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DIFFERENTIAL CALCULUS ON ALMOST COMMUTATIVE

ALGEBRAS AND APPLICATIONS TO THE QUANTUM

HYPERPLANE

CĂTĂLIN CIUPALĂ

Abstract. In this paper we introduce a new class of differential graded alge-
bras named DG ρ-algebras and present Lie operations on this kind of algebras.
We give two examples: the algebra of forms and the algebra of noncommuta-
tive differential forms of a ρ-algebra. Then we introduce linear connections on
a ρ-bimodule M over a ρ-algebra A and extend these connections to the space
of forms from A to M . We apply these notions to the quantum hyperplane.

1. Introduction

LetN be a C∞ manifold and C∞(N) the algebra of C∞ functions onN . The ba-
sic properties of N are determinated by the purely algebraic properties of C

∞(N) :
the derivations of C∞(N) are vector fields on N and they form a C∞(N) module in
which forms and the tensor fields together with usual operations can be obtained
within the framework of multilinear algebra of C∞(N) modules. The algebraic
skeleton of differential geometry suggests a piece of mathematics that can stand
on its own and that be associated with an arbitrary commutative algebra. The
next step is to generalize it to the case of noncommutative algebra and to obtain
in this way the noncommutative version of differential geometry. Next we present
the case when the algebra A is from a class of noncommutative algebras which are
almost commutative algebras (ρ-commutative algebras).

In this paper we introduce the notion of differential graded ρ-algebra (DG ρ-
algebra) which is a generalization of DG-algebra and of the DG-superalgebras.
We define Lie operations on a DG ρ-algebra which are the generalizations of Lie
operations on a DG-algebra.

We give two examples of DG ρ-algebras: the algebra of forms Ω(A) of an almost
commutative algebra and the algebra of noncommutative differential forms ΩαA
of a ρ-algebra A. We also present linear connections on a ρ-bimodule M over an
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almost commutative algebra A, then we extend these connections to the space
of forms Ω(A,M) of A with values in the ρ-bimodule M and we introduce the
classical differential operators associated to a such connection. This differential
calculus generalizes the fermionic differential calculus from [9] and extends the
calculus over an almost commutative algebra from [1]. We also introduce distri-
butions on a ρ-bimodule M over a ρ-algebra A, we present parallel and globally
integrable distribution with respect to a M connection. We apply these notions
to the quantum hyperplane.

The paper is organized as follows: In the second section we review the basic
notions concerning almost commutative algebras and the derivations on this kind
of algebras (see [1]). In the third section we define the DG ρ-algebras, the differ-
ential calculus over an almost commutative algebra and present two examples: the
algebra of forms over an almost commutative algebra A denoted by Ω(A) and the
algebra of noncommutative differential forms ΩαA of A. Then we introduce the
Lie operation of a ρ-Lie algebra in a DG ρ-algebra and, as examples, we present Lie
operations on Ω(A) and ΩαA. We also introduce the algebraic Frölicher-Nijenhuis
bracket on the almost commutative algebra A.

In the fourth section we present linear connections on a ρ-bimodule M over
a ρ-algebra A and extend these connections to the algebra Ω(A), we give the
classical differential operators associated to a such connection and prove some
relations between them. In the last section we apply these notions to the quantum
hyperplane.

2. Almost commutative algebras

In this section we present shortly a class of noncommutative algebras which are
almost commutative algebras, for more details see [1].

Let G be an abelian group, additively written, and let A be a G-graded algebra.
This means that, as a vector space, A has a G-grading A = ⊕a∈GAa. Moreover,
AaAb ⊂ Aa+b (a, b ∈ G). The G-degree of a (nonzero) homogeneous element f of
A is denoted as |f |. Furthermore, let ρ : G×G→ k be a map which satisfies

ρ(a, b) = ρ(b, a)−1 , a, b ∈ G ,(1)

ρ(a+ b, c) = ρ(a, c)ρ(b, c) , a, b, c ∈ G .(2)

This implies ρ(a, b) 6= 0, ρ(0, b) = 1, and ρ(c, c) = ±1, for all a, b, c ∈ G, c 6=
0. We define the ρ-commutator [f, g]ρ = fg − ρ(|f | , |g|)gf , where f and g are
homogeneous elements in A.

This expression as it is makes sense only for homogeneous elements f and g,
but it can be extended linearly to general elements. The ρ-commutator has the
following properties:

[Aa, Ab] ⊂ Aa+b , a, b ∈ G ,(3)

[f, g]ρ = −ρ(|f | |g|)[g, f ]ρ ,(4)
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0 = ρ(|f | , |h|)−1[f, [g, h]ρ]ρ + ρ(|g| , |f |)−1[g, [h, f ]ρ]ρ(5)

+ ρ(|h| , |g|)−1[h, [f, g]ρ]ρ

for any homogeneous elements f, g, h ∈ A.
Eq. (4) may be called ρ-antisymmetry and Eq. (5) is the ρ-Jacobi identity. A G-

graded algebra A with a given cocycle ρ is called ρ-algebra. The ρ-algebra A is
ρ-commutative if fg = ρ(|f | , |g|)gf for all homogeneous elements f and g in A.
A ρ-commutative algebra is also called almost commutative algebra.

Let α be an element of the group G. A ρ-derivation X of A, of degree α, is
a linear map X : A→ A, of G-degree |X | i.e. X : A∗ → A∗+|X|, such that has for
all elements f ∈ A|f | and g ∈ A

(6) X(fg) = (Xf)g + ρ(α, |f |)f(Xg) .

Without any difficulties it can be obtained that if the algebra A is ρ-commutative,
f ∈ A|f | and X is a ρ-derivation of degree α, then fX is a ρ-derivation of degree
|f | + α and the G-degree |f | + |X | i.e.

(fX)(gh) = ((fX)g)h+ ρ(|f | + α, |g|)g(fX)h

and fX : A∗ → A∗+|f |+|X|.
We say that X : A → A is a ρ-derivation if it has the degree |X | and the

G-degree |X | i.e. X : A∗ → A∗+|X| and X(fg) = (Xf)g + ρ(|X | , |f |)f(Xg) for
any f ∈ A|f | and g ∈ A.

It is known that the ρ-commutator of two ρ-derivations is again a ρ-derivation
and the linear space of all ρ-derivations is a ρ-Lie algebra, denoted by ρ-Der A.

One verifies immediately that for an almost commutative algebra A, ρ-Der A is
not only a ρ-Lie algebra but also a left A-module with the action of A on ρ-Der A
defined by

(7) (fX)g = f(Xg) f, g ∈ A, X ∈ ρ-Der A .

Let M be a G-graded left module over a ρ-commutative algebra A, with the
usual properties, in particular |fψ| =|f | + |ψ| for f ∈ A, ψ ∈M . Then M is also
a right A-module with the right action on M defined by ψf = ρ(|ψ| , |f |)fψ. In
fact M is a bimodule over A, i.e. f(ψg) = (fψ)g, for any f, g ∈ A, ψ ∈M .

3. Differential graded ρ-algebras

Next we introduce the notion of differential graded ρ-algebras which is a gener-
alization of the usual DG-algebras and the DG-superalgebras. Let G be a group
as in the previous section, ρ : G × G → k a cocycle which satisfies the relations
(1) and (2). We denote by G′=Z ×G and we define the map ρ′ : G′ ×G′ → k by

(8) ρ′ ((n, α) , (m,β)) = (−1)nm ρ (α, β) .

It is obvious that ρ′ satisfies the properties (1) and (2).

Definition 1. We say that Ω = ⊕
(n,α)∈G′

Ωn
α is a differential graded ρ-algebra (DG

ρ-algebra) if there is an element α ∈ G, a differential d of degree (1, α) and the
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G′−degree |d|′ = (1, 0), i.e. there are the following properties:

d2 = 0(9)

and

d(ωθ) = (dω) θ + (−1)
n
ρ (α, |ω|)ωdθ(10)

for any ω ∈ Ωn
|ω| and θ ∈ Ω.

Remark that if we denote by |ω|′ = (n, |ω|) the G′-degree of ω ∈ Ωn
|ω|, the

equality (10) may be written equivalently in the following manner:

d(ωθ) = (dω)θ + ρ′(|d|′ , |ω|′)ωdθ .

Without any difficulties it can be shown that Ω is a ρ′-algebra.

Example 2. In the case when the group G is trivial then the map ρ is identity
and Ω is a DG ρ-algebra then Ω is the usual DG-algebra.

Example 3. When the group G is Z2 and the map ρ(a, b) is (−1)
ab

we obtain
that Ω is DG-superalgebra.

Definition 4. Let A be a ρ-algebra. We say that

(
Ω (A) = ⊕

(n,α)∈G′

Ωn
α (A) , d

)

is a ρ-differential calculus on A if Ω (A) is a differential graded ρ-algebra, Ω (A) is
an A-bimodule and Ω0 (A) = A.

In the following subsections we give other examples of ρ-differential calculus
over a given ρ-algebra A.

3.1. The algebra of forms of a ρ-algebra. In this subsection we construct the
algebra of forms Ω(A) of an almost commutative algebra A (see [1]).

The algebra of forms of an the ρ-algebra A is given in the classical manner:
Ω0(A) := A, and Ωp(A) for p = 1, 2, . . . , as the G-graded space of p-linear maps
αp : ×pρ-Der A→ A, p-linear in sense of left A-modules

αp(fX1, . . . , Xp) = fαp(X1, . . . , Xp) ,(11)

αp(X1, . . . , Xjf,Xj+1, . . . , Xp) = αp(X1, . . . , Xj , fXj+1, . . . Xp)(12)

and ρ-alternating

(13) αp(X1, . . . , , Xj, Xj+1, . . . , Xp)

= −ρ(|Xj | , |Xj+1|)αp(X1, . . . , Xj+1, Xj, . . . , Xp)

for j = 1, . . . , p − 1; Xk ∈ ρ-Der (A), k = 1, . . . , p; f ∈ A and Xf is the right
A-action on ρ-Der A. Ωp(A) is in natural way a G-graded right A-module with

(14) |αp| = |αp(X1, . . . , Xp)| − (|X1| + · · · + |Xp|)

and with the right action of A defined as

(15) (αpf)(X1, . . . , Xp) = αp(X1, . . . , Xp)f .
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From the previous considerations, it follows that Ω(A) = ⊕∞
p=0Ω

p(A) is again
a G-graded A-bimodule.

One defines exterior differentiation as a linear map d : Ωp(A) → Ωp+1(A), for
all p ≥ 0, as

df(X) = X(f),

and for p = 1, 2, . . . ,

dαp(X1, . . . , Xp+1) : =

p+1∑

j=1

(−1)j−1ρ(

j−1∑

i=1

|Xi| , |Xj |)Xjαp(X1, . . . , X̂j, . . . , Xp+1)

+
∑

1≤j<k≤p+1

(−1)j+kρ(

j−1∑

i=1

|Xi| , |Xj |)ρ(

j−1∑

i=1

|Xi| , |Xk|)

× ρ(

k−1∑

i=j+1

|Xi| , |Xk|)αp([Xj , Xk]ρ, . . . , X1, . . . , X̂j ,

. . . , X̂k, . . .Xp+1) .

One can show that d has degree 0, and that d2 = 0.
There is an exterior product Ωp (A) × Ωq (A) → Ωp+q (A), (αp , βq) 7→ αp ∧ βq ,

defined by the ρ-antisymmetrization formula:

αp ∧ βq (X1 , . . . , Xp+q)

=
∑

σ

sign (σ) (ρ-factor)αp

(
Xσ(1), . . . , Xσ(p)

)
βq

(
Xσ(p+1), . . . , Xσ(p+q)

)
.

The sum is over all permutations σ of the cyclic group Sp+q such that σ (1) <
· · · < σ (p) and σ (p+ 1) < · · · < σ (p+ q). The ρ-factor is the product of all
ρ(

∣∣Xσ(j)

∣∣ , |αp |) for p + 1 ≤ j ≤ p + q and all ρ(
∣∣Xσ(j)

∣∣ ,
∣∣Xσ(k)

∣∣)−1 for j < k and
σ(j) > σ(k).

Ω(A) is a G′−graded algebra with the group G′ = Z × G. Denote the G′

degree of αp as |αp |
′
= (p, |αp |). It is easy to see that the map ρ′ : G′ × G′ → k

defined by ρ′((p, a), (q, b)) = (−1)pqρ(a, b) is a cocycle and that Ω(A) is a ρ′-
commutative algebra. Moreover, the map d is a ρ′-derivation of Ω(A) with G′-
degree |d|′ = (+1, 0).

3.2. The algebra of noncommutative differential forms of a ρ-algebra.

Next we present our construction of the algebra of noncommutative differential
forms ΩαA of the ρ-algebra A. This is a generalization of the algebra of noncom-
mutative differential forms of an associative algebra and also is a generalization of
the algebra of noncommutative differential forms of a superalgebra ([10]).

Let α be an arbitrary element ofG. By definition the algebra of noncommutative
differential forms of the ρ-algebra A is the algebra ΩαA generated by the algebra
A and the symbols da, a ∈ A which satisfy the following relations:

1. da is linear in a.
2. the ρ-Leibniz rule: d(ab) = d(a)b+ ρ(α, |a|)adb.
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3. d(1) = 0.
Let Ωn

αA the space of n-forms a0da1 . . . dan , ai ∈ A for any 0≤ i ≤ n. Ωn
αA is

an A-bimodule with the left multiplication

(16) a(a0da1 . . . dan) = aa0da1 . . . dan ,

and with the right multiplication:

(a0da1 . . . dan)an+1 =

n∑

i=1

(−1)n−iρ(α,

n∑

j=i+1

|aj|)(a0da1 . . . d(aiai+1) . . . dan+1)

+ (−1)nρ(α,

n∑

i=1

|aj|)a0a1da2 . . . dan+1 .(17)

ΩαA = ⊕
n∈Z

Ωn
αA is Z-graded algebra with the multiplication

Ωn
αA · Ωm

α A ⊂ Ωn+m
α A

given by:

(a0da1 . . . dan)(an+1dan+2 . . . dam+n) = ((a0da1 . . . dan)an+1)dan+2 . . . dam+n) ,

for any ai ∈ A, 0≤ i ≤ n+m, n,m ∈ N.
We define the G-degree of the n-form a0da1 . . . dan by

|a0da1 . . . dan| =

n∑

i=0

|ai| .

It is obvious that |ωn · ωm| = |ωn| + |ωm| for any homogeneous forms ωn ∈ Ωn
αA

and ωm ∈ Ωm
α A.

Remark 5. ΩαA is a G′ = Z × G-graded algebra with the G′ degree of the n-

form a0da1 . . . dan as follows |a0da1 . . . dan|
′
= (n,

n∑
i=0

|ai|).

We define the cocycle ρ′ : G′ ×G′ → k on the algebra ΩαA in the following way:

ρ′(|a0da1 . . . dan|
′
, |b0db1 . . . dbm|′) = (−1)nmρ

( n∑

i=0

|ai| ,
m∑

i=0

|bi|
)

(18)

or, equivalently,

ρ′(|ωn|
′
, |ωm|′) = (−1)

nm
ρ(|ωn| , |ωm|)(19)

for any ωn ∈ Ωn
αA, ωm ∈ Ωm

α A. It is obvious that ΩαA is a ρ′-algebra. We obtain
that the G′-degree of the map d is (1, 0) i.e. d : Ωn

|ω| → Ωn+1
|ω| and the G′-degree of

an element x ∈ A is |x|′ = (0, |x|).

Theorem 6 ([4]). d : Ω∗
αA→ Ω∗+1

α A satisfies:

d(ωθ) = (dω)θ + (−1)
n
ρ(α, |ω|)ωdθ

for any ω ∈ Ωn
αA, θ ∈ Ωm

α A.



DIFFERENTIAL CALCULUS ON ALMOST COMMUTATIVE ALGEBRAS 365

If we use the notation |d|′ = (1, α) we get that d is a graded derivation of
degree |d|′ and the G′-degree (1, 0), i.e. d : Ω∗

αA → Ω∗+1
α A and d(ωθ) = (dω)θ +

ρ′(|d|′ , |ω|′)ωdθ.
Concluding we have the following result:

Theorem 7. (ΩαA, d) is a ρ-differential calculus over A.

ΩαA is called the algebra of noncommutative differential forms of the ρ-algebraA.

Remark 8. The algebra ΩαA depends by the election of the element α ∈ G.

Example 9. In the case when the group G is trivial, A is an associative algebra
and ΩαA is the algebra of noncommutative differential forms of A from [6].

Example 10. If the group G is Z2 and the cocycle is ρ(a, b) = (−1)ab then A
is a superalgebra and in this case ΩαA is the superalgebra of noncommutative
differential forms of A from [10].

3.3. Operations of a ρ-Lie algebra in a DG ρ-algebra. In this section we
generalize the Lie operation of a Lie algebra into a DG-algebra from ([7]) and
present our definition of an operation of a ρ-Lie algebra into a DG ρ-algebra.

Let L be a ρ-Lie algebra, Ω a DG ρ-algebra both over the group G and the
cocycle ρ : G×G→ k, G′ = G× Z and ρ′ : G′ ×G′ → k be the cocycle from (8).

Definition 11. An operation of the ρ-Lie algebra L in the DG ρ-algebra Ω is a
linear map X 7→ iX of L into the spaces of ρ-derivations of G′-degree (−1, |X |) of
Ω such that one has for any X,Y ∈ L:

iXiY + ρ(|X | , |Y |)iY iX = 0 i.e. [iX , iY ]ρ′ = 0 .

The Lie-derivative LX = [d, iX ]ρ′ is a ρ′-derivation of G′-degree (0, |X |) and
satisfies the following relations [LX , iY ]ρ′ = i[X,Y ]ρ

and [LX , LY ]ρ′ = L[X,Y ]ρ
. This

means that X 7→ LX is a ρ-Lie algebra homomorphism of L into the ρ-Lie algebra
of ρ′-derivations of Ω.

Next we present some examples of operations of a ρ-Lie algebra in a DG ρ-
algebra.

3.3.1. Lie operations of the ρ-Lie algebra ρ-Der A into the DG ρ-algebra Ω(A).
There is a contraction iX : Ω(A) → Ω(A) of G′-degree (-1, |X |) defined in the
following way:

(20) iXαp(X1, . . . , Xp−1) := ρ
( p−1∑

i=1

|Xi| , |X |
)
αp(X,X1, . . . , Xp−1)

and iXα0 = 0, α0 ∈ Ω0(A). The Lie derivation LX : Ω(A) → Ω(A) of G′-degree
(0,|X |) is given by

LXαp(X1 , . . . , Xp) : = ρ
( p∑

i=1

|Xi | , |X |
)
X

(
αp(X,X1 , . . . , Xp−1)

)

−

p∑

i=1

ρ
( p∑

i=1

|Xi | , |X |
)
αp(X1 , . . . , [X,Xi ]ρ, . . . , Xp) ,(21)
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The relations between iX , LX and d are:

[d, d]ρ′ = 0, [d, iX ]ρ′ = LX , [d, LX ]ρ′ = 0 ,

[iX , iY ]ρ′ = 0, [iX , LY ]ρ′ = i[X,Y ]ρ
,

[LX,LY ]
ρ′ = L[X,Y ]ρ

.

So the map X → iX is a Lie operation on the ρ-Lie algebra ρ-Der A into the DG
ρ-algebra Ω(A).

In the second example we continue the noncommutative calculus on a ρ-algebra
from the subsection 3.2.

3.3.2. The Frölicher -Nijenhuis bracket of a ρ-algebra. Next we study the case
when the element α ∈ G is zero and A is a ρ-commutative algebra. In this case
Ω0A is denoted by ΩA.

First we describe the derivations of the algebra ΩA. Denote by Der alg ΩA the
submodule of ΩA of all algebraic derivations, i.e. the ρ-derivations X of ΩA such
that X |Ω0A= 0.

Since any algebraic derivation is determined by its values on Ω1A we get the
isomorphism:

(22) Der alg
(k,α) ΩA ⋍ Hom α(Ω1A,Ωk+1A) ⋍ Der α(Ωk+1A)

where Der alg
(k,α) ΩA is the space of all algebraic ρ′-derivations of G′-degree (k, α),

Hom α(Ω1A,Ωk+1A) is the space of all morphisms from Ω1A to Ωk+1A ofG′-degree
(0,α) and Der α(Ωk+1A) is the space of ρ′-derivations of G′-degree (0,α).

For any derivation X ∈ Der α(Ωk+1A) we will denote by iX the corresponding
algebraic (inner) derivation of ΩA.

In other words the operator may be defined as a ρ′-derivation in ΩA such that:
1) iX : Ωn

βA→ Ωn+k
α+βA,

2) iX(ωθ) = iX(ω)θ + (−1)jkρ(α, β)ωiX(θ),
3) iX(a) = 0, iX(da) = X(a),

where j, k ∈ N, α, β ∈ G, ω ∈ Ωj
αA and a ∈ A.

The module of ρ′-derivations is closed with respect to the ρ′-commutator of
derivations. Therefore we get a ρ′-Lie algebra structure on

N ij(A) =
∑

k∈Z, α∈G

Hom α(Ω1A,Ωk+1A)

which it will be called the Nijenhuis algebra of the ρ-commutative algebra A and
the bracket will be called a ρ-algebraic Nijenhuis bracket.

By definition the Nijenhuis bracket of the elements X ∈ Hom α(Ω1A,Ωk+1A)
and Y ∈ Hom β(Ω1A,Ωl+1A) is given by formula:

[X,Y ] (ω) = iX(Y (ω)) − (−1)klρ(α, β)iY
(
X(ω)

)
,

for all ω ∈ Ω1A.
Any ρ-derivation X ∈ ρ-Der A determines an inner derivation iX ∈ ρ-Der A of

G′ degree (-1,|X |) and a Lie derivation: LX = [iX , d].
For Lie derivations we have the same properties as for the usual ones.
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Theorem 12. 1) LX is a ρ-derivation of G′ degree (k,|X |) of the algebra Ω∗A :

LX(ω1ω2) = LX(ω1)ω2 + (−1)kρ(|X | , |ω1|)ω1LX(ω2).

2) The bracket [LX , LY ] is a Lie derivation LZ for some element Z = [X,Y ], and
is called the Frölicher-Nijenhuis bracket.

3) The Frölicher-Nijenhuis bracket

Hom α(Ω1A,Ωk+1A) × Hom β(Ω1A,Ωl+1A) → Hom αβ(Ω1A,Ωk+l+2A)

determines a G′-graded ρ-Lie algebra in the Nijenhuis algebra.

4. Linear connections on a differential calculus of a ρ-algebra

Let A be a ρ-algebra, Ω (A) = ⊕
n∈Z

Ωn (A) a differential calculus over the ρ-

algebra A and M a ρ-bimodule over A. A linear connection ∇ on the A-bimodule
M over the ρ-differential calculus Ω (A) is the linear map ∇ : M ⊗ Ωn (A) →
M ⊗ Ωn+1 (A) such that

∇(mω) = ∇ (m)ω + (−1)
n
m⊗ dω

for any m ∈M and ω ∈ Ωn (A). If the A-bimodule M is Ω1 (A) then ∇ is a linear
connection on the differential calculus Ω (A).

4.1. Linear connections on a ρ-bimodule over an almost commutative

algebra. In this subsection we present linear connections on a ρ-bimodule M
over an almost commutative algebra A.

Definition 13. A linear connection on M is a linear map of ρ-Der A into the
linear endomorphisms of M

∇ : ρ- Der A→ End (M) ,

such that one has:

∇X : Mp →Mp+|X| ,(23)

∇aX(m) = a∇X(m) ,(24)

and

∇X(am) = ρ(|X | , |m|)X(a)m+ a∇X(m) ,(25)

for all p ∈ G, a ∈ A, and homogeneous elements X ∈ ρ-Der A, and m ∈M .

Let ∇ be a connection as above. Its curvature R is the map

R : (ρ- Der A) × (ρ- Der A) → End (M)

(X,Y ) 7−→ RX,Y

defined by:

(26) RX,Y (m) = [∇X ,∇Y ]ρ′(m) −∇[X,Y ]ρ(m)

for any X,Y ∈ ρ-Der A, and m ∈M , where the brackets are:

[∇X ,∇Y ]ρ′ = ∇X∇Y − ρ(|X | , |Y |)∇Y ∇X
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and

[X,Y ]ρ = X ◦ Y − ρ(|X | , |Y |)Y ◦X .

Theorem 14. The curvature of any connection ∇ has the following properties:
1) A-linearity:

(27) RaX,Y (m) = aRX,Y ,

2) RX,Y is right A-linear:

(28) RX,Y (ma) = RX,Y (m)a ,

3) RX,Y is left A-linear:

(29) RX,Y (am) = ρ(|X | + |Y | , |a|)RX,Y (m) ,

4) R is a ρ-symmetric map:

(30) RX,Y = −ρ(|X | , |Y |)RY,X

for any a ∈ A|a|, m ∈M , X,Y ∈ ρ-Der A.

In the case when the ρ-bimodule M is ρ-Der A then we may introduce the
torsion of the connection ∇ the following linear map

T∇ : (ρ- Der A) × (ρ- Der A) → ρ- Der A

defined by

T∇(X,Y ) = [∇XY,∇Y X ]ρ − [X,Y ]ρ ,

for any X,Y ∈ ρ-Der A.

4.2. Distributions. Here we introduce the notion of distribution on a ρ-bimodule
M over the almost commutative algebra A.

Definition 15. A distribution on the ρ-bimodule M over A is a simply a ρ-
subbimodule N of M .

Let ∇ be a linear connection on M , we say that the distribution N is parallel
with respect to the connection ∇ if ∇Xm ∈ N for any X ∈ ρ-Der A and for any
m ∈ N .

A distribution D on a given differential calculus ΩA = ⊕
n∈Z

ΩnA over A, is a sub-

bimodule of Ω1A. The distribution D is totally integrable if there is a subalgebra
B of the algebra A such that D is generated by A(dB).

4.3. Classical differential operators on Ω(A,M) associated to the connec-

tion ∇. In this section A is an almost commutative algebra, M is a ρ-bimodule
overA and ∇ is a connection onM . Let Ω (A,M) = ⊕

n∈Z

Ωn (A,M) with Ωn (A,M)

the space of n- forms of A with values in the ρ-bimodule M (is defined in the same
way like Ω(A) just that the values are in the ρ-bimodule M).

Next we define the classical differential operators on Ω(A,M) associated to the
linear connection ∇ and we give some relations between them.



DIFFERENTIAL CALCULUS ON ALMOST COMMUTATIVE ALGEBRAS 369

The classical operators attached to the connection ∇ are defined on the space
Ω(A,M) in the following way:

∇∧ : Ωp(A,M) → Ωp+1(A,M)(31)

(∇ ∧ αp)(X1, . . . , Xp+1) :=

p+1∑

j=1

(−1)j−1ρ
(j−1∑

l=1

|Xl| , |Xj|
)

×∇Xj
αp(X1, . . . , X̂j , . . . , Xp+1) ,

for any X1, . . . , Xp+1 ∈ ρ-De r(A). The exterior differential attached to the con-
nection ∇ is:

(32) d∇ = d0 + ∇∧ ,

where d0 : Ωp(A,M) → Ωp+1(A,M) is defined by

d0αp(X1, . . . , Xp+1) =
∑

1≤j<k≤p+1

(−1)j+kρ
(j−1∑

i=1

|Xi| , |Xj | + |Xk|
)

× ρ
( k−1∑

i=j+1

|Xi| , |Xk|
)
αp([Xj , Xk]ρ, . . . , X1, . . . , X̂j, . . . , X̂k, . . . Xp+1) ,

where x̂ means omission of the element x.
Let X ∈ ρ-Der (A), we define the operator:

L0
X : Ωp(A,M) → Ωp(A,M)(33)

(L0
Xαp)(X1, . . . , Xp) = −

p∑

i=1

ρ
( p∑

l=j

|Xi| , |X |
)
αp(X1, . . . , [X,Xj]ρ, . . . , Xp) ,

The extension of the connection ∇ to the space Ω(A,M) is:

∇X : Ωp(A,M) → Ωp(A,M)(34)

(∇Xαp)(X1, . . . , Xp) = ρ
( p∑

l=1

|Xl| , |X |
)
∇X

(
αp(X1, . . . , Xp)

)
.

The Lie derivative associated to the connection ∇ is defined in the following way:

(35) L∇
X = L0

X + ∇X

and the inner derivation iX : Ωp−1(A,M) → Ωp(A,M) is from formula (20).
The relations between the operators iX , L0

X and d0 are given in the following
theorem.

Theorem 16. 1)
[
iX , L

0
Y

]
ρ′

= i[X,Y ]ρ ,

2) [iX , LY ]ρ′ = i[X,Y ]ρ ,

3) [iX , iY ]ρ′ = 0,

4)
[
L0

X , L
0
Y

]
ρ′

= L0
[X,Y ]ρ

,

5) [d0, iX ]ρ′ = L0
X,

6) [d0, LX ]ρ′ = 0,
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7) d2
0 = 0.

There are the following relations between the extension of the connection ∇,
the exterior differential associated to ∇ and the Lie derivative associated to ∇.

Theorem 17. 1) [∇∧, iX ]ρ′ = ∇X ,

2) [d∇ , iX ]ρ′ = L∇
X,

3) [iX ,∇Y ]ρ′ = 0,

4)
[
iX , L

∇
Y

]
ρ′

= i[X,Y ]ρ .

Proof. 1) First remark that

[∇∧, iX ]ρ′ = ∇ ∧ iX + iX∇ ∧ .

[∇∧, iX ]ρ′(αp)(X1, . . . , Xp)

=∇ ∧ iX(αp)(X1, . . . , Xp) + iX∇∧ (αp)(X1, . . . , Xp)

=

p∑

j=1

(−1)j−1ρ
( j−1∑

l=1

|Xl| , |Xj|
)
∇Xj

(iXαp)
(
X1, . . . , X̂j , . . . , Xp)

)

−

p∑

j=1

ρ(|Xj| , |X |)
(
∇∧ (αp)

)
(X,X1, . . . , Xp)

=

p∑

j=1

(−1)j−1ρ
( j−1∑

l=1

|Xl| , |Xj|
) p∑

i=1

ρ(|Xi| , |X |)

×∇Xj

(
αp(X,X1, . . . , X̂j , . . . , Xp))

)

+

p∑

j=1

ρ(|Xj| , |X |)
{
∇X

(
αp(X1, . . . , Xp)

)

+

p∑

j=1

(−1)jρ
(
|X | +

j−1∑

l=1

|Xl| , |Xj |
)
∇Xj

(
αp(X,X1, . . . , X̂j , . . . , Xp)

)}

=

p∑

j=1

ρ(|Xj | , |X |)∇X

(
αp(X1, . . . , Xp)

)
= ∇X(αp)(X1, . . . , Xp) .

2)

[d∇, iX ]ρ′ = [d0 + ∇∧, iX ]ρ′

= [d0, iX ]ρ′ + [∇∧, iX ]ρ′ = L0
X + ∇X .
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3)

[iX ,∇Y ]ρ′(αp)(X1, . . . , Xp)

=iX∇Y (αp)(X1, . . . , Xp) − ρ(|X | , |Y |)∇Y iX(αp)(X1, . . . , Xp)

=

p∑

j=1

ρ(|Xj | , |X |)∇Y (αp)(X,X1, . . . , Xp)

− ρ(|X | , |Y |)

p∑

j=1

ρ(|Xj| , |Y |)∇Y

(
iXαp(X1, . . . , Xp)

)

=

p∑

j=1

ρ(|Xj | , |X |)

p∑

j=1

ρ(|X | + |Xj | , |Y |)∇Y

(
αp(X,X1, . . . , Xp)

)

− ρ(|X | , |Y |)

p∑

j=1

ρ(|Xj| , |Y |)

p∑

i=1

ρ(|Xi| , |Y |)

×∇Y

(
αp(X,X1, . . . , Xp)

)
= 0 .

4)
[
iX , L

∇
Y

]
ρ′

=
[
iX , L

0
Y + ∇Y

]
ρ′

= i[X,Y ]ρ . �

Next we define the extension of the curvature R to Ω(A,M) in the following
way:

(36) R∇
X,Y : Ωp(A,M) → Ωp(A,M) .

It has the G-degree |X | + |Y | and is:

(37) R∇
X,Y (αp)(X1, . . . , Xp) =

p∑

i=1

ρ(|Xi| , |X | + |Y |)R∇
X,Y

(
αp(X1, . . . , Xp)

)
.

The relation between R∇
X,Y , ∇X and ∇Y is given in the next theorem:

Theorem 18. R∇
X,Y = [∇X ,∇Y ]ρ′ −∇[X,Y ]ρ .

Proof.

([∇X ,∇Y ]ρ′ −∇[X,Y ]ρ)(αp)(X1, . . . , Xp)

=
{
∇X∇Y − ρ(|X | , |Y |)∇Y ∇X −∇[X,Y ]ρ

}
(αp)(X1, . . . , Xp)

=

p∑

i=1

ρ(|Xi| , |X | + |Y |)∇X

(
∇Y (αp(X1, . . . , Xp))

)

− ρ(|X | , |Y |)

p∑

i=1

ρ(|Xi| , |Y | + |X |)∇Y

(
∇X(αp(X1, . . . , Xp))

)
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−

p∑

i=1

ρ(|Xi| , |Y | + |X |)∇[X,Y ]ρ

(
αp(X1, . . . , Xp)

)

=R∇
X,Y (αp)(X1, . . . , Xp) . �

Remark 19. R∇
X,Y = [L∇

X ,L∇
Y ]ρ′ − L∇

[X,Y ]ρ
.

We define the operator

R∇∧ : Ωp(A,M) → Ωp+2(A,M)

of G-degree 0 thus:

R∇ ∧
(
αp(X1, . . . , Xp+2)

)
= −

∑

1≤j<k≤p+2

αj,kρ
(
|Xj| + |Xk| ,

p+2∑

i=1

|Xi|
)

×R∇
Xj ,Xk

(αp)(X1, . . . , X̂j , . . . , X̂k, . . .Xp+2)

where

αi,j = (−1)j+kρ
( j−1∑

i=1

|Xi| , |Xj| + |Xk|
)
ρ
( k−1∑

i=j+1

|Xi| , |Xk|
)
.

Finally we get the following theorem.

Theorem 20. R∇∧ = d2
∇.

5. Linear connections on N-dimensional quantum hyperplane

In this section we present linear connections on the N -dimensional quantum
hyperplane Sq

N . First we present shortly the N -dimensional quantum hyperplane
from [1] and then we present the linear connections on Sq

N .

5.1. N-dimensional quantum hyperplane. The N -dimensional quantum hy-
perplane is the algebra Sq

N generated by the unit element and N linearly indepen-
dent elements x1, . . . xN satisfying the relations:

xixj = qxjxi , i < j

for some fixed q ∈ k, q 6= 0.
Sq

N is the ZN -graded algebra

Sq
N =

∞
⊕

n1,...nN

(Sq
N )n1...nN

,

with (Sq
N )n1...nN

the one-dimensional subspace spanned by products xn1 · · · xnN .
The ZN -degree of the element xn1 · · · xnN is n = (n1 , . . . nN). The cocycle ρ is
ρ : ZN × ZN → k

(38) ρ(n, n′) = q

N
P

j,k=1

nj n′

k αjk

,
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with αjk = 1 for j < k, 0 for j = k and −1 for j > k. The N -dimensional quantum
hyperplane Sq

N is an almost commutative algebra with the cocycle ρ from (38).
We are in a special case when we have coordinates vector fields, the ρ-derivations

∂/∂xi, j = 1, . . .N , of ZN -degree |∂/∂xi|, with |∂/∂xi| = − |xi| defined by
∂/∂xi(xj) = δij . One has

(39)
∂

∂xj

∂

∂xk

= q
∂

∂xk

∂

∂xj

, for j < k

and

(40)
∂

∂xj

(xn1

1 . . . xnN

N ) = njq
(n1+···+nj)(xn1

1 . . . x
nj−1

j . . . xnN

N ) .

The space of ρ-derivations ρ-Der ∗(S
q
N ) of Sq

N is a free Sq
N -module of rank N with

the basis ∂
∂x1

, . . . , ∂
∂xN

. An arbitrary ρ-derivation X can be written as

(41) X =
N∑

i=1

Xi

∂

∂xi

,

with Xi = X(xi) ∈ Sq
N , for i=1,. . . ,N .

The space of one-forms Ω1(Sq
N ) of Sq

N is a ρ-Sq
N -module and is also free of rank

N . The coordinate of one-forms dx1, . . . , dxN , are defined by

(42) dxi(X) = X(xi) or dxi(
∂

∂xj

) = δij

and there form a basis in Ω1(Sq
N ), dual to the basis ∂

∂x1

, . . . , ∂
∂xN

in ρ-Der ∗(S
q
N ).

Note that |dxi| = |xi| and for any f ∈ Sq
N there is the following relation:

(43) df =

N∑

i=1

(dxi)
∂

∂xi

f .

An arbitrary one-form can be written as

(44) α1 =

N∑

i=1

(dxi)Ai , with Ai = α1(
∂

∂xi

) ∈ Sq
N .

5.2. Linear connections on N-dimensional quantum hyperplane. In this
subsection we introduce linear connections on Sq

N .

We note that any linear connection along the field X =
N∑

i=1

Xi
∂

∂xi
is a linear

map ∇X : ρ-Der ∗ S
q
N → ρ-Der ∗+|X| S

q
N and we have ▽X =

N∑
i=1

Xi▽ ∂
∂xi

. Next we

will use the following notations:

(45) ▽ ∂
∂xi

∂

∂xj

= Γk
i,j

∂

∂xk

, for any i, j = 1, . . . , N ,
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where Γk
i,j ∈ Sq

N are the connection coefficients. If we take X =
N∑

i=1

Xi
∂

∂xi
and

Y =
N∑

j=1

Yj
∂

∂xj
, we obtain the following relations:

∇XY =

N∑

i=1

Xi∇ ∂
∂xi

( N∑

j=1

Yj

∂

∂xj

)

=

N∑

i=1

Xi

N∑

j=1

∂Yj

∂xi

∂

∂xj

− ρ(|xi| , |Yj |Γ
k
i,j

∂

∂xk

) .

The curvature R of the linear connection ▽ is well defined on the basis
(

∂
∂xi

)
,

i = 1, . . . , N and is given by the curvature coefficients : Rl
i,j,k ∈ Sq

N such that:

R ∂
∂xi

, ∂
∂xj

∂

∂xk

= Rl
i,j,k

∂

∂xl

for any i, j, k = 1, . . . , N .

Using the Theorem 4.1. we obtain that Rl
i,j,k = qαijRl

j,i,k, for any i, j, k, l ∈
1, . . . , N . The relations between the curvature coefficients and the connection
coefficients are:

Rl
i,j,k =

∂Γl
j,k

∂xi

− ρ(|xi| ,
∣∣Γl

j,k

∣∣)Γp
j,kΓl

i,p

− qαi,j (
∂Γl

i,k

∂xj

− ρ(|xj | ,
∣∣∣Γp

i,k

∣∣∣)Γp
i,kΓl

j,p)(46)

for any i, j, k, l = 1, . . . , N .
The torsion T of any linear connection is given by the torsion coefficients T k

i,j ∈
Sq

N from the following relations:

(47) T▽(
∂

∂xi

,
∂

∂xj

) = T k
i,j

∂

∂xk

for any i, j, k = 1, . . . , N .
Evidently, the relations between the torsion coefficients and the connection

coefficients are:

T k
i,j = Γk

i,j − qαi,j Γk
j,i .

5.3. Linear connections on quantum hyperplane over the bimodule Ω1(Sq
N ).

We present linear connections over ρ-bimodule Ω1(Sq
N ) over the quantum hyper-

plane. Without any confusion we use the notation

(48) ▽ ∂
∂xi

dxj = Γk
i,jdxk , for i, j = 1, . . . , N ,
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where Γk
i,j ∈ Sq

N , i, j, k = 1, . . . , N are again denoted connection coefficients over

the ρ-bimodule Ω1(Sq
N ). We obtain that

▽ ∂
∂xi

(xn1

1 . . . xnN

N dxk) = − niq
(n1+···+ni )qαik(xn1

1 . . . x
ni−1

i . . . xnN

N )dxk

+ xn1

1 . . . xnN

N Γl
ikdxl .

The curvatureR of the linear connection ▽ is given by the curvature coefficients :
Rl

i,j,k ∈ Sq
N defined by:

R ∂
∂xi

, ∂
∂xj

dxk = Rl
i,j,kdxl for i, j, k = 1, . . . , N.

We get that Rl
i,j,k = qαijRl

j,i,k, for any i, j, k, l ∈ 1, . . . , N , and the relation
between the curvature coefficients and the connection coefficients is the same like
(46).

5.4. The algebra of noncommutative differential forms on N−dimensional

quantum hyperplane. Next we will apply the construction of the algebra of
the noncommutative differential forms of a ρ-algebra from the section 4 to the ρ-
algebra Sq

N and, thus, we will give a new differential calculus on the N -dimensional
quantum hyperplane denoted by ΩnS

q
N .

Let n = (n1, . . . , nN ) be an arbitrary element from Z
N . We define ΩnS

q
N the

algebra generated by a ∈ Sq
N and the symbols da ,which satisfy the following

relations:
1. da is linear in a.
2. the ρ-Leibniz rule: d(ab) = (da)b+ ρ(n, |a|)adb.
3. d(1) = 0.

Next we present the structure of the algebra ΩnS
q
N .

We use the following notations yi = dxi , for any i ∈ {1, . . . , N}. By an easy
computation we get the following lemmas:

Lemma 21. yixj = ρ(n+ |xi| , |xj |)xjyi, for any i, j ∈ {1, . . . , N}.

Lemma 22. yjyi = ρ(n, |xi|)ρ(n+ |xi| , |xj |)yjyi, for any i, j ∈ {1, . . . , N}.

Lemma 23. d(xm
i ) = mρm−1(n, |xi|)x

m−1
i yi, for any m ∈ N and i ∈ {1, . . . , N}.

Putting together the previous lemmas we obtain the following theorem which
gives the structures of the algebra ΩnS

q
N :

Theorem 24. ΩnS
q
N is the algebra spanned by the elements xi and yi with i ∈

{1, . . . , N} which satisfies the following relations:
1) xixj = ρ(|xi| , |xj |)xjxi,
2) yixj = ρ(n+ |xi| , |xj |)xjyi,
3) yjyi = ρ(n, |xi|)ρ(n+ |xi| , |xj |)yjyi, for any i, j ∈ {1, . . . , N}.

Definition 25. The algebra ΩnS
q
N is the algebra of noncommutative differential

forms of the quantum hyperplane.

Remark that the algebra ΩnS
q
N depends by the election of the element n ∈ ZN

and is not an almost commutative algebra.
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Remark 26. The algebra Ω0S
q
N , where 0 = (0, . . . , 0) ∈ Zn, is the algebra of

noncommutative differential forms of quantum hyperplane from the paper [11].

Using the Definition 13 in the case of ρ-Sq
N -bimodule Ω1

nS
q
N we obtain the

following definition of linear connections on Ω1
nS

q
N .

Definition 27. A linear connection on Ω1
nS

q
N along the field X is a linear mor-

phism

∇X : Ω1
nS

q
N → Ω1

nS
q
N ,

such that

∇αX(adb) = α∇X(adb)

and

∇X(adb) = ρ(|X | , |a|)X(a)db+ a∇X(db)

for any homogeneous elements α, a, b ∈ Sq
N .

Remark that any linear connection ∇ on Ω1
nS

q
N is well defined by connections

coefficients Γk
i,j ∈ Sq

N given by the following equations:

(49) ∇ ∂
∂xi

yj = Γk
i,jyk , for any i, j ∈ {1, . . . , N} .

Next we introduce distributions on ΩnS
q
N and we give a characterized globally

integrable and parallel distributions with respect to a linear connection.
A distribution D on ΩnS

q
N is a subbimodule of Ω1

nS
q
N . The distribution D of

dimension p is globally integrable if there is a subset of p elements, denoted by I
of {1, . . . , N}, such that D is generated by xjyi for any j ∈ {1, . . . , N} and i ∈ I.
In this situation we say that the distribution D has the dimension p.

Theorem 28. Any globally integrable and parallel distributions D of dimension p
with respect to a linear connection ∇ is well defined by the following equations:

(50) Γk
i,j = 0

for one subset I of {1, . . . , N} with p elements, i ∈ {1, . . . , N}, j ∈ I, k ∈
{1, . . . , N}\I.
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[3] Ciupală, C., Linear connections on almost commutative algebras, Acta Math. Univ. Come-
nian. 72, 2 (2003), 197–207.
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