L/ Ker L, if |z~ D (t)] > M
for allt € ]0,1], then either

(=)

3
/0 (f(s,2(5),2/(s),...,a "7 (s)) +e(s)) ds £ 0,

or

m

Bi
> / (B — ) (J(s,2(5), 2'(5), ... 2™ (s)) + e(s)) ds

i=1

1
- /0 (1= 3)(f(s,2(s),2(s),... 2D (s)) + e(s))ds #0;
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(As3) There is M* > 0 such that for z(t) = at"~! 4 bt" =2 either the equations

S (f(s,2(s),2'(5),. .., 2™ V(s e(s))ds [fsP1ds
_)\a:(]__)\)AL,c fo(f(’ ()7 ()a A; ())+ ())d f() A2d
= (1- N2 o stds  [5 (f(s,2(s),2(s), .., 2" (s)) + e(s)) ds
r A3 A1
£ / n—1 3 —1
Aa=(1- A)A%C fo (f(s,a:(s),x (s), - A;x( )(3)) + 6(3)) ds fo 322 ds
Mo = (1— A= ng sk ds f(f (f(s,2(s),2'(s),..., 2™V (s)) +e(s)) ds
* AB A1

has no solution (a,b) satisfying |a| > M* or |b| > M*;
(A4) There exist a >0, 3> 0 and Ly > 0 such that
lf(t, o, 21, .. n—1)| > @|xpn_2| — BlTn-1] — L1
for allt € 10,1] and x; € R fori=0,1,...,n—1;
(As) (2+3)(0 i) < 1.
Then BVP (3) and (4) has at least one solution.

Proof. To apply Theorem GM, we should define an open bounded subset 2 of X
so that (i), (ii) and (iii) of Theorem GM hold. To obtain €, we base it upon three
steps. The proof of this theorem is divide the proof into four steps.

Step 1. Let
O ={ze€domL/KerL, Lr = ANz for some X € (0,1)}.

For x € Oy, x ¢=Ker L, A # 0 and Nz € Im L, thus QNz = 0. Then

4
/0 (f(s,2(8),2"(s),...,2" "V (s)) +e(s)) ds = 0,

(6) / (1= 8)(f(s.2(5), 2/(5), ..., 2" D(s)) + e(s)) ds
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Hence by (A3), we know that there is ¢y € [0, 1] such that [#("~1(¢y)| < M. Thus
to
|z~ (0)] < |2V (tg)] + ’/ x(”)(s) ds’
0
1
<M +/ |2 ()| ds < M + ||[Nx||; .

0

Similarly, we have |2("~1) ()| < M + ||[Nz||;. From (6), there ¢; € [0, 1] such that

ft,2(t), 2 (t), ..., (1)) = l/ge(s)ds.
) ) ) ) g o
By (A4), we get
%||e||1 > | f(t,z(t), @' (t1), ..., 270 (8) | = |z 72 (t)| - Bl V(1) — Ly

This implies that

_ _ Ly | lell:
(n=2) (4 \| < B[ n-1) Li | leln
E (t)| < a\x (t1)] + —+ ot
B llell1
«

af

L
< (M | Nafl) + = +

Hence
t1
2020)| = | [ D) - a2 e)
0

1 Ly, Jel

< (n—1) B M LN -1 L

< [ a0+ Sor + [Na) + 2+ 15
p

B Ly el
(0%

<M+ ||Nz|: + +
L
- (5 +1)||Na:||1+ (§+1)M+ 1 lelh

M + §||Nx||1 +

o af
a o al
So

_ 2 m) oy 2 2(0)
Pzl =| T ’|
< [27D(0)] + [0 (0)]

B B
< (S +2)Ivals+ (5 +2)M+

«

L, lels
« al

On the other hand, for z € Q;, then z € dom L/ Ker L and (I — P)z € dom LN
Ker P and LPz = 0. By the definition of K, it is easy to prove that | K,y|| < [ly]1.
Hence

(I = P)a|| = [KpL(I = P)a|| < [[L(I = P)z[ly = [[ L[|y < [| Nz
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Thus one has
=l < [Pzll+[|(I — P)z|
Ly e
< (E +2) [Nl + (é +2)M+ =2+ L llell ”1 + [Nz,
« « o

:(§+3)||Nx||1+(§+2)M+%+@.

It is easy to see for x € X Ndom L that
]| = max {[|2 [loc, "V |oc } -

From (A1), we get

n—1
6 7 n—
ol < (= +38) (3 laallullz®lloo + bl allz" 12 + llells + Ii7l:)
=0

llellx
ag

3 S
<(Z43) (X lasliullzl + ol lll? + lell + Il
1=0
el

+<§+2)M+—+

+ (é + 2)M + 21y
!
Since 6 € [0,1), from the above inequality, there is M7 > 0 such that

lz]| = max {2~ o, 2Vl } < M.

It follows that €27 is bounded.
Step 2. Let

Qy={zx€eKerL: Nz elImlL}.

For x € Qg, then x(t) = at"~! + bt"~2 for some a,b € R. Nz € Im L implies
QNz =0. Thus

JE(s,2(5),2(5), ..., 2D (s)) + e(s))ds = 0,

® fol(l - 5)(f(8, z(s),2'(s), ...,z (s)) + e(s))ds
— X B [y i = 8)(F (s, w(5), 2/ (5), .., 2D (5)) + e(s))ds = 0.

From (Ap), we get that there is t; € [0,1] such that |z(*=D(t;)| < M, i.e.
a(n — 1)!] < M. On the other hand, by (A4), we get from (7) that there is
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t2 € [0, 1] such that

—|| 1> |f(tr, o(t1), @ (t), ..., 27D (t1))]
> o] ()| = Bl ()] ~ L
=ala(n — Dty + b(n —2)!| = Bla(n — 1)!| = L
> alb(n — 2)!| — ala(n — 1)it1| — Bla(n — 1)!| — Ly
> alb(n —2)!| = (a+ B)|a(n —1)!] — Ly .
So alb(n —2)!| <|le|l1 + (a+ B)M + Ly. This shows Qs is bounded.
Step 3. If (a1) in (Asz) holds, let
={zxeKerL: -ANz+(1-XN)QNz=0, A€ [0,1]},

where A is the isomorphism given by A(at"~'4-bt"~2) = atk +bt*~! for all a,b € R.
If (ag) in (Ag) hOldS, Let

={zxeKerL: AMaz+(1-NQNxz=0, A€[0,1]}.

Now, we prove that 23 is bounded in both cases.
In fact, if (a1) holds, and z = at™ ! + bt"~2 € Q3, we have

— Mat® + bt 1)

=1~ /\)<£ Jo (F(s,2(5),2/(5), -, 2" V(s)) + e(s)) ds [y "L ds
Ay = .
+ Pk ds [5(f(s,a(s), 2/ (s), .., 2D (s)) + e(s)) ds ) :
Ap | A3 A

If A\=1, then a = b = 0. Otherwise, we have

da=(1-Nx INEE 2(5)#(8)s - 2 () els) do Jy s ol de
k 1 )
_ 55’6 ds f(sax(s),xl(s),...,x(”fl)(s)) +e(s)) ds
b = (1—/\)—k foA3 Iy ( " ) ds|

It follows from (As) that |a| < M* and |b] < M*. This shows that 3 is bounded.
Similarly to above argument, we can prove that {23 is bounded if (a2) holds.

In the following, we shall show that all conditions of Theorem GM are satisfied.
Set Q be an open bounded subset of X such that Q D U?_;Q,. By Lemma 2.1, L
is a Fredholm operator of index zero and N is L-compact on Q. By the definition
of 2, we have

(a) Lz # ANz for z € (dom L/ Ker L) N 9Q and X € (0,1);
(b) Nz ¢ ImL for x € Ker LN 0N
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Step 4. We prove
(c) deg(QN|kerr, 2N KerL,0)#O0.

In fact, let H(x,\) = £A Az + (1 — \)QNz. According the definition of €2, we
know H(z,\) # 0 for z € 9Q N Ker L, thus by homotopy property of degree,
deg(QN | Ker L, N Ker L,0) = deg(H(-,0),2NKer L,0)
=deg(H(-,1),2NKerL,0)
=deg(N,2NKer L,0) #0.

Thus by Theorem GM, Lz = Nz has at least one solution in dom L N €, which is
a solution of BVP (3)—(4). The proof is complete. O
Now, we consider BVP (3) and (4) in the Case (ii), let

dom L = {z € W™(0,1), 29(0) =0 for i=0,1,...,n =3, " YD(1)=0
(n 2) Zﬁxn 2) ,’71

We have the following lemma and theorem, whose proofs are similar to those of
Lemma 2.1 and Theorem 2.1, respectively, and are omitted.

Lemma 2.2. The following results hold.
(i) KerL = {ct"2, t€0,1], c € R};
.s m i 1
(i) ImL={yey, 337", 3 [ (n: — s)y(s)ds = [, (1 = s)y(s)ds};
(iii) L is a Fredholm operator of index zero;
(iv) There is k € {0,1,...,m} such that

M=- Zﬁl/ (n; — s)s ds—l—/l(l—s)skds;éo;

0

(v) There are projectors P: X — X and Q : Y — Y such that Ker L = Im P
and Ker@Q = Im L. Furthermore, let Q@ C X be an open bounded subset with
QNdom L # ®, then N is L-compact on Q;

(vi) z(t) is a solution of BVP (3)-(4) if and only if x is a solution of the
operator equation Lx = Nx in dom L.

In fact, we have

(n=2)(n
Pz(t) = x(nf;)!)t”_2 for ze€ XnNdomlL,

Qy(t):%(/ol(l—s dS—Zﬂl/ (ni —s)y (s)ds) for yevY,

t —_s n—1
Kpy(t) :/0 %y(s) ds for yelmlL.
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Theorem 2.2. For Case (ii), assume the following conditions hold.

(A1) There exist functions a;(i = 0,1,...,n — 1), b and r € L'[0,1] and a
constant 0 € [0,1) such that for all z; € R( =0,1,...,n — 1), the following
inequality hold:

|f(t,$(), L1, X2, 7xn—1)| < al(t)|xl| + b(t)|$n_1|0 + T(t) ;

|
—

(=)

.

(Ay) There is M > 0 such that for any x € dom L/ Ker L, if |z=2)(t)] > M
for all t € 10,1], then

/0 (1= 8)(f(s,(s),2'(s),... , "D (s)) + e(s)) ds

—Zﬁz/ (n; — ) (f(s,x(s),x’(s),...,a:("_l)(s))+e(s)) ds #0;

(As3) There is M* > 0 such that for any ¢ € R if |c| > M* then either

C</01(1 —8)f(s, es" 2 c(n—2)s" 73, ... c(n — 2)), 0) ds
mo
- Zai/ & — s)f(s, es" 2 c(n—2)s" 73, ..., c(n —2)), 0) ds) <0
i=1 0

or

1
c(/o (L—s)f(s,es" 2 e(n—2)s""2,...,c(n—2)1,0) ds

m &

- «; = 8)f(s,es" 2 e(n—2)s"3, .. e(n—2), S ;

Z: /O(f )f( (n—2) ( 2)'0)d)<0
(As) Y5 llaillh < 5.

Then BVP (3) and (4) has at least one solution.

For Case (iii), let
dom L = {z e W™(0,1), z(0)=0for i =0,1,...,n—3, "D (0) =2V (¢)
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We have the following results, whose proofs are similar to those of Lemma 2.1 and
Theorem 2.1.

Lemma 2.3. The following results hold.
(i) KerL={ct" 2, te [0 1], c € R};
(ii) InL={ye Y fo s)ds =0};
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(iii) L 4s a Fredholm operator of index zero;
(iv) Thereis k€ {0,1,...,m} such that

fjﬁmf* =1 and fjﬁmf #1;
=1

i=1
(v) There are projectors P: X — X and Q : Y — Y such that Ker L = Im P
and Ker@QQ = Im L. Furthermore, let Q@ C X be an open bounded subset with
QNdom L # ®, then N is L-compact on €Q;

(vi) =z(t) is a solution of BVP (3)-(4 ) if and only if x is a solution of the
operator equation Lx = Nx in dom L.

In fact, we have
x(nf2) (0)
(n—2)!

ds for yeY,
SINC

Kylt) = / et o (3 [ [ )

i=1"“"M

Px(t) = t"2 for z€ XnNdomlL,

for y € Im L.

Theorem 2.3. For Case (iii), assume the following conditions hold.

(A1) There exist functions a;(i = 0,1,...,n —1), b and r € L'[0,1] and a
constant 0 € [0,1) such that for all x; € R(i = 0,1,...,n — 1), the following
inequality hold:

n

|t w0, 21, T2,y 1) <Y ai(B)]w| + b(E)|zno1]|® +7(1);

|
—

.
(=)

(A2) There is M > 0 such that for any x € dom L/ Ker L, if [~ D (t)| > M
for all t € ]0,1], then

Zﬁl/ (i — 5) f(s,x(s),x’(s),...,x("*l)(s)) ds

—8) (s, z(s),2'(8), ...,z V(s)) ds:
75/0(1 )f(v()a()’ ’ ())d’

(As3) There is M* > 0 such that for any ¢ € R if |c| > M* then either

C</01(1 —3)f(s, cs" 2 c(n—2)s" 3, ... e(n — 2)), 0) ds
— zm:ai /&' (& —8)f(s,es" 2, c(n—2)s""3,... c(n—2),0) ds) <0
i=1 0
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or

1
C(/o (L—=s)f(s,es" 2 c(n—2)s""2,... c(n—2)1,0) ds

m &i
— Zai/ (& —s)f (s, es" 2 c(n—2)s" 73, ..., c(n —2)), 0) ds) <0;
i=1 0

(Ay4) There exist a >0, 3> 0 and L1 > 0 such that
lf(t,zo, 21, .., Zp1)| = a|Tp_2| — BlTn_1] — L1
for all t € ]0,1] andxlERfori—O,l,...,n—l;
(A5) (2+2) 505 flailh < 1.

Then BVP (3) and (4) has at least one solution.
For Case (iv), let
dom L = {z e W™(0,1),2P(0)=0fori =0,1,...,n—3, 2" (1) = 2"V (¢)

221 Z Bz (n

We have the following results, whose proofs are similar to those of Lemma 2.1 and
Theorem 2.1.

Lemma 2.4. The following results hold.

(i) KerL={ct" ', te [0 1], c € R};

(i) ImL = {yEY fo s)ds =0};

(iii) L is a Fredholm opemtor of index zero;

(iv) There are projectors P: X — X and Q : Y — Y such that Ker L = Im P
and Ker@QQ = Im L. Furthermore, let Q@ C X be an open bounded subset with
QNdomL # ®, then N is L-compact on Q;

(v) =z(t) is a solution of BVP (3)—(4) if and only if x is a solution of the
operator equation Lx = Nx in dom L.

In fact, we have

x("_l)(O)
(n—1)!

ds for yeVY,
SING

[t e
mww-é—@fmw@“—TigﬁEE

X(Al(l—s ds—Zﬁl/ (mi —s)y (s)ds) for y € Im L.

Px(t) = t" ! for z€ XnNdomL,



SOLUTIONS OF BOUNDARY VALUE PROBLEMS 225

Theorem 2.4. For Case (iv), assume the following conditions hold.
(A1) There exist functions a;(i = 0,1,...,n —1), b and r € L'[0,1] and a

constant 0 € [0,1) such that for all z; € R(i = 0,1,...,n — 1), the following
inequality hold:

|
—

n

|t m0, 21, T2,y 1) <Y ai(B)]w| + b(E)|zno1]|® +7(1);

.
(=)

(A3) There is M > 0 such that for any x € dom L/ Ker L, if [~ D (t)| > M
for all t € ]0,1], then

Zﬁi /om (ni — 8)f (s, 2(s),2'(s),. .. ,x("*l)(s)) ds

1 —8) (s, z(s),2'(5), ...,V (s)) ds:
75/0(1 )f(v()a ()’ ’ ())d’

(A3) There is M* > 0 such that for any ¢ € R if |¢c| > M* then either

c(/ol(l —8)f(s,es" te(n—1)s""2%, .. e(n — 1)) ds

- Z@' /O’N (i —8)f(s,es" e(n—1)s" 72, .. .c(n — 1)) ds) <0

or

(A4) There exist « >0, 8> 0 and L1 > 0 such that
lf(t, 20,21,y Xp_1)| > a|Tp—2| — BlTn-1] — L1
for allt €10,1] and ; € R fori=10,1,...,n—1;
(As) (2+2) 205 flailh < 1.

Then BVP (3) and (4) has at least one solution.
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