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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

A NOTE ON HIGHER MONOTONICITY PROPERTIES 
OF CERTAIN STURM-LIOUVILLE FUNCTIONS II 

MILO§ HACIK and MILAN OSLEJ, 2.ilina 

(Received September 22, 1979) 

1. DEFINITIONS AND NOTATION 

A function <p(x) is said to be n-times monotonic (or monotonic of order n) on an 
interval / if 
(1.1) ( - l ) > ( 0 ( * ) = °> * = 0, 1 7i ; xel. 

For such a function we write cp(x) e Mn(l) or q>(x) e Mn(a, b) provided I is an open 
interval (a, b). If the strict inequality holds throughout (1.1) we write <p(x) e Mn(l) 
or q>(x)e Mn(a, b). We say that (p(x) is completely monotonic on I if (1.1) holds 
for n = oo. 

A sequence {//*}£= I denoted simply by {fzk}, is said to be n-times monotonic if 

(1.2) (-lyA'ftk^O- i = 0, l , . . . , n ; fc = 1, 2 , . . . . 

Here A/ifc = nk+l — nk, A
2/ifc = A(A/ik) etc. For such a sequence we write {fik} e Mn. 

If the strict inequality holds throughout (1.2) we write {nk} e M*. {}ik} is called com
pletely monotonic if (1.2) holds for n = co. 

As usual, we write [a, b) to denote the interval {x | a S x < b}. cp(x)e Cn(l) 
means that cp(x) has continuous derivatives up to and including the n-th order. 

Dx(cp(x)) denotes the first derivative —— , 
dx 

D$((p(x) denotes the n-th derivative ^ '. 
dxn 

2. PRELIMINARY REMARKS 

Consider a differential equation 

(2.1) [ ^ ) / ] ' + / ( x ) j = 0 

with/(x) and g(x) continuous (g(x) > 0) for a < x < b. Let yi(x), y2(x) be linearly 
independent solutions of (2.1) on an open interval (a, b), not necessarily (a, oo). 
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Let 

(2.2) P(x) = y2
l(x) + yl(x), 

and let piN)(x) exist for a positive integer N (of course f(x), g(x)e CN-2(a, b)). 
The function y(x) is an arbitrary non-trivial solution of (2.1) on (a, b) and {xl9 x2,...} 
denotes any finite or infinite increasing sequence of consecutive zeros on (a, b) of 
a non-trivial solution z(x) of (2.1). We put 

(2.3) w(x) = yt(x) y2(x) - y[(x) y2(x) , 

where the solutions yt(x), y2(x) are normalized so that w(x) > 0. In [3]([5] §5) 
and [6] the results concerning higher monotonicity properties of certain sequences 
depending on {xux2,...} were inferred from certain hypotheses on the function 
p(x). In this paper these results will be extended by means of Kummer transformation. 

3. PRINCIPAL RESULTS 

Theorem 3.1. Suppose that y±(x), y2(x) are linearly independent solutions of 
(2.1) on (a, b) and that p(x) is defined by (2.2) and w(x) by (2.3). Suppose that also 
W(x) and \j/(x) are functions chosen in such a way that the integrals involved in 
(3.1), (3.2) and (3.3) exist and that, for n = 0,1,...,N, 

,,» (K x ) w-.wij[w W(jMy*--] 
has constant sign en = ±1 on (a, b), where X > — 1 and a < 1 + |A. Then 

n = 0, 1,...,N, k = 1,2,.... 

If for a given n the expression in (3.1) is strictly positive (negative), the same is 
true of the corresponding differences in the conclusion of the Theorem 3.1. 

Proof. Abel's formula for the Wronskian shows that w(x) = cjg(x), where c is 
a positive constant. We make the change of variable 

(3-3) W T T ! W ^ > 0 ' 
Jo0(")<r(") 

so that the equation (2.1) becomes 

(3-4) ^ + 9 ( 0 1 - 0 . 
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where r\(Cj = y(x)jil/(x) and cp(£) = [(•#')' + Ml ^39 (see e-g- C1])' hence we have 

il/2(x) \l/2(x) 

Another change of variable rj(£,) = v'Mf )) u(t), n(Cj = £'(t) transforms the equation 
(3.4) into u"(t) + u(t) = 0 (see [3] p. 59). Since TT(£) = £'(t) > 0 on I, there is a one-
to-one correspondence between the zeros of £(<!;) = z(x)j\l/(x) and those of v(t) = 
= (V(7r(^)))~1 £(£) WO *s ^ e function corresponding to z(x) after these two changes 
of variables). 

But v(t) = A cos (t — b) where A and b are constants, so that the consecutive 
zeros tk of v(t) are equidistant with Atk = TT, fc = 1, 2,.. . , where fk is the zero of v(t) 
corresponding to £k. If rj(£) = £(<!;), then u(t) = v(r). Thus 

-L (̂*)1>(*)J W*) 

.-cf^wt^WOl-KOl1^--
Jík 

= c rV[x(č(t))] K'(0]1+*a-KOIA* 
Jí* 

X 

dx 

and as in [4, p. 1245], in virtue of (dxjd£). (d£jdt) = g(x) p(x) = p(x) vv x(x) we 
have 

A"Mfc = cnn r+tDn
t{W[x(^(t + flnw))] [{'(f + 6nn)]l+^-a} \u(tf dt, 

Jtk 

o < e(t) < I . 
Hence we have 

sgn A"Mk = sgn D»t \w(x) [ - ^ - T + * " j . 

Since 

we obtain 

л * , d fúт/^Гi<*)Л1+w""ì d* d^ 

SgnЛ-M, = S g n ( K x ) w - Ч x ) £ J [ ^ ) [ ^ J + 4 A - ] 

and the proof iS complete. 
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Corollary 3.1. Suppose that for a positive integer IV, 

(3.6) W(x) > 0, (-1)" WM(x) = 0 , n = 1, 2,.. . , N 

and 

(3.7) ( _ l ) » D J f f i l = 0 , „ = 0,1,...,JV. 

Then for a fixed X > — 1 and a < 1 + \X, we have 

dx > 0, 

n = 0, 1,...,N, k = 1,2,.... 
All of the above remains true if the factor (—1)" is deleted simultaneously from 

(3.5), (3.6), (3.7), (3.8). 

Proof. It is a question of checking that the present hypotheses imply those in 
Theorem 3.1. This follows easily from [4, Lemmas 2.1 and 2.2]. 

Remark 1. If we choose \j/(x) = 1 in Theorem 3.1, then we obtain [6, Theorem 
3.1] and the same is true for Corollary 3.1. 

Example 1. Consider a differential equation 

(3.9) y" + [~v2x-2v-2 - ^ - ^ 1 y = 0 

on (0. oo), where v #= 0. It has linearly independent solutions 

y^x) = x(v+1)/2 cos x~v, ^2(x) = x(v+1)/2 sin x~v, 

so we may choose p(x) = xv+1. If we consider the quantities Mk given by (3.2) for 
this equation, choosing W(x) = 1 , A = 0, a = 0 and ^(x) = y/x for simplicity, 
we find that 

sgn AnMk = sgn fxv+1 —\ (xv) = n! vnx(n+1)v, n = 0, 1, 2 , . . . , 

M k = i d x = l n ^ - . 

J xh
 x xk 

where 

33 



{'"lf} > 0 , n = 0,1,2,..., fc = l,2,... 

Thus, for v > 0 we get 

A" 

and for v < 0 we obtain 

( - l ) » A r t j l n ^ l > 0 , n = 0,1,2,..., fc=l,2,.... 

Chossing i/r(x) = 1 we obtain [6, 2.8]. 

Theorem 3.2. Suppose that solutions y(x) and z(x) 6f (2.1) are linearly independent 
and that, for a positive integer N, there exists a pair of linearly independent solu
tions yi(x), y2(x) and a function \f/(x) for which 

( 1 1 0 ) ( - 1 ) B ( # ) ) ( f l ) > 0 ' n = ( U ' 

( - i ) n (wr=° ' " = 2 ' 3 - ^ ' 
(3.11) ( _ ! ) - D » { f f l l = o, n = 0,1,2,...,N 

w)J 
and for a < x < b 

(3.12) W(x) > 0 , (-If Win)(x) = 0 , n = 1, 2,..., JV . 

Then for any a > 0 
(3.13) 

аnd 

(3.14) 

(-l)ГA»W(xk) 

(-l)"A"W(xk) 

УЫÌ 

Ф(xk)\ 

w(xk) 

> 0 , n = 0,l,2,...,.V, 
K = = 1 , _£, . . . 

n = 0,l,2,...,ЛГ, 
> 0 , 

fc = l,2, . . . . 

All of the above remains true if the factor (— 1)" is deleted simultaneously from 
(3.10), (3.11), (3.12) and (3.13). 

Remark 2. [5, Theorem 5.2] is obtained from Theorem 3.2 by choosing \j/(x) = 1. 

Proof. Making the change of variable (3.3) we have 

M W(x) 
Ф(*)\ 

= V® Ш • 

where V(£) = JV[x(£)] is an N-times monotonic function of £. The differential 
equation now has the form (3.4). Another change of variable £'(t) = n(i), r\(£) = 
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= <J(n(t;)) u(t) reduces it to the form u"(t) + u(t) = 0. Thus we have 

W(x) У(x) 
ф(x) 

W(xk) 

= У($ Ш ' - т Ш)У2 К' + Щ*> 

y(xò 
Иxк) 

-cvmшmү12, 
where Ce <0,1> is a constant independent of fc. As in the proof of Theorem 3.1 
we have - # ) > 0, «'(€) < 0, TT(£) E MiV(|(a), { ( % K({) > 0, F(£) e MJV(^(a), {(&)). 
Hence if we write o(^) = F(^) [ST(I)]" /2 we get using [5, Lemma 2.2] 

(3.15) ( - l ) " D ? [ a ( ^ ) ] > 0 , « = 0 , l , 2 , . . . , i V . 

We have for n = 0 ,1 , 2 , . . . .N 

\y(xk)\' ( - l )"A» (xk) 
Ф(xк)\ 

( - 1)" С Dя{q[í(řk + nк)]} , 0 < (t) < 1 

by using the mean value theorem for higher order derivatives and differences, see 
[3, p. 60]. Hence in view of (3.15) we get the desired (3.13). 

The result (3.14) easily follows from the Wronskian of „v(x) and z(x) (w(x) = 
= y'(x) z(x) — j;(x) Z'(x)) by dividing it by \j/(x) and substituting x = xk, so that 
z(xk) = 0 and y(xfc)/^(xfc) = vv(xfc)/(i//(xfc) z'(xk)). The Wronskian of y(x), z(x) is 
a constant non-zero multiple of w(x). 

The last sentence in the statement of Theorem 3.2 follows by making obvious 
changes in the above proof. 

E x a m p l e 2. Consider a differential equation 

(3.16) 
/ 1 ,V a2 + 1 

which has linearly independent solutions 

>>! = xa cos In x , y2 = xa sin In x . 

Now p(x) = x2a. If we choose \j/(x) = x a " 1 / 2 , then g\J/2 = 1 and p(x)\\j/2(x) = x. 
Thus, the hypotheses of Theorem 3.2 are fulfilled with (—1)" deleted for any ae 
e ( - c o , oo). 

Corollary 3.2. Under the hypotheses of Theorem 3.2 we have 

(3.17) 

and 

(3.18) 

(- l ) "A" log 

( - l ) " Д " l o g 

У(xkï 

Иxk)\ 

w(xk) 

Ł0, 

ИXk) -'(**) 
Ž0, 

n = 1,2, . . . , І Y , 

fc=-l,2,... 

и = 1,2 N, 
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These results remain true if the factor (— if is deleted simultaneously from (3.10), 
(3.11), (3.12), (3.17) and (3.18). 

Proof. From Theorem 3.2 we have for each a > 0 

( l V A" bfo-)M*-)- " 1 > Q n = l,2,...,iV, 
K J a ' ft = 1,2,.... 

Taking the limit as a -» 0+ and using the L'Hospital rule, we get (3.17). Similarly, 
(3.18) follows from (3.14). 

Corollary 3.3. If the hypotheses of Theorem 3.2 hold and if, in addition, 

(3.19) (-1)" Dx{[W(x)f = 0, a<x <b, n = 1, 2 N 

for each a > 0, then 

n = 1,2,....iV, 

ft = 1,2,... 
(3.20) (-1)" A" log \w(xk) -$-*) U 0 

and 

(3.21) (-l)«A»logШ^Uo, 
{ф(xk)z(xk)\ 

n = l,2 N, 
fc = 1,2,.... 

The results remain true if the factor (— l)n is deleted simultaneously from (3.10), 
(3.11), (3.12), (3.19), (3.20) and (3.21). 

This corollary may be proved in the same way as Corollary 3.2. As an example 
we introduce the solutions of the differential equations (3.9) and (3.16) from Examples 
1 and 2, which fulfil the hypotheses of Theorem 3.2. 
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