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SPECTRUM GENERATING ON TWISTOR BUNDLE
THOMAS BRANSON AND DOOJIN HONG

ABSTRACT. Spectrum generating technique introduced by élafsson, Drsted,
and one of the authors in the paper [5] provides an efficient way to con-
struct certain intertwinors when K-types are of multiplicity at most one.
Intertwinors on the twistor bundle over S! x S"~1 have some K-types of
multiplicity 2. With some additional calculation along with the spectrum
generating technique, we give explicit formulas for these intertwinors of all
orders.

1. INTRODUCTION

It was shown in [5] that one can construct intertwining operators of princi-
pal series representations induced from maximal parabolic subgroups without too
much effort when K-types occur with multiplicity at most one. On the differential
form bundle over S! x S"~!, a double cover of the compactified Minkowski space,
some K-types occur with multiplicity two. One of the authors showed that the
spectrum generating technique can also handle this multiplicity 2 case provided
that some extra computation is performed.

It is thus natural to do the same thing on general tensor-spinor bundle. In-
tertwinors on spinors like the Dirac operator have eigenspaces with multiplicity
one over S x S"land explicit spectral function was given in [7]. On twistors,
however, the eigenspaces of the intertwinors including Rarita Schwinger operator
have multiplicity two on some K-types. In this paper, we present the spectral
function for these operators.

We briefly review conformal covariance and intertwining relation (for more de-
tails, see [2], [5]).

Let M be an n-dimensional spin manifold. We enlarge the structure group
Spin(n) to Spin(n) x Ry in conformal geometry. (V(A),\") are finite dimen-
sional Spin(n) x R4 representations, where (V(A),\) are finite dimensional rep-
resentations of Spin(n) and A" (h,a) = a"A(h) for h € Spin(n) and a € R,.
The corresponding associated vector bundles are V() = Pgpin(n) XA V(A) and
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V" (A) = Pspin(n)xr, Xar V(A) with structure groups Spin(n) and Spin(n) x Ry.
r is called the conformal weight of V". Tangent bundle T'M carries conformal
weight —1 and cotangent bundle T*M carries conformal weight +1. In general, if
V is a subbundle of (TM)®? @ (T*M)®? @ (XM)®" @ (X*M)®%, then V carries
conformal weight ¢ — p, where XM is the contravariant spinor bundle.

A conformal covariant of bidegree (a, b) is a Spin(n) x R -equivariant differential
operator D : V" ()\) — V*(¢) which is a polynomial in the metric g, its inverse g—!,
the volume element F, and the fundamental tensor-spinor vy with a conformal
covariance law

weC®(M), g=e*g, E=e"E, F=e “y=D=e "Du(e™),

where p(e®) is multiplication of e®*.

Given a conformal covariant of bidegree (a,b), D : V"(\) — V?®(o), we can
assign new conformal weights to get D : V"' (A\) — V¢ (o) whose bidegree is then
(a—r"4+rb—s"+s). Calling this D again is an abuse of notation. If ' =r +a
and s’ = s + b, then D : V"T¢()\) — V**+°(5) becomes conformally invariant and
we call (a + 7,b+ s) the reduced conformal bidegree of D. To see how conformal
covariants behave under a conformal transformation and a conformal vector field,
we recall followings.

A diffeomorphism h : M — M is called a conformal transformation if h -
g = e*rg, where “” is the natural action of h on tensor fields; in particular,
h- = (h~1)* on purely covariant tensors like g. A conformal vector field is a
vector field X with Lxg = 2wxg for some wx € C*°(M). A conformal covariant
D : VO°(\) — V90) of reduced bidegree (a,b) satisfies

D(e®™rh - @) =e™rh - (D(p)) and D(Lx + awx)p = (Lx + bwx)Dep.
for all o € T'(V°(\)). Thus if D : V"(\) — V¥(o) of reduced bidegree (a, b), then
(1.1) D(Lx + (a—rwx)p = (Lx + (b— s)wx)Dy

for ¢ € T(V"(XA)) and Dy € T'(V4(0)).
Note that conformal vector fields form a Lie algebra ¢(M,g) and give rise to
the principal series representation

U2 :o(M,g) — EndT'(V'(\)) by X Lx + awx .

So a conformal covariant D : V"(X) — V*(o) of reduced bidegree (a, b) intertwines
the principal series representation

DU, = Uf Dy
for ¢ € T(V"(XA)) and Dy € T'(V4(0)).

2. SPINORS AND TWISTORS

Let M = S' x 8"~ ! n even, be a manifold endowed with the Lorentz metric
_dtZ =+ ggn—1.
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To get a fundamental tensor-spinor « for M from the corresponding object ~y

on 8", let
; ¥o0 .
oﬂ=< 0 —’yj>’ j=1,...,n—1,

01
0 _
=1 4)

Since M is even-dimensional, there is a chirality operator x s, equal to some
complex unit times a’ys, where

- (xs O
w=(y ).

X s being the chirality operator on S. The chirality operator is always normalized
to have square 1; thus (ys)? and (Ys)? are identity operators, and since a’a® = 1,
we have (a’ys)? = —1. As a result, we may take

xm = £vV-1a%s.

A spinor on M can be viewed as a pair of time-dependent spinors on S™!,

and

i.e. v where ¢ and v are t-dependent spinors on S™~!. But by chiralit
) ¥ ) ® p P Y y

consideration ([6]), we get = = £1 spinors:

(2)- ()

Recall that twistors are spinor-one-forms ® with a*®y = 0. Given a chirality
E, a twistor ¥ is determined by a ¢-dependent spinor-one-form v; on Sn=1 via

_ ¥o Pj
@_ﬁA(%)+(¢j),

p; = —EV-1¢y,
Yo =EV1y"yy,
vo =7
Let 6; be a spinor-one-form on S”~!. Then, it can be written as

where

1 ; 1 ;
(2.2) 0 = (= —=77"0:) + (05 + —=77"0:) =t 710 + 75,
where 6 is a spinor and m; is a twistor on S™~! since 77(0; + —157v;7'6;) = 0. It
turned out ([6]) that we can Hodge decompose the twistor bundle over the sphere
so that a twistor m; can be written as

mj=Tm+ (=V'n;),
where 7;7 := V74 ;D7 (here D is the Dirac operator on the sphere) is the j-th

component of the twistor operator applied to a spinor 7 and 7;; is a spinor-two
form with v%n;; = 0.
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Therefore, a twistor on M can be decomposed as follows:

—(n—1)0 —=2v—1v0 . 0 —EV-1T;7
—(n—-1)E=Ev/-10 ~;0 0 T
0 —E\/—_].Vj’ﬂji

2.3 . =: (0
(2.3 w5 Ty ) =0+ )+l
for some spinors 6, 7 and some spinor-two form 7.

3. INTERTWINING RELATION ON TWISTORS

Let us briefly review some standard materials on the conformal structure on
the manifold S x S"~1. Let G = Spiny(2,n) and P the maximal parabolic
subgroup for which G/P is the 4-fold cover of the compactified Minkowski space
(St x 8"71)/Zs, where the Zs action comes from the product of antipodal maps
on S' and on S*~'. G'/P', where G' = SOy(2,n) and P’ its maximal parabolic
subgroup, is the double cover St x S"~! of (S x S§"~1)/Zy. Then G/P is the
double cover of St x S™~! obtained from the standard covering of S* factor. The

Lie algebra g can be realized in homogeneous coordinates (§_1,...,&,) ([1, 9]):
Log =¢caa0p — 3830, o, =-1,...,n,
where 0, = 0/0q, and —e_1 = —gg = 1 = -+ = &, = 1. The L_;( generates

SO(2) group of isometries and the L,g for o, 8 = 1,...,n generate SO(n) group
of isometries. If g = €+ s is a Cartan decomposition of g, then ¢ corresponds to
the 50(2) x s0(n) and s corresponds to the proper conformal vector fields:

Lr.,9=2wapg, Withwas #0,

where £ denotes Lie derivative. So they are just the ones with mixed indices:
Log for =1 < a <0 < 8 < n. Let t be the angular parameter on St so that
&1 = cost and & = sint. And set &, = cosp and complete a set of spherical
angular coordinates (p, 01, ...,0,_2) on S"~* so that 8, is gg=-1-orthogonal to the
0p,. Then we get a typical conformal vector field T' and its conformal factor w:

L_;, =cospsintd; + costsinpd, :=T
W_1,n, =COSECOSP == .
Let A = Ao, be an intertwinor of order 2r. That is, an operator satisfying the

intertwining relation ((1.1), [2, 3, 5])

(3.4) A(ZT+<g—r)w):<£T+<g+r)w).4,

where L is the reduced Lie derivative. On a tensor-spinor with < p ) tensor
q

content, this is

Lr=Lr+(p-qw.
So here (with only 1-form content), it is L7 — w. Note that we are using the
convention where spinors do not have an internal weight; otherwise the spinor



SPECTRUM GENERATING ON TWISTOR BUNDLE 173

content would influence the reduction.
Since intertwinors change chirality, we want to consider an exchange operator

E:=a’(u(8;)e(dt) — e(dt)u(dr))
=a®(1 — 2e(dt)u(0y)),
where ¢ is the interior multiplication and ¢ is the exterior multiplication. It is

immediate that £? = Id. Because of the o factor, E reverses chirality. To see
that F takes twistors to twistors, note that, for a twistor ®,

L(B)(dt) — (dt)e(Dy) = By > By — 26,0, .

Thus
a’\(E<I>),\ = o/\ao( A 25)\0@0)
= —29)‘0((1),\ — 25)\0@0) + 2a0a)‘§/\0(1)0
=20 4+4 ¢ dy + 20" ®
+4 g ot2a’a P
2®g -1 1

p— 0’

as desired.

We want to convert the relation (3.4) for EA. So we will eventually need L7 E.
We have:

L1E = Lo {a(dt)(1 - 26(d0)u(r))}
= {~wa(dt) + a(d(T1)}(1 — 2e")
= 2a"{e(dt)e([T, 0¢)) + e(d(Tt)u(d)}-
But
Tt = cospsint,
d(Tt) = —sinpsint dp + cos p cost dt,
[T, 0] = —cospcostdy +sintsinpd, .
This reduces the above to

LrE =sinta(dw)(1 —2e%) — 2sinta®(%(Y) + e(dw)eo)

0 1

(3:5) = sintsin p{—al(1 — 2¢%) — 2a°(%; — elup)}.

By Kosmann ([8], eq(16)), the Lie and covariant derivatives on spinors are related
by

Lx —Vx = =3V Xy = —3(dX,)ap7™7"
Note that
T, = —cospsintdt + costsin pdp,
dl, = 2sinpsintdp A dt .
and

dw = _Tb,R ,
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where b,R is the musical isomorphism in the “Riemannian” metric. According to
the above,

1
(3.6) Ly —Vp = ~3 sin psintatal

on spinors.
On a 1-form 7,
<(‘CT - VT)% X> = _<777 (£T - VT)X> )

since L7 —V kills scalar functions. But by the symmetry of the pseudo-Riemannian
connection,

[T,X]—-VrX =-VxT.
We conclude that

(Lr = Vr)n=(n,VT),

where in the last expression, (-, -) is the pairing of a 1-form with the contravariant
1
part of a 1 -tensor:

((Lr = Vr)n)x =0, VaT".

Combining this with what we derived above for spinors (3.6), for a spinor-1-form
®,, we have

1
(L = Vr)P)\ =0, Va\TH - 5 sin psintala’®y, .

But VT a priori has projections in 3 irreducible bundles, TFS?, A and A? (after
using the musical isomorphisms). By conformality, the TFS? part is gone. We
expect a AY part, essentially . We also found the A? part above,

dT, =2sinpsintdp A dt.
More precisely, tracking the normalizations,
1
(VL) aw = (V1) oy + (VI = (wg + §dTb)/\u
Now note that
@MV)\T# = wg;ﬁ‘(I) + = ((dTb)wﬁ: L‘uq))

— @y + 1<<<dTb> L0 (dT))106M0) @)

1
w®y + 5((—2 sin psinte®.t + 2sin psinte’0) @)

= wby —sinpsint((e%' —'0)d)y

w®y —sinpsint((%; +elio)®)y .
As a result,
L7 —Vp=w—sinpsint (%alao +e%; + €1L0)
=:w —sinpsintP
=w-P,
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and 3

Lr—Vp=-P.
An explicit calculation using (3.5) gives

(LrE)E = —2P.
Since E? = Id, we conclude that

LrE =-2PFE.

With the above, the intertwining relation for £'A becomes
(£r+(3+1) @) EA =E(Lr+ (3 +7) @) A+ (LrE)A
=FA (£~T + (% - 7") w) —2PFEA,

so that, with B = FA,

B(VT—i—(g—r)w—P):(VT+<g+r)w+7?)B.

To see what P does, let us define two convenient operations.

w?«_pf\( u 5%‘/\/—_1 > 'ﬂw
! —Eu/v-1 v;

'R

where u = y*1)y,.
Note that

6™ (g ) (e

et 0 elu slot 1
—= v—1.
— ( 0 —Zelu/v—I > — —Eey/

As for the €% term, anything in the range of ¥ has a slot of 0.
Finally,

/¢"ex_pz>i< u ij/\/—_1>'a_0)<0 1)( u Equ/d—_l)
=TV ) 1o )\ cmvT Ty
(N e (A e )
TN SV )
So
slot P_expa Dy —%EW wj/\/_—_— E(etu);/v/-1
——2 (37 + (hu))) = — A5 (57 s + 85t u).

Up to a factor of a complex unit, slot P expa is
1
571%‘ + 65"

We can also get this expression by successively taking the commutator of w with
0y and the operator D defined by

1
slot Dexpa : ¢ — §7kvk¢j + “kajwk .
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That is,
P =EV-1[0;,[D, =] .
Recall that P = sinpsintP.
After some straightforward computation, we get the block matrix for D relative
to the decomposition {(0), {7}, 7]} (2.3) as follows.

n+1 n—2 n—2

_ 2
2(n — 1)‘]“’ 4 (n- 1)2JT 0
—n L_?’J 0
2(n—1)"" . ’
L
0 0 5

where Jy and J, are the Dirac eigenvalues of # and 7 on S™" !, respectively and L
is the Rarita-Schwinger eigenvalue of [n] on S™~1.
The spectrum generating relation takes the following form:

[N, @] =2 (vT + gw) ,
where V*RV := N is the Riemannian Bochner Laplacian. Therefore the relation

(3.4) becomes
(3.7)

B (%[N, @] - rw — SV=1[6,, [D, w}]> . (%[N, @) + rw + V1[0, [D, @]) B.

As explained in detail in ([3]), the recursive numerical spectral data come from
the compressed relation of the above.

4. PROJECTIONS INTO ISOTYPIC SUMMANDS
Let us denote the K = Spin(2) x Spin(n)-type with highest weight as follows:
VE(fv.]7%+Q7%7a%’%) = (f)®(]a%+Qa%77%7§)7

n/2 entries

where j € % +q+N,e==+1,¢g=0o0r 1, and (f) is a Spin(2)-type generated by
the function eVt on S factor.

Proper conformal vector fields and corresponding conformal factors map such
a K-type to a sum of different K-types under the classical selection rule ([3]).

Consider a = spinor < i ) Since ¢ = E1/+/—1, we have

“0<;>:<E¢/.\/—_1>'

Here e denotes a top entry that is computable from the bottom entry, but whose
value is not needed at the moment.

In addition,
sint( ) > - ( sin t1) ) - ( — 8¢, cos ] ) ’
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o M *
Proj}, smt( ¥ ) = ( %costﬁﬂb > ’
. 1 ® )\ _ * = ’
e < v ) - ( — sin py'e ) - < [D, cos plyp ) ’

Projsinpat [ ° ) = < .a°. ) _ < . ) 7
Tosme < G —Projy sin py'ep (Jo — Jo) cosp| )

where D = 7V, is the Dirac operator on S"~ !, a and b (resp., f and f’) are
abbreviated labels for the Spin(n)-types (resp., Spin(2)-types) in question and J,
(resp., Jp) is the Dirac eigenvalue on a (resp., b).

For the compressed relations of @ = cost cos p between Clifford range part, twistor
range part, and divergence part (2.3), we note that cosp is the conformal factor
corresponding to the conformal vector field sin pd, on S"~!. Clifford range piece
is essentially spinor on S™~! while twistor range piece and divergence piece are
twistors on S"~1. So, for example, @ () is a sum of Clifford pieces only. Thus we
have:

(0) (|==|0) ()
w| o0 |= 0 i B
0 0 0
0 0 0 Proj 0
48) | 7 | = =l | = | clmin | P et |,
0 {r} {7} B
0 0 Proj 0
w| 0 | =1 |zl | —:| {7} |,
(1] | |[n] (7]

where C' is a quantity we will compute in the following lemma.

Lemma 4.1. Let a = Vg(f;j,%,--- ,%,%) and B = V=(f";5, L, ,% £), e =
+1. Then we have
‘ﬁw|a{7—} = Cba{‘ﬂw‘tﬂ—} )

Cra = M (T*7) <2Jb MR — 4 ’

Jo (resp., Jy) is the Dirac eigenvalue on Spin(n)-type at « (resp., Spin(n)-type at
B), M(T*T) is the eigenvalue of T*T on Spin(n)-type at B, and T is the twistor
operator (with adjoint T*) over S™~ 1.

where
1

Proof. It suffices to show that
lbw|aZ T = Cha - T (Jow]aT) ,
where w = cos p. Let D be the Dirac operator on S"~ . Then
[D? w]T = [V*V,w]r by Bochner identity
= (V*Vw)T — 2VFWwVT = (n — 1wt + 2sin pV; 7,
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Also
T*(wTT) =-V/(wV,;T+ - wijT)
=sin pVi7 + wV*VT + Lo sinpy DT — S wD?r
=1 ([D*w]—(n—1w )T+w (D2 - W) 7+ L [w, D]|Dr
——L-wD?r by the above and Bochner identity
= 1D2(w7’) + twD*r — L-D(wD7) — @wr
Therefore
pwlaTr =T ﬁr(\bw\m)

— b Ly 1y ] _nn-1)
= )\b(T*T) <2Jb + 2Ja — 1JbJa 1 |bw\a7 .
O

Remark 1. Eigenvalues of D and 7*7 on S™"~! are known due to Branson ([4]).

With the above (4.8) at hand, we get

(4.9)
(DY, = D§1)(0) ;
; (0) = lswla(0)
61D, al6) = | (D5 — CuD§{B} |, where § 7~ °%
pg b { 1] = lswla{0}
(CbaDm D)(T) o W gy g
5[0, @]la{T} = | Coa(Dsy — DGH){7} |, where { {[;}} ;'ﬁﬁma{g}} , and
(D%g Dg,)[n] :
Diy(7) -
ol = | (0 -t} | where { 7= 1ol

(D55 — D8y
Here we use subscripts to refer to the specific entries of the D and superscripts to
indicate where these entries are computed.
Let us now consider the compressed relation of (3.7) between K-types related
by the selection rule.

Case 1: Multiplicity 2 < 1

1 1 e 31 1 e
_VE(fv.]7§7"'7§72) 6 V”(f ]a§7§7 aivi)
Note that the operator B in block form looks
Bii Bz 0
B = Bgl B22 0
0 0 Bass

With
aNlg = f* = f? = (n-2)
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and (4.9), we get a — [ transition quantities

poa (g o ) (22 ) =8 (52 ) me
o—p (4 - ) (g F ) B (a —pr),
where

A1 = E(f—f/)p?z,

Ay = —E(f - f)Ds; .

(f2— gy - 12

5~ — T E(f — /)(Ds ~Dgy).
R (A B

5+ —E(f — /)(Ds ~ Dgy).
In particular, we can write all 2 x 2 entries of B in terms of BS; and ngz

& = (BB — AsBy)/As
(4.10) B§y, = —A1BS, /A, , and
Bg, = (-A1Bg, + EJFB:?:&)/Ef .

E™ =

[ N S

Thus if we can express B in terms of ng, we can completely determine all entries
in the 2 x 2 block.

Case 2: Multiplicity 2 < 2

1
O‘—VE(fa]7§7"'7

Here we have

m\

)= B= V(5

b

N |
Do ™
N |
|

SN~—

|sNla = 2= 24+ J2 = JZ.

So using (4.9), we get the transition quantities

(411) Blﬁl B1ﬁ2 ( F17 G2 ) _ ( F1+ _G2 > ( Bill (112 )
BY BS Gy ChuFy G CpFy BS, BSg, )’

where

Fy = 307 = 1)+ 50 = B — r + 5 - DR - DRy,
Fi = g7 = ) + 5} = 22) + =2 — (D~ D).
Fy = (7% = 1)+ 50} = J2) = r + 5( ~ £)(Dfy — D),
Fi = g = ) + 5~ J2) 47— 2 — (D~ D).
G1=Z(f' = )(D3) — ChaD5y) , and

Gz :=Z(f' = [)(CraDiy — D) -
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Therefore we get determinant quotients of B on multiplicity 2 part.
Note the following diagram of reachable multiplicity 2 isotypic summands from

V=(f; 7, %, ,%, $) under the selection rule:
Ve(f—Lj+1,4,-,49) V(f+Lj+1,4,- .49
AN /
VE(f_l;jv%v"'v%v_%) — & = VE(f"_l;jv%v"'v%v_%)
/ N\
Va(f—1;5—-1,3,,5,5) Va(f+15—-1,3,-,3,%5).

The determinant quotients corresponding to the above diagram are:

(4.12)

(—FHTH1-Etr+ §E) (—fHT+14E+r+§E)  (F+I+1-E+r—53) (f+I+1+E+r—55)
—<E —£E BS £=

(—f+J+1-B—r—52)(—f+J+1+E—r—58)  (f+J+1-E—r+55)(f+J+1+E—r+5E)
(—f+3-E+r—e8J)(—f+3+E+r—eEJ) (f+1—Z+r+e2J)(f+1+E+r+e2J)
(—f+3—E—r+eE2J)(—f+5+E—r+eEJ) (f+i-5—r—e8J)(f+3+2-r-2J)
(—f=J+1-B4+r—5E) (= f—J+14E+r—5E)  (f—J+1-E+r+5E)(f—J+14+E+r+5E)
(—f—J+1-8—r+5E) (- f—J+14+E—r+5E) (f-J+1-E—r—5E)(f—J+1+E3—r—5E)

where J = ¢J,.
And these data can be put into the following Gamma function expression:
L, P(f+TJ+r—SE)T(A(-f+J+r+£E))
4 TEf+T—r+52)0(3(—f+J—r—55)

.F(%(f+J+2+r—%E))F(%(—f—i—J+2+r+
F((f+J4+2-r+5E)T (3(-f+J+2—71—

Case 3: Multiplicity 1 < 1

oy 3L LE oy
Oz—V;(f,],2,2, 7272)<_6—V:(f7]

Again we have
N = f2 = f?+J2 - J2.
And the transition quantities are
(4.13) B§, P~ = P By,
where
P~ = 5(f* = )+ 5(J2 = Jj) —r + E(f = f)(Dgs — D§3> and
Pro=3(f2 = f2)+ 5(J2 = J) + 1 —E(f — ') (D — Ds3) .

The diagram of reachable multiplicity 1 isotypic summands from

.31 1 ¢
VE(fv.]7§7§a"' 7575)
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under the selection rule looks:

VE(f_1.7+172727""%’%)
N
Va(f =1idsgogohg—3) = e
/
Va(f=Lii—-13.55%)

And the eigenvalue quotients are:

—f+J+1+7r+5E

]

VE(f+1 j72727"'

LN

Va(f+1;5—1,3, 4

[ [

—f+J+1-r—5

—f+3+r—€BJ

fHJI+1+4r—5=
f+J+1—r+:5=

f+i+r+eEJ

—f+3-—r+eBJ

—f=J+1+4+r—

f+32—-r—cBJ

f=J+1+r+

Sy5y

181

[11] [1]
[1]] [1]

£ £
2 2
£ £
2 2

—f—J+1—r+ f—J+1—r—

where J = eJ,.
Thus, following the normalization on the multiplicity 2 part, we get the spectral

function on the multiplicity 1 part:
(4.14)

Z(r; f,J,Be) =

GUf+J+1+r—%
1 £
2

el NT(3(—f+T+1+7+%
2T (A(f+J+1-1+% 3 o

ENT(3(-f+J+1-71—
In particular,

1 =) — 1 = _

Z(§7f7J7H€)_ 4(f ‘—‘EJ)_

where E'R is the exchanged Rarita-Schwinger operator.

1 —
Z -1 eig(ElR’;fv‘]vEE)v

5. INTERFACE BETWEEN MULTIPLICITY 1 AND 2 PARTS

Consider the following diagram:

al:VE(f;j7%7"'7%7%) — Q2 = v_(f+1.]+1727a%a%)
! !
/BIZVE(f'i_l;jv%v%v"'v%v%) — 62 V—(f]"i_lagvgv"'v%?%)'
Then (4.11) reads
B My = My B .
So
deth

detB*t .

det B2 —
¢ det M,
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detMg
Note that
ove that qetar

1
From (4.10), we get a relation between B2 and Bss:

is a determinant quotient computed in (4.12).

B B
det( B; B;z ) = B11 B2 — B12B22

=2 L —Bss (B3s A2 ET — (E-ET + A1A3)Bay) .
oF
We can also compare (2,1) entries of both sides in (4.11). Applying (4.10) and
(4.13) to the both relations, we can finally write Ba; in terms of Bss with a “big”
help from computer algebra package.
2 x 2 block on

1 1 ¢
VE(fa]7§7"' 7575)
in terms of (3,3)
.31 1 ¢
VE(f+17J7§7§7“' 7575)
is:
40102 1 —2(n - 2)50502
_ o —_1)2 _
Gas) | OGS UG d, " gy | o210,
G0 -GGG G

where
Cy=2fn—2f —2n+1+n?+2rm —2r—22J,,
Co=2fr+EJqa,
Cs=n—1+2r,
Cy=2f+2r —E+2J,)2f +2r +E—2J,),
Cs=(n—-1+4+2J,)(n—1-2J,), and
Co=2fn—2f —2n+1+n?—2rn+2r+22J,.

Remark 2. In particular, if r = % and (3, 3) entry
V=1f —+/—1EeJ

of the exchanged Rarita-Schwinger operator is put into the above formula, we
recover the other 2 x 2 entries

n—2 n+1_ 2v—12 ((n—1)(n—-2) n-—2
on \/__1<f+n—lugj) _n(n—1)< 4 _n—lj2>
2v/—1= Vs Y i N =

n—1

of the operator ([7]).



SPECTRUM GENERATING ON TWISTOR BUNDLE 183

REFERENCES

[1] Branson, T., Group representations arising from Lorentz conformal geometry, J. Funct.
Anal. 74 (1987), 199-291.

[2] Branson, T., Nonlinear phenomena in the spectral theory of geometric linear differential
operators, Proc. Symp. Pure Math. 59 (1996), 27-65.

[3] Branson, T., Stein- Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383.

[4] Branson, T., Spectra of self-gradients on spheres, J. Lie Theory 9 (1999), 491-506.

[5] Branson, T., C/)lafsson7 G. and Orsted, B., Spectrum generating operators, and intertwining
operators for representations induced from a mazximal parabolic subgroups, J. Funct. Anal.
135 (1996), 163-205.

[6] Hong, D., Figenvalues of Dirac and Rarita-Schwinger operators, Clifford Algebras and their
Applications in Mathematical Physics, Birkh&user, 2000.

[7] Hong, D., Spectra of higher spin operators, Ph.D. Dissertation, University of Iowa, 2004.

[8] Kosmann, Y., Dérivées de Lie des spineurs, Ann. Mat. Pura Appl. 91 (1972), 317-395.

[9] Orsted, B., Conformally invariant differential equations and projective geometry, J. Funct.
Anal. 44 (1981), 1-23.

THOMAS BRANSON

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA
Towa City IA 52242 USA

E-mail: branson@math.uiowa.edu

DoouJin HonG

DEPARTMENT OF MATHEMATICAL SCIENCES
SEOUL NATIONAL UNIVERSITY, SEOUL KOREA
E-mail: doojin@math.snu.ac.kr



		webmaster@dml.cz
	2012-05-10T16:52:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




