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MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR
BOUNDARY VALUE PROBLEMS WITH INTEGRAL

BOUNDARY CONDITIONS

Abdelkader Belarbi, Mouffak Benchohra, and Abdelghani Ouahab

Abstract. In this paper we investigate the existence of multiple positive
solutions for nonlinear boundary value problems with integral boundary
conditions. We shall rely on the Leggett-Williams fixed point theorem.

1. Introduction

This paper is concerned with the existence of three nonnegative solutions
for nonlinear boundary value problems with integral boundary conditions. More
precisely, in Section 3, we consider the following nonlinear boundary value problem
with integral boundary conditions:

−x′′(t) = f
(
x(t)

)
, for each t ∈ [0, 1] ,(1)

x(0)− k1x
′(0) =

∫ 1

0
h1
(
x(s)

)
ds ,(2)

x(1) + k2x
′(1) =

∫ 1

0
h2
(
x(s)

)
ds(3)

where f, h1, h2 : [0,∞)→ [0,∞) are continuous and nondecreasing functions, and
k1, k2 are nonnegative constants.

Boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two, three, multipoint and
nonlocal boundary value problems as special cases. For boundary value problems
with integral boundary conditions and comments on their importance, we refer
the reader to the papers [7, 9, 13] and the references therein. Moreover, boundary
value problems with integral boundary conditions have been studied by a number
of authors, for example [3, 5, 6, 11, 10].

Recently the existence of multiple solutions for differential, difference and integral
equations has been investigated by several authors (see for instance [1, 2, 4] and
the references cited therein). The main theorem of this note extends the particular
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problem (1)–(3) with h1 = h2 ≡ 0 considered in [2] and the references therein. Our
approach here is based on the Leggett-Williams fixed point theorem in cones [12].

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which
are used throughout this paper.
C([0, 1],R) is the Banach space of all continuous functions from [0, 1] into R with
the norm

‖x‖∞ = sup{|x(t)| : 0 ≤ t ≤ 1} .

C2((0, 1),R) is the space of functions x : (0, 1) → R, whose first and second
derivatives are continuous.

Let (E, ‖ · ‖) be a Banach space and C ⊂ E be a cone in E. By a concave
nonnegative continuous functional ψ on C we mean a continuous mapping ψ : C →
[0,∞) with

ψ(λx+ (1− λ)y) ≥ λψ(x) + (1− λ)ψ(y) for all x, y ∈ C and λ ∈ [0, 1] .

For K, L, r > 0 be constants with C and ψ as above, let

CK = {y ∈ C : ‖y‖ < K}

and

C(ψ,L,K) = {y ∈ C : ψ(y) ≥ L and ‖y‖ ≤ K} .

Our consideration is based on the following fixed point theorem given by Leggett
and Williams in 1979 [12] (see also Guo and Lakshmikantham [8]).

Theorem 2.1. Let E be a Banach space, C ⊂ E a cone in E and R > 0 a constant.
Suppose there exists a concave nonnegative continuous functional ψ on C with
ψ(y) ≤ ‖y‖ for all y ∈ CR and let N : CR → CR be a continuous compact map.
Assume that there are numbers r, L and K with 0 < r < L < K ≤ R such that

(A1) {y ∈ C(ψ,L,K) : ψ(y) > L} 6= ∅ and ψ
(
N(y)

)
> L for all y ∈ C(ψ,L,K);

(A2) ‖N(y)‖ < r for all y ∈ Cr;

(A3) ψ
(
N(y)

)
> L for all y ∈ C(ψ,L,R) with ‖N(y)‖ > K.

Then N has at least three fixed points y1, y2, y3 in CR. Furthermore, we have

y1 ∈ Cr , y2 ∈
{
y ∈ C(ψ,L,R) : ψ(y) > L

}
and

y3 ∈ CR −
{
C(ψ,L,R) ∪ Cr

}
.



BVP WITH INTEGRAL BOUNDARY CONDITIONS 3

3. Main result

We start by defining what we mean by a solution of problem (1)–(3).

Definition 3.1. A function x ∈ C2((0, 1),R) is said to be a solution of (1)–(3) if
x satisfies −x′′(t) = f

(
x(t)

)
for each t ∈ J and the conditions (2) and (3).

We need the following auxiliary result. Its proof uses standard argument.

Lemma 3.1. x is a solution of (1)–(3) if and only if

x(t) = P (t)−
∫ 1

0
G(t, s)f

(
x(s)

)
ds ,

where

P (t) = 1
1 + k1 + k2

{
(1− t+ k2)

∫ 1

0
h1
(
x(s)

)
ds+ (k1 + t)

∫ 1

0
h2
(
x(s)

)
ds
}

is the unique solution of the problem

−x′′(t) = 0 , for each t ∈ [0, 1] ,

x(0)− k1x
′(0) =

∫ 1

0
h1
(
x(s)

)
ds ,

x(1) + k2x
′(1) =

∫ 1

0
h2
(
x(s)

)
ds ,

and

G(t, s) = −1
k1 + k2 + 1

{
(k1 + t)(1− s+ k2) , 0 ≤ t ≤ s ≤ 1 ,
(k1 + s)(1− t+ k2) , 0 ≤ s ≤ t ≤ 1

is the Green function of the corresponding homogeneous problem.

We note that −G(t, s) < −G(s, s) on [0, 1]× [0, 1]. For ρ > 0 let

Pρ = 1
1 + k1 + k2

{
(1 + k2)

∫ 1

0
h1(ρ) ds+ (1 + k1)

∫ 1

0
h2(ρ) ds

}
.

Theorem 3.1. Assume
(H1) There exists a constant r > 0 such that

Pr + f(r) sup
t∈[0,1]

(∫ 1

0
G(t, s)ds

)
< r ;

(H2) there exist L > r and an interval [a, b] ⊂ (0, 1) such that

f(L) min
t∈[a,b]

(
−
∫ 1

0
G(t, s) ds

)
> L ;

(H3) there exist 0 < r < L < K < R, M−1L ≤ R such that

PR − f(R) sup
t∈[0,1]

(∫ 1

0
G(t, s) ds

)
≤ R ,
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where

P (t) ≥ c1PR , −G(t, s) ≥ −c2G(s, s) for all t, s ∈ [0, 1], c1, c2 ∈ (0, 1) ,

and

M = min{c1, c2} ,

are satisfied. Then the problem (1)–(3) has at least three positive solutions.

Proof. Transform the problem into a fixed point problem. Consider the operator,
N : C([0, 1],R)→ C([0, 1],R) defined by

N
(
x(t)

)
= P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds .

We shall show that N satisfies the assumptions of the Leggett-Williams fixed point
theorem (see [12]). The proof will be given in several steps.
Step 1. N is continuous.

Let {xn} be a sequence such that xn → x in C([0, 1],R). Then for each t ∈ [0, 1]

∣∣N(xn(t)
)
−N

(
x(t)

)∣∣ ≤ ∫ 1

0

∣∣G(t, s)
∣∣ ∣∣f(xn(s)

)
− f

(
x(s)

)∣∣ ds
+ 1 + k2

1 + k1 + k2

∫ 1

0

∣∣h1
(
xn(s)

)
− h1

(
x(s)

)∣∣ ds
+ 1 + k1

1 + k1 + k2

∫ 1

0

∣∣h2
(
xn(s)

)
− h2

(
x(s)

)∣∣ ds .
Since the functions f , h1 and h2 are continuous, we have

∥∥N(xn)−N(x)
∥∥
∞ ≤

(1 + k1)(1 + k2)
1 + k1 + k2

∥∥f(xn)− f(x)
∥∥
∞

+ 1 + k2

1 + k1 + k2

∥∥h1(xn)− h1(x)
∥∥
∞

+ 1 + k1

1 + k1 + k2

∥∥h2(xn)− h2(x)
∥∥
∞ → 0 as n→∞ .

Step 2. N maps bounded sets into bounded sets in C([0, 1],R).
Indeed, it is enough to show that there exists a positive constant ` such that for

each x ∈ Bq =
{
x ∈ C([0, 1],R) : ‖x‖∞ ≤ q

}
, one has

∥∥N(x)
∥∥
∞ ≤ `.

Let x ∈ Bq. Then for each t ∈ [0, 1], we have

N
(
x(t)

)
= P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds .
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Since f , h1 and h2 are nondecreasing functions, we have

∣∣N(x(t)
)∣∣ ≤ ∣∣P (t)

∣∣+
∫ 1

0

∣∣G(t, s)
∣∣ ∣∣f(x(s)

)∣∣ ds
≤ max(1 + k1, 1 + k2)

1 + k1 + k2

{
h1(q) + h2(q)

}
+ sup

(t,s)∈[0,1]×[0,1]

∣∣G(t, s)
∣∣f(q) .

Therefore ∥∥N(x)
∥∥
∞ ≤

max(1 + k1, 1 + k2)
1 + k1 + k2

{
h1(q) + h2(q)

}
+ sup

(t,s)∈[0,1]×[0,1]

∣∣G(t, s)
∣∣f(q) := ` .

Step 3. N maps bounded sets into equicontinuous sets of C
(
[0, 1],R

)
.

Let r1, r2 ∈ [0, 1], r1 < r2, Bq be a bounded set of C
(
[0, 1],R

)
as in Step 2 and

x ∈ Bq. Then

∣∣N(x(r2)
)
−N

(
x(r1)

)∣∣ ≤ ∣∣P (r2)− P (r1)
∣∣+
∫ 1

0

∣∣G(r2, s)−G(r1, s)
∣∣ ∣∣f(x(s)

)∣∣ ds
≤
∣∣P (r2)− P (r1)

∣∣+
∫ 1

0

∣∣G(r2, s)−G(r1, s)
∣∣f(q) ds

≤ |r2 − r1|
1 + k1 + k2

∫ 1

0
h1
(
x(s)

)
ds+ |r2 − r1|

1 + k1 + k2

∫ 1

0
h2(x(s))ds

+
∫ 1

0

∣∣G(r2, s)−G(r1, s)
∣∣f(q) ds

≤ |r2 − r1|
1 + k1 + k2

[
h1(q) + h2(q)

]
+
∫ 1

0

∣∣G(r2, s)−G(r1, s)
∣∣f(q) ds .

The right-hand side of the above inequality tends to zero as r2 − r1 → 0.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we

can conclude that N : C
(
[0, 1],R

)
→ C

(
[0, 1],R

)
is continuous and compact.

Let C =
{
x ∈ C([0, 1],R) : x(t) ≥ 0 for each t ∈ [0, 1]

}
be a cone in C

(
[0, 1],R

)
.

Since hi, i = 1, 2 and f are positive functions, then N(C) ⊂ C and N : CR → CR
is completely continuous. By (H1), (H2) and (H3) we can show that if x ∈ CR then
N(x) ∈ CR.

Let ψ : C → [0,∞) defined by ψ(x) = min
t∈[a,b]

x(t). It is clear that ψ is a nonnega-

tive concave continuous functional and ψ(x) ≤ ‖x‖∞ for x ∈ CR. Now it remains to
show that the hypotheses of Theorem 2.1 are satisfied. First notice that condition
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(A2) of Theorem 2.1 holds since for x ∈ Cr we have

N
(
x(t)

)
= P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds .

Thus ∣∣N(x(t)
)∣∣ ≤ ∣∣P (t)

∣∣+
∫ 1

0

∣∣G(t, s)
∣∣ ∣∣f(x(s)

)∣∣ ds
≤ Pr + f(r) sup

t∈[0,1]

(∫ 1

0
G(t, s) ds

)
< r .

Let x(t) = L+K

2 for t ∈ [0, 1]. By the definition of C(ψ,L,K), x belongs to
C(ψ,L,K). Then x ∈

{
x ∈ C(ψ,L,K) : ψ(x) > L

}
. Also if x ∈ C(ψ,L,K), then

ψ
(
N(x)

)
= min
t∈[a,b]

(
P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds
)
.

Then from (H2) we have

ψ(N(x)) = min
t∈[a,b]

(
P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds
)

≥ min
t∈[a,b]

(
−
∫ 1

0
G(t, s)f

(
x(s)

)
ds
)

≥ f(L) min
t∈[a,b]

(
−
∫ 1

0
G(t, s) ds

)
> L .

So the condition (A1) of Theorem 2.1 is satisfied.
Finally, we will prove that (A3) of Theorem 2.1 holds. Let x ∈ C(ψ,L,R) with

‖N(x)‖∞ > K. Then

N
(
x(t)

)
= P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds for t ∈ [0, 1] .

Thus by (H3) we have

ψ
(
N(x)

)
= min
t∈[a,b]

(
P (t)−

∫ 1

0
G(t, s)f

(
x(s)

)
ds
)

≥ c1PR − c2

∫ 1

0
G(s, s)f

(
x(s)

)
ds

≥M
∥∥N(x)

∥∥
∞ > MK ≥ L .

Thus, the condition (A3) of Theorem 2.1 holds. Then, the Leggett-Williams fixed
point theorem implies that N has at least three fixed points x1, x2 and x3 which
are solutions to the problem (1)–(3). Furthermore, we have

x1 ∈ Cr , x2 ∈
{
x ∈ C(ψ,L,R) : ψ(x) > L

}
and

x3 ∈ CR −
{
C(ψ,L,R) ∪ Cr

}
.

�
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