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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

THIRD BOUNDARY VALUE PROBLEM FOR THE HEAT 
EQUATION II 

MIROSLAV DONT, Praha 

(Received August 14, 1979) 

The present paper is a continuation of the paper [I] where only a special type 
of the third boundary value problem was investigated. We shall keep the notation 
introduced in [I]. We also continue the numbering of the paragraphs and formulas. 
Thus we refer to items in [I] by writing simply (0.1) instead of (0.1) in [I], and so on. 

3. THE OPERATORS L, A 

As well as in the preceding part let cp be a continuous function on an interval 
(a, b); the sets E, K are defined by (0.1), (0.2). For [i e 8$'((a, b>) the heat potential 
UM = Ul is defined by (0.3). Further, let G* stand for the adjoint heat kernel, that is, 
G*(x, t) = G(x9 —t) ([x, t] E R2). Define the adjoint heat potential U* of a measure 
JU e &' by the equality 

Ul(x, t) = U?(x91) = fc*(x - cp(x), t - T) d/i(t) 

(for [x, t] e R2 for which this integral exists). Note that if \i, X are two measures 
from @'((a, b}) such that either both \i and X are non-negative or the integral 

Í ЬUм(ę(t),t)d\X\(t) 

converges, then by the Fubini theorem 

[buM*)> *) áx(i) = f" ( f G(<KO - <K*), t - T) M*)) d^(0 = 

= f (jbG(<p(t) - ?<-), t - T) dX(t)\ d/z(T) = f bV*(<p(x), T) d^t) 

Let X e ď0(<a, í>>) be fixed. 



For n 6 @'((a, b » let 

(3.1) .*[» = {"A e -*»; J V(^(0 . 01 lIwWO. 0 d|A| (0 < ooj . 

On $)(]*) we define a functional Lu: 

(3.2) <*, L,> = J V(*(0. 0 U > ( 0 , 0 dA(0 , (* e Sfoi)) . 

Further, let A„ = HM + LM. that is 

(3.3) ' < ^ > = <^H,> + OA,-V> lM0(f i ) . 

According to the introductory remarks the functional A^ can be regarded as a weak 
characterization of the term 

~* + Ufa + A) 
OX 

on K (d.Ao(0 = d<p(0 "~ provided the function cp is of bounded variation on <a, by). 

The following assertions are analogous to the relevant assertions from [32], 
The proofs of these assertions are also quite similar to the proofs of the assertions in 
[32] (but [32] deals with sets in Rn+1 of the form D x (TU T2), D C Rn, instead of 
the set E). 

3.1. Proposition. The following two conditions are equivalent to each other: 

(i) For each \ie$'0 there is a unique linear extension of the functional A^from 
@(n) onto the whole 9)b. 

(ii) The potential U*A| is bounded on any compact set contained in the set 

(3.4) K0 = {[<p(t),t]; te(a,b)}. 

If one of the conditions (i), (ii) is fulfilled then Q)(\i) = ®bfor each \i e @0. 

Proof. Let n e @0, t e <a, b). If \l/((p(t)91) = 0 for each $ e Q}(\i) then 

<*• - V = W, - V + <A(<K0> 0 f o r <A e SQi) . 

Hence if the condition (i) is fulfilled then it cannot happen that ^((p(t), 0 = 0 for 
each i// e @(fi)- It is thus seen that under the condition (i) for each \ieffi0 and each 
t e <a, b) there are 8 > 0, ij/ 6 9)(\i) such that ^((p(z), T) = 1 for each T e (t - 5, 
t + d) n <a, b) and, moreover, if M c <a, b) is a compact set then there is a \j/ e Q}(\JL) 

such that \j/((p(r), T) = 1 for T G M. 



Suppose now that the condition (ii) is not fulfilled. Then there are a compact set 
M cz <a, b) and points t{eM (i = 1,2,. . .) such that 

(3.5) 1^,(9(1,), U) ^ T + 1 , (i = l , 2 , . . . ) . 

There is a point t0 < b, t0 > sup M such that 

(3.6) [n(t0 - sup M)]" 1 / 2 |A| «*0, 6 » ^ 1 

(A({b}) = 0 as X e 3§0 by the assumption). Put 

^1 = \M \<a,t0> 

(the restriction of |A| on to the interval <a, *0>). Since 

G ( X , O ^ H " 1 / 2 . (t>0), 
we get from (3.5), (3.6) that 

(3-7) U* (<?('.). 0 = 2'-

Consider now the measure 

Then /x e &'0, spt /i c <a, t0} and according to the preceding consideration there is 
a function ij/ e ^(|i) such that \JJ((P(T;)9 T) ^ 1 for each T e <a, f0>. For this function \j/ 
we have 

[V(<K0> 01 ^(<K0> 0 d|Al (0 ^ fVM(^(t), 0 d^(0 = 

= [bulM)> 0 M O = £ 2"1 U*.(<K<.)> ri) -=- +oo , 
Jfl '=1 

which means ^ £ ^(^) — a contradiction. We have thus proved that the condition (i) 
implies (ii). 

Suppose now that the condition (ii) is fulfilled. Then for each xjj e $)b and each 
ju e % we have 

^(cp(t),t)\uU9(t),t)d\X\(t) = 

= J " ( J G(<K0 - <KT), t - T) | ^ ( r ) , 0 | d|A| (0) d|„| (T) . 

For T > t0 = sup {t e <a, b>; [<j»(t), f] e spt i/f} we have 

ToOKO - *(*). t - t) |^(^(0, 01 d|A| (t) = 0 



and hence (as t0 < b; we suppose furthermore that t0 > a since else there is nothing 
to prove) 

f V M O - 0 U\M')> 0 dW (0 = IWI f VAI(<K*)> *) d M w = 
S m \\i*l sup {UfA|(x, t); [x, r] GK, * <: t0} < oo . 

It follows that ®(\i) = ^ 6 and the condition (i) is fulfilled. 

3.2. Lemma. There is a number y > 0 with the following property: 

For each x0 < b there is a function i/tTo e 2h such that 0 = y\ft0 ^ 1 in K2, ^T0 = 1 
on K n Rt0 and 

(3.8) |<^ 0, H O I ^ y 

for each x e <a, b). 

Proof. Fix T 0 6 <a, b). 

Let ^ : JR1 -+ R1 be an infinitely differentiable function with compact support 
such that 0 ^ il/t ^ 1 on JR1, spt ^ c (— oo, b), ^ ^ 0 on (T0, b), \jj1 = 1 on 
<a, T0>- Choose o > sup {|<p(0h t G <a> ^)} a n d " e t &2 : R1 ~* R1 be an infinitely 
differentiable function with compact support such that 0 ^ i^2 ^ 1 and \\j/'2\ =" 1 
on R1, \j/2 = 1 on < —.0, e>. Now define a function i//T0: 

^t0(x, 0 = iAi(0 i^2(x) , ([x, *] e R2). 

Then *K0 6 0>, ^T0 = 1 on K n JRT0. 

Let x e <a, b) be arbitrary. Then 

(3.9) <**-»«,> = 

= f f ( S ^ ~ ^ ' ' ~ T ^ ^*' ~̂G<<X ~ ̂  t~x)Jt ^*' 7 dx dt 

*Ai(0 |^2Ml d * d* + 

+ f f G(x - p(t), r - T) xl/2(x) \il/[(t)\ dx dt = Il + I2. 

As \$'2\ g 1, ^ ^ 1 we get 

^

' IPC 
— ( x - < p ( t ) , f - f ) 

*J0* 
according to (0.5). 

10 

JJ.jf «*-«*-*> 

dx dř ^ —- V(Ь - a) 



Further, we have (denoting Et = E — RT) 

Putting TX = sup {t; ij/^t) 4= 0} we conclude that I2 = 0 if T ^ xx. Suppose now 
that T < Tt. Then 

J, V«<-'))J- ( «(<-')) 
Using the substitution 

x — <P(T) _ 

2 V(< " t) ~ Z 

we get 

re x p (~ ( v**o d x = 4 v°" T )f e~*2 dz=2 v(7r(f ~ T)) 

and hence (for \j/\ g O o n <a, fc>) 

(3.11) /2 ^ 2 VViCOl dr ^ 2. 

Now it suffices to put 

ľ = 2 + 4-V(Ь-«) 

and (3.8) follows from (3.9), (3.10), (3.11). 

3.3. We shall denote 

ml = sup {UfM(x91); [x, t\ e K0} 

(where K0 is defined by (3.4). 

3.4. Theorem. Suppose that k is a non-negative measure (in &'0). Then the 
following two conditions are equivalent to each other: 

(i) For each \i e @)0 there is a unique measure v M e^ 0 which represents the functional 
A^ in the sense that 

f 6 9{ji)9 fj,(t) = </>(<K0>1) (t e <«, b}). 

(ii) VK + m* < co 

(where VK = sup (0(<p(r), T); T e <a, b>}). 

11 



Proof. Suppose that (i) is fulfilled. Then for each \ie$l'0 the functional Au has 
a unique linear extension from 2i(p) on to Q)h9 which means (according to Proposition 
3.1) that Q}(\i) = 9b for each \i e @'0. First, we show that 

(3.12) m* < +oo . 

Suppose that m* = + co. Then there are points tt e {a, b) such that 

l /J(g<r l) fr l)>2 l
f (i = 1 ,2 , . . . ) . 

Consider a measure 
00 

i = l 

we have \i e @0. For T < b let 

Given n natural there is a T0 < b such that 

^LM'.)''i) > 2' for each i = 1, 2 , . . . , n . 

Let \j/Xo be the function from Lemma 3.2. As \\fxo = 1 on K n Rxo we have 

f V0(<K<)>0 uMt\ t) <u(t) = f V > ( 0 , o cuTO(o = 
J a J a 

= [binM*)> t) Mt) = Z 2-1 uU^«). <•) = «• 

Since by lemma 3.2 

l<^Vl-"> 
which implies 

CO 

|<^,^>|gyl2-' = y, 
i = l 

we have 
|<^0,^>| = / i - y . 

As |il/t0| ^ 1 and the number n was arbitrary, it is seen that the functional AM is not 
bounded which means that there is no element from &'0 representing (in the mentioned 
sense) the functional Ar We see now that if the condition (i) is fulfilled then necessarily 
(3.12) is valid. 

If (3.12) holds then the functional LM can be represented by a (unique) measure 
from S&0 since in this case 

I^L^I^^IIHIm*. 

As A„ = L„ + Hp it follows that then the functional A,, can be represented by a unique 

12 



measure from @0 if and only if HM can. But according to Theorem 2.3 the functional 
Hp can be represented by a unique element from ^ 0 if and only if the condition 
VK < oo is fulfilled. Hence we obtain the assertion. 

4. THE OPERATOR V 

For fe #(<a, b}) let / . X be the product of the function / and the measure X. 
F o r / e ^(<a, b})9 t e <a, b} we define 

(4.1) K/(.) = U * > ( 0 , 0 = f / W G*(>(0 - <?(T), f - T) dA(T) = 

- f/(T) 1 e x p f - ^ - ^ d ^ T ) 

provided the integrals exist. 

If, for instance, the restriction U*\K is continuous (on K) then for each/e #(<a, b>) 
we have V/e # 0 (<a, b}) and one can regard Vas an operator on #(<a, b>) or as an 
operator on #0 (<a, b}) (V:<£-><£, resp. V:%0 -+ # 0 ). 

By the equality (4.1) one can also define Vf for any bounded Baire function / 
on <a, b> and then Vcan be regarded as an operator on the set of all bounded Baire 
functions ob <a, b> (in this case even supposing only m* < oo). 

4.1. Proposition. Suppose that X e &'0 is a non-negative measure. Then the fol
lowing two conditions are equivalent to each other: 

(i) Vfe «o «a , 6 » for each / e <^~«a, &». 
(ii) The restriction U*\Ko is continuous and bounded (on K0). 

Proof. Let (i) be valid and suppose that the restriction U*\Ko is discontinuous at 
a point [cp(t0)9 f0] (where t0 e <a, b)). Choose a point t' e (f0, b) such that X({t'}) = 0 
and put 

•̂1 = ^|<a,0 J *2 = ^|<f',fe> • 

Let / e #0 (<a, &>) be such that / = 1 on <a, t'}. The restriction U*2\K is certainly 
continuous at the point [(p(t0), f0] (for t0 $ spt X2) and Ufk2\K is continuous at the 
point [<p(t0), f0] as well. As U*\K is dicontinuous at the point \(p(t0)910~\ and 

u* = K + K > 

the restriction t/* \K j s not continuous at the point [(p(t0)> t0]. But (as/ = 1 on <a, t'}) 
% 

vf{i) = UJXO, 0 - K(<P(<)> 0 + u* M& 0 
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and so Vf is discontinuous at t0 which contradicts (i). We conclude that under the 
condition (i) the restriction U*\Ko is continuous on K0. 

Suppose now that the potential 17* is not bounded on K0. Construct a sequence of 
points tt e (a, b) as follows. Suppose that we have already a point t{ e (a, b) such that 

U*(cp(<i,), U) > 2 i + 1 + 1 . 

Choose then a point ti+1 e (a, b), ti+1 > tt such that 

U*(<p(ti+1),ti+1)>2i+2 + l 

and at the same time 

G*(q>(ti)-(p(T),ti-T)dX(z)<l. Í < 
J . І + 1 

There certainly exists such a point ti+l9 due to the fact that X({b}) = 0 and that 
by the preceding the restriction U*\Ko is continuous and so it can be unbounded only 
in a neighbourhood of the point [(p(b), b\ Moreover, it is ceen that for this sequence 
of points ti we have f, -> b for i -» + oo. Consider now a function fe <£0 (<a,fe>) 
with f(a) = f(b) = 0, f(tt) = 2" * (i = 1, 2,. . .) and such that / is linear on the in
tervals <a, *!>, <rf, ti+ly (i = J, 2,. . .) . Then (for each i natural) 

Vffa) = p / W G*fo(*f) - cp(x), U - T) dX(x) = 

J*. 

= 2-<'+1) {""G*^ - cp(r), tt - r)dA(r) = 
Jti 

= 2"<i+1> | j V f o f o ) - cp(x), tt - T) dX(r) - p G*(cp(tl) - cp(r), r. - T) C1A(T)J > 

> 2 " ( i + 1 ) ( 2 i + 1 + 1 — 1) = 1 . 

Hence Vf£ # 0 (<a, b>) and it is seen that (ii) follows from (i) indeed. 

Suppose now that the condition (ii) is fulfilled and that X is not the zero measure 
(or else there is nothing to prove). Then m* > 0. Letfe # 0 (<a, b>). Then for each 
8 > 0 there is a 8 > 0 such that 

e 
< < 

2m? 

for each f e <fe — 5, b>; furthermore, choose 5 such that A({b — 5}) = 0. Putting 

"1 = *|<a,fc-a> » * 2 = ^\ib-dtby 

we have 

Yi(0 = KxXM 0 + U/.-.W0.0 

14, 



for t e <a, b}. The restriction U*Xl\K is continuous on K (since b $ spt Xx). Further, 

\u*f,Mt), 01 ̂  r^i UJW*). 0 ^ 
2 m * " ҳ , w " ' ~ 2 

for any t e <a, b>. Hence it is seen that Vf is continuous on <a, b} (and, of course, 
Vf(b) = 0). So the condition (i) is fulfilled. 

4.2. Remark. Let k e <%f

0 be such that the restriction Uj^il^o *s continuous and 
bounded on K0- Then also the restrictions l/*+\Ko, U*- \Ko are continuous and bounded 
on K0- Further, m* < oo. It is seen from the proof of Theorem 3.4 that then for each 
\ieffl0 the functionl LM can be represented by a (unique) measure from J^0. Especially, 
the functional LM can be then regarded as a functional on %>0 (<a, &>). The Fubini 
theorem yields that for pt e 0&'o, f e ^0 

(4.2) <Vf,/x> = T f/(T) G*(cp(t) - cp(z), t - T) dX(z) d»(t) = 
J a J a 

= f V(T) U > ( T ) , T) CU(T) = <f, L„> . 

Regarding now L as an operator o n ^ ^ / i N L ^ L : ^ -> ^ 0 ) and Vas an opera
tor on ^o(V:fh-^ Vf; V: ^0 -> <€0 ) we see from (4.2) that the operators V, L are 
adjoint to each other. 

4.3. Proposition. Let Xe3S0be non-negative and suppose that the restriction U*\Ko 

is continuous and bounded on K0. Then the operator Vis a compact operator on ^0 

if and only if the restriction U*\K is continuous on K. 

Proof. Given n natural, let hn be a function on Rl such that hn(t) = 0 for t — 
= -1/n, hn(t) = 1 for t <; -2/n, hn is linear on the interval <-2/n, - l /n>. For 
[x, t] e R2 put 

G*n(x, t) = G*(x, t) hn(t) , B*(x, t) = G*(x, t) - G*n(x, t) . 

It is seen that for n -> A- oo we have G*(x, t) -> G*(x, t) monotonically. Putting 
further for [x, t] e R2 

Cl(x, t) = CG*(X - cp(z), t - T) dl(z) , Dn
k(x, t) = [hB*n(x - <p(z), t - T) <U(T) 

J a J a 

we have 
V*{x,t) = Cx(x,t) + D:(x,t). 

On account of the continuity of the kernel G* the potential C" is continuous (even 
for each X e 3S'0). At the same time we have that for [x, t] e R2 

G;(X, 0 -> u*(x, t) 

15 



(n -> + oo) and this convergence is monotonous. Then also 

Dn
x(x, t) -> 0 

(n -> + oo) and this convergence is monotone as well. 

Suppose now that the restriction U*\K is continuous on K. As C\ is continuous, 
the restriction Dn

x\K is continuous on K. In virtue of the compactness of K the Dini 
theorem gives that 

(4.3) **p{DHMt),t); f e < a , b > } - > 0 

for n -> +oo. Consider now operators Vn: 

Kf(t) = CJX'X 0 = f/W G X 0 - <p(r), t - T) <U(T) 

(fe^Q, te <a, b>). Due to the fact that the function G*(cp(t) — cp(x), t — T) is con
tinuous as a function of the variables t, T on <a, b> x <a, b>, the operator Vn is 
a compact operator on ^ (the image of the unit ball of the space %>$ is a set of 
equicontinuous and uniformly bounded functions on <a, b>). Forfe <£Q , f G <a, b> 
we have 

*y(0 - Kf(t) = U;x»,0 - cjXO. 0 = DrM')> <) • 
Hence 

|| V- Vn\\ = sup {Dl(<p(t),t);te <a, b>} 

and || V— Vn|| -> 0 (n -> +oo) (according to (4.3)) which immediately implies that 
the operator Vis compact. 

Now suppose that the restriction U*\K is not continuous on K (so U*\K is discon
tinuous at the point \_q>(b), b]). Then there are 6 > 0, t(e <a, b) (i = 1, 2, . . . ) , 
^ -> b (i -> +oo) such that 

U*(cp(tt), tt) = <5 . 

Given i natural, choose t\e(a,b) such that 

G*(<p(ti) - <?(T), tt - T) d.A(T) < id I 
(there is such a f j in virtue of the assumption A({b}) = 0). Further, let f( e Co be 
such that 0 = ft = 1 on <a, b>, f, = 1 on <a, *'•>. Then 

= tf Ifofo), 0 ~ \ G*(q>(tt) - cp(r), U - T) dk(x) = ±<5 . 

Now it is seen that the unit ball of the space VQ is not mapped by V on to a set of 
equicontinuous functions on <a, b> and thus Vis not a compact operator. 

16, 



Let us show one auxiliary assertion which will be needed in the following. 

4.4. Lemma. Let X e &'0((a, b}) be a non-negative and continuous measure 
(that is, X({t}) = 0 for each te(a, b>) and suppose that the restriction U*\K is 
continuous (on K). Putting for S > 0, t e <a, b> 

^t,d = * |<a ,b>n<f . f + e5> 

define on <a, b> a function Sd by 

SJ(t) = VttMt),t), (te(a,b». 

Then for each S > 0 the function Sd is continuous on <a, b> and Sd -> Ofor d -» 0 + 
uniformly on <a, b>. 

Proof. As X is a continuous measure on <a, 6> and U* is finite on K we certainly 
have for each t e <a, b) that 

Sd(t) -> 0 

for 8 -> 0 -F and this convergence is monotone. Taking into account the Dini theorem 
it suffices to show that for each 8 > 0 the function S5 is continuous on <a, b>. 

Fix / e <a, b). If t + 5 = b then Sd(tt) = U?(<p('i)> tt) for tx e <r, b> and the 
continuity of S3 on <t, b> follows from the continuity of U*\K; especially, the func
tion Sd is continuous from the right at the point t. 

Suppose now that t + 5 < b and let tt > t be such that tt < t + 8, tt + 8 < b. 
Consider the term 

\s>(t) - s^oi = \KM)> 0 - KiM^ '01 -
KM')> 0 -KM^l h) - f G*(<p(tl) - 9(x), ty - x) dx(x) 

J t + 5 

The restriction U*\K is continuous and so also the restriction U*t 6\K is continuous 
on K (for t fixed). Thus for a given e > 0 there is a 8' > 0, 8' < (5 such that 

K M ) , o - ut,M^)\ < \ 
for each tv e (f, f + 5'); moreover, <5' can be chosen such that 

[>(<5 - S')]-1'2 k((t + S,t + S + <5'» < - . 

Then for each f. e (t, t + S') (tt + 8 < b) . 

I r + ' G * 0 ( f , ) 4 <p(x), h - T)dA(T)| < f'+'+'[.i(<1 - 5')]",/2dA(T) < - . 
U r + c5 I J t + d 2 

Hence it is seen that the function Sd is continuous at the point t from the right. 
Similarly for the left hand continuity. 

17 



5. THE E Q U A T I O N Au = v 
џ 

Let X e 3S'0 be a measure such that t7j^||x is continuous on K. Then, of course, the 
restrictions C/*+ |K, Vf-\K are both continuous on K as well. Further, suppose that 

VK = sup {£%>(.),«); f e <a, b>} < co . 

Then it follows from (2.10), (4.2) that for/e<g„, ne3S'0 

<f. A„> = <f, #„> + <f, L„> = <w.f, ny + <yf, ix). 

So the operators A and (PP_ + V) are adjoint to each other. 

In what follows we shall use some more notations from Sections 1 and 2. Especially 
recall that f o r / e <̂ o> T 6 <a> &> 

JF_/(T) = W7(<KT), T) - 2 / ( T ) ^ £ > ( T ) , T) = 

V«jt v 4('-T) / 2V('-T) 

= f /(f) dvt(t) - 2/(T) &E(<P(*), T) , 

~i /(x) = ~- /(T) + /(T) = f /(0 dvt(t) - /(T) (2^ £ >(T) , T) - 1) . 

vT is the measure defined by the equality (2.3). For r > 0 we have 

2 
|vt| « T , min {T + r, b} » = — V\(P(T)9 T) . 

V71 

5.1. Lemma. Suppose that Xe@lQ is a continuous measure, let U*X^\K be conti
nuous and let 

(5.1) lim sup f A Ffoto- T) + |2^_T(^(T), T) - if) < 1 . 
r->0+ te<a,b) \yJ7C J 

Then the equation 
(WL + V)f = 0 

ftas in ^Q only the trivial solution. 

Proof. For T e <a, b>, r > 0 denote 

x̂,r = Wl^n^t + r) , S,(T) = U £ > ( T ) , T) . 

According to Lemma 4.4, for each e > 0 there is an r > 0 such that 

sup {SV(T); T e <<z, fc>} < £ . 
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Since (5.1) is supposed to be fulfilled there is an r0 > 0 such that 

(5.2) sup ( - 1 v'0^), T) + | 2 ^ £ > ( T ) , T) - 1| + Sjxj) < 1 . 
™<<>,b) W": / 

Le t fe ^ 0 (<a, b>) be a function for which 

(IV- + V)f=0. 

There is a point T' e <b — r0, b) such that 

| f ( T ' ) | = s u p { | f ( T ) | ; T G < f t - r 0 , 6 > } . 

As \vz] (<a, T'>) = 0, we have 

(5.3) \(W, + V)f(x')\ = 

"f(t) <M0 - f(z') (2^>(Y), T') - 1) + V*M-c% A <; 
J T' I 

- |/(T,)' ( i ; *°W)' T'} + l2^~(<p(T,)' T'} - *'+ S - ( T , ) ) • 
But, since 

0 = (W_ + V)f(T') = (W, + V)f(T') - f(T') , 

we get from (5.3), (5.2) that f(T') = 0, that is f(T) = 0 for each i e < & - r0, 6>. 
Continuing by induction we obtain that f(T) = 0 for each T G <a, b> (see also 
[4] — the proof of Lemma 2.1). 

5.2. Theorem. Let X e 08o be a continuous measure such that the restriction U*A||-
is continuous on K and suppose that the condition (5.1) is fulfilled. Then for each 
v e J j , the equation 

(5.4) _4„ = v 

has in &'0 a unique solution. 

P r o o f . First, let us consider the operator (W^ + V). We have found in paragraph, 
2.5 that the Fredho lm radius of the operator Wx is equal to the reciprocal value 
of the number 

coWt = lim sup ( 4 " Sr(<K*), T) + \&E {<P{*)> T) - l | ) . 
r-->0+ T€<a,ft> \yj7l J 

According to Proposition 4.3 the operator V is compact under our assumption 
(more precisely, the operators corresponding to the measures X+ and A" are compact, 
but Vis equal to the difference of those operators) and so 

co(Wt + V) = coWt . 
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By Lemma 5.1 the equation 

(W- + V)f = [(Wx + V) + / ] / = 0 

has in <&0 only the zero solution. It follows from the Riesz-Schauder theory that for 
each g e <&0 the equation 

(W. + V)f=g 

has a unique solution in ^0 and since the operators A and (FV_ + V) are adjoint to 
each other, the assertion follows. 

5.3. Remark. Suppose that the assumptions from Theorem 5.2 are fulfilled and 
let fi be the solution of the equation (5.4). As AM is a weak characterization of the term 

T * + UJHo + A) 
OX 

on K (where dX0(t) = dX(t)) then the potential UM considered on the set E is a solution 
of the third boundary value problem for the heat equation on E with the boundary 
condition 

^ + U„(A0 + A) = v 
OX 

prescribed on K. 

Let us also note that in a similar way one can solve the third boundary value 
problem of the given form for the heat equation on the set 

E- = {[x> '] G # 2 ; te (a, b), x < cp(t)} 

and also on sets of the form 

Et = {[x, t] ER2; te (a, b), cp^t) < x < <p2(t)} 

(where <pl9 q>2 are some suitable functions on <a, fc>) — see also [4] where the first 
boundary value problem for the heat equation is solved on the sets of the above 
mentioned forms. 

5.4. Remark. Suppose that the condition (5.1) is fulfilled and suppose, in addition, 
that the restriction U*ji0||K is continuous on K. As X0 is a continuous measure we can 
take A = — X0 in Theorem 5.2. In this case A^ is a weak characterization of the 
derivative 

dx 
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on K (Ap may be called the flow of heat in this case — see [15]). If /i is the solution 
of the equation (5.4) then the potential U^ considered on the set £ is a solution of the 
second boundary value problem for the heat equation on the set E with the boundary 
condition 

dUa lљ 
ÕX 

OПK. 
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