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ON /-THIN SETS 

PAVEL KOSTYRKO, Bratislava 

(Received November 9, 1978) 

In [1], [2] and [3] some special cases of a Turan's problem are solved. This 
problem can be generalized in the following way: 

Let / : Nfc -> N (N - the set of all positive integers), fc e N, fc > 1. The seUM 
(M CZ N) is said to be /-thin if f(xl9..., xfc) £ M for each fc-tuple of distinct numbers 
from M. Let f*(n) = max {m : {n, n + 1,..., m} can be decomposed into two 
/-thin sets}, provided that the function/* exists. We shall find an upper estimate 
for a class of functions /*. Let us remark that e.g. for the function / : N2 -> N 
defined by/(xx. x2) = xx + x2, for xt and x2 odd, and/(x l5 x2) = 1 in the opposite 
case, the function / * does not exist. Indeed, N can be decomposed into the set A 
of all even numbers and B = N — A. A and B are infinite/-thin sets. 

In the above mentioned papers additive fc-thin and multiplicatively fc-thin sets 
are investigated, i.e. functions ak(xu ..., xk) = xx + ... + xk and mk(xl,..., xk) = 
= xt ... xk are considered. It is proved that a*(n) = n(k2 + fc — l) + \(k — l ) . 
. (fc2 + 2fc — 2) — 1 holds for k > 1, and for fc = 2 and fc = 3 the inequality can 
be replaced by equality ([l], [3]). Further, it is known that for each fc > 1 there 
exists a polynomial pk(n) of the degree fc2 + fc — 1 (pk(n) = nk2+k~i + \(k — l ) . 
. (fc2 + fc - 2) n

k2+k~2 + ...) such that m$(n) = pk(n) (n = 1, 2, ...), lim inf. 

. ((m*2(n)jn*) - n) = 2, lim sup ((m*(w)/n4) - w) = 4, lim inf ((m*(n)/n10) - n) A o , 

lim sup ((mt(n)ln10) - n)i 13 ([1], [2]). 
n-*oo 

The meaning of the number f*(n) follows from its definition: For any decomposi
tion of the set {n, n + 1,..., m}, m > f*(n)9 into two disjoint sets, in one of them 
the equality x = f(xl9..., x„) with unknowns x, x l 5 . . . , xk can be solved in such a 
way that xf + Xj whenever i + j . 

The aim of the present article is to give an upper estimate for a class of functions/*. 
This will prove the existence of /*. Further, Corollary of Theorem 3 gives the 
affirmative answer to the question raised by B. Novak in connection with his review 
of [2]. Let us remark that our problem has its origin in a problem of I. Schur. This 



problem and also some of its generalizations are treated in the third part of the mono
graph [0]. An ampfe list of references is also included in the monograph. 

Let o be a binary operation in N (0: N x N -> N), such that (N, o) is a commutative 
group. In the following definitions we use a* == a o a o... o a a-times, a1 = a. 

Definition 1. Let p (p ;> l), q (q ^ 1), 0 g ct < c2 < ... < cp, 0 =* dx < d2 < . . . 
. . . < dq be integers, let a,, Pj be positive integers (i = 1,..., p; j = 1,..., q). The 
binary operation o is said to have the property A if the assumption that the equation 

(*) a]1 o a\2 o ... o a'/ = b[l o bp
2

2
 0 . . . o bp

q
q 

(a. = n + C{, i = 1, . . . , p; bj = n + dj, j = 1, . . . , q) is fulfilled for infinitely many 
neJV implies p = q9 c{ = d{ and af = pt for i = 1, . . . , p. 

Definition 2. The binary operation o is said to have the property B if the assumption 
ax + ... 4- OLP > Pi + ... + Pq implies 

(**) lim inf (a*1 o. . . 0 ap>)\(b[> ° • • • ° b^) > * • 
n-+oo 

Definition 3. We shall say that a function f:Np-*N is a quasi-polynomial of 
a degree ax + ... + ap if f(xt,..., xp) = x"1 o... o xa

p
p. A quasi-polynomial of 

a degree k,f(xl9..., xk) = x t 0 . . . 0 xk, is said to be an AB-function if the operation 0 

has properties A and £. 

Example 1. Let seN and let the operation 0 be determined in terms of the usual 
multiplication by x o y = sxy. Then the function mM( x i - . . . , xk) = xx o. . . o xk = 
= sfc"1x1 ... xfc is an y4B-function. 

Indeed, if the equality (*), which has the form 

sa~x(n + Ci)** ...(n + c,)** = sf-^n + dO^1 •••(" + drf* 

(a = at -f ... -f ap, p = Pi + . . . + /?q), is fulfilled for infinitely many n, then the 
properties of polynomials defined on the infinite integral domain imply p = q, 
Ci = d{ and a,- = j?f for each i = 1, . . . , p. The inequality (**) is obviously fulfilled 
as well. 

It follows from Example 1 that for each fc > 1 there exists infinitely many AB-
functions. 

Theorem 1. Let f = f(xu ...,xk) be an AB-function. Then 

(a) for each k > 1 there exists nkeN such that 

f*(n)< max { min {aio(ak
l~

x o ... o ak
k~

l
2)}} , 

{-*i,...,-*k + 2 } c J - » = l , . . . , k + 2 

where L = {n, n + 1, . , . , n + 2fc + 2}, holds for every n ^ nfc; 

1 



(b) for each k > 6 there exists nkeN such that 

/ * ( « ) < max { min {aio(ak
1~

l ... ak
k~i)}} , 

{a j , . . . , a k + 2}cAf i=l , . . . , fc+2 

where M = {n, n + 1,..., n + 2fc + 1}, holds for every n _ nk. 

Proof. First we prove part (b) of Theorem 1. Let us suppose that the set 
{n, n + 1,..., m] is decomposed into two disjoint/-thin sets A and B. We shall show 
the existence of a number mn such that mne A and mn G B. Hence we can conclude 
f*(n) < m„, Any distribution of numbers of the set M = {n, n + 1,..., n + 2fc + 1} 
with 2fc + 2 elements into sets A' = A n M and ff=BnM leads to one of the 
following two cases: (i) each of the sets A' and B' contains fc + 1 elements; (ii) one 
of the sets (A' or B') contains at least fc + 2 elements. Further, we shall consider 
a finite number of quasi-polynormals. Taking into account property A we can choose 
n0eN such that different quasi-polynomials have different values whenever their 
arguments are greater than n0. In the sequel we deal only with such arguments, i.e. 
we suppose n _ n0. 

(i) Let {al9...,ak+l}czA and {bl9 ..., bk+l} c B (M = {au ..., ak+l, bl9... 
•••• fr*+i})-

Lemma. at o... o ak+le B, bt o . . . o bk + 1 e A. 

Proof of Lemma. Indirectly: Let us suppose a = a10... o ak+l e A. If a{ o ajeA 
(1 ^ i < j g fc + l ) , then ( a ^ a ^ o ax o...0ai_1 ° a i + 1 o ...oaj^l o aj+l o . . . o ak+l = 
= ae B and hence axo a^eB. Consequently 

(1) (at o a2) o (a2 o a3) o... o(ako ak+1) = a1 o a\ o . . . o a\ o ak+ x G A . 

On the other hand, a 0 a2 0 ... o ak = ax 0 a\ o ... o a\ o ak+l e B which contradicts 
(1). The proof of the second part of the statement of Lemma is analogous. 

Obviously bx o ... o bk e A, and tt = a t o . . . o ak_x o (bl o ... o bk) e B, t2 = 
= al o . . . o ak_2 o ak o (b^ o . . . o bk) e B. Hence t = ft o t2 o (ax o . . . o a k + 1 ) 0 

o c71 o . . . o b k _ 3 = â^ o a2 0 . . . o ak_2 o ak—1 o ak o ak+1 0 t)1 o b2 o . . . 0 bk_ 3 0 b k _ 2 o 
° ^k-i o bk G/4. Consequently w = * o(&! o . . . 0 bk_x 0 bk + 1 ) 0 a t 0 . . . 0 ak_3 o ak_ t = 

4 4 4 3 3 2 L 4 i_4 , 4 1 3 ? 3 

— !j| o a2 o . . . o ak_3 o ak_2 o ak—1 0 ak o a k + 1 o o1 o p2 o . . . 0 pk_3 o 0 k _ 2 o î —i o 
o b£ o bk+1 e B. If we interchange symbols "a" and "b" as well as "_4" and "£?" 
we have a proof for w e i Hence for the given decomposition of the set M, the 
number expressed by the quasi-polynomial w of the degree 8fc — 6 belongs neither 
to A nor to B. 

(ii) Let us suppose {au ..., ak+2) cz A. Put (for l ^ i < j ^ k + 2) wifJ- = 
= ax o. . . o a,-..! o a i + 1 o . . . o a j_ t o aj+i o. . . o ak+2. Obviously Uijt B. Hence u = 
= M2,3 ° U3A° ••• ° W*+l,k+2 = ^1 ° fl2_1 ° a 3 ~ 2 ° ••• ° f̂c+1 ° «k+2 G ^ S I l d 

(2) 2 = w o a3 o . . . o ak+l = a\ o a*"1 o . . . o ak+2 G J3 • 



Taking into consideration the proof of Lemma we easily see that i;j = fl1o...ofl,_1o 
© ai+l © ... o ak+2 e B holds for each i = 2 , . . . , fc. Hence v2 0 . . . o vk 0 uk+ltk+2 = 
= a\ o CI2"1 ° ••• ° ak+2 G -4. This contradicts (2). Hence for the given decomposition 
of the set M, the number expressed by the quasi-polynomial z of the degree fc2 + 
+ fc — 1 belongs neither to A nor to B. 

With respect to the assumption fc > 6, the degree of the quasi-polynomial z is 
greater than that of the quasi-polynomial w as well as than those of the other quasi-
polynomials p from the above considerations. It follows from the property B that 
there exists nx such that z > w and z > p whenever n = nu Put nk = max {n0, n j . 
The estimate for the function f* is determined by the quasi-polynomial z = 
= Pk(xi> •••> xk+i) = x\ ° •x2~1 ° x 3 _ 1 ° ••• ° xk+2- The above consideration has 
concerned any subset of M with fc + 2 elements. Therefore 

f*(n) < max { min {a)t oakrlo...o akr+\}} , 
{a\ ak + 2)

cM (jt,...Jk + 2) 

where (ju ...9jk+2) runs over all orders of numbers (1 , . . . , fc + 2). 

We prove part (a) of Theorem 1. Let us suppose that the set L = {n, n + 1 , . . . 
..., n + 2fc + 2} with 2fc + 3 elements is decomposed into two disjointf-thin sets A 
and B. In any distibution of numbers of the set L either A' = A n L or B' = B n L 
contains at least fc + 2 elements. Let us suppose [au ..., afc+2} <--- -4. It is obvious 
that the method of the proof of part (b) (ii) is applicable in this case. Since the sets L 
and M are different, the estimate of the function f* for n = nk (nk is determined by 
conditions analogous to those from the proof of part (b)) is determined by the ine
quality 

/*(*) < max { min [ak
h oa)rl 0...0 akr+\}} , 

{ai,...,ak + 2}
cL (ji Jk + 2) 

where (ju ...9jk+2) runs over all orders of numbers (1 , . . . , fc + 2). This completes 
the proof of Theorem 1. 

Let us apply Theorem 1 to the function from Example 1. 

Theorem 2. Let s eN, k > 1 and mktS(xl9..., xk) = sk~1x1 ... xk. Then 

(a) there exists nkeN and a polynomial Qk s of the degree fc2 + fc — 1 (Qk s(n) = 
= s*

2+*-*(n*2+*-i + Ckn
k2+k~2 + . . . ) , Ck ='fc(fc + 1) + i(fc2 - l )(3k + 4)) such 

that mks(n) < Qk,5(n) holds for every n — nk; 

(b) for fc > 6 there exists nkeN and a polynomial qk s of the degree fc2 + k — 1 
(<?*» = s*2**-2^*2**"1 + Dkn

k2+k~2 + . . . ) , Dk = k2 + i(k2 - 1) (3k + 2))such 
that mktS(n) < qktS(n) holds for each n = nk. 

Proof. Theorem 2 is a consequence of Theorem 1. It is easy to see that the quasi-
polynomial Pk introduced in the proof of Theorem 1 is of the form Pk(x u ...9xk+2) = 
= sk2+k-2x\xk

2~
i ...xl+\. Hence in the case (a), 



max { min {sk+k 2ai(ai ... ak+2)
k *}} = 

{ai,...,ak + 2}cL i=l,...,k+2 

= sfc2+fc"2(n + fc + If (n + k + 2)fc"x ... (n + 2fc + 2)fc"1 = QktS(n) 

for every sufficiently large n. In the case (b), 

max { min {sk2+k~2ai(a1 ... ak+2f~
1}} = 

{ai,...,ak + 2}^M i=l,...,k+2 

= S 
k2 + k-2 (n + kf(n + k+ If-1... (n + 2k+ if'1 = qkJn) 

holds for each sufficiently large n. 

Theorem 3. Let seN, mktS(xx,..., xk) = sfc"1x1 ... x*. Then 

liminf ((m*s(n)/nfc2+fc"2) - (sfc2+fc~2n)) = sfc2+fc"2 . \(k - l)(fc2 + fc - 2) 
W-+00 

and 

limsup(m*s(n)/nfc2+fc-2) - (sfc2+fc"2n)) = sfc2+fc"2(fc(fc + l) + i(fc2 - l)(3fc + 4)) 
«->oo 

holds for each k > 1. If k > 6, then 

lim sup ((m*s(n)/nfc2+fc-2) - (sfc2+fc"2n)) = sfc2+fc"2(fc2 + \(k2 - 1) (3fc + 2)). 

Proof. Upper estimates of lim sup ((m*s(n)/nfc2+fc"2) — (sfc2+fc"2n)) are immediate 
n-»oo 

consequences of Theorem 2. If for each neJVwe put a = mktS(n, n + 1 , . . . , n + 
+ fc + 1), /? = mks(oc, a + 1,. . . , a + fc — 1) and y = mktS(n, n + 1, . . . , n + k — 
— 2, /}), then it follows from the properties of multiplication that A = {n,n + 1 , . . . 
..., a — 1} u {/?, P + 1, . . . , y — 1},B = {a, a + 1, . . . , /? — 1} provide a decomposi
tion of the set {n, n + 1, . . . , y — 1} into two mfcjS-thin sets .4 and B. Hence mks(n) = 

= y - l = ^+fc-2(nk-+fc-i + ^ f c _ j j /fe2 + £ _ 2^ nk
2+k-2 + ) h o W s f(;r e a c h 

n e N . The last inequality yields the lower estimate for liminf ((m*s(n)/nfc2+fc-2) — 
- (sfc2+fc-2n)). 

Corollary. Let seN and fc > 1. Then 

m*s(n)/nfc2+fc"2 = sfc2+fc"2n + 0(1) . 

Remark . It is easy to see that the quasi-polynomial mktStt(xu ..., xk) = x1 o . . . 
... o xk, s e N, t e N u {0}, determined by the operation x o y = s(x + t) (y + t) — t 
is an -AB-function. The function mks from Example 1 is its special case, mks = mks0. 
This suggests the question: What is the general form of any _AB-function? 



References 

[0] W. D. WaШs, Street Anne Penfold, Wallis Jennìfer Seberry: Combinatorics, Springer-
Verlag, Lecture Notes 292, 1972. 

[1] E. Nyulassyová: On the k-thin arithmetical sets. Acta fac. гer. nat. Univ. Com. XXXI (1975), 
45-57 . 

[2] E. Nyulassyová: On muШplicatively k-sets. Acta fac. rer. nat. Univ. Com. XXXIV (1979), 
165-168. 

[3] 5. Znåm: Notes on an unpublished theorem of Turán. Mat. Lapoк 14 (1963), 307—310. 

Authoґs address: 816 31 Bratislava, Mlynsкá dolina (Matematicкo-fyziкálna faкulta UK). 


		webmaster@dml.cz
	2012-05-12T11:29:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




