Časopis pro pěstování matematiky

Vladimír Lovicar
Notes on integration

Časopis pro pěstování matematiky, Vol. 95 (1970), No. 4, 341--344
Persistent URL: http://dml.cz/dmlcz/108331

Terms of use:

© Institute of Mathematics AS CR, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ČASOPIS PRO PĚSTOVÁNI MATEMATIKY

Vydává Matematický ústav ČSAV, Praha

NOTES ON INTEGRATION

Vladimir Lovicar, Praha
(Received August 8, 1967)

The following result plays a fundamental role in the integration theory:
Theorem. Let C be the set of all real-valued continuous functions on a compact Hausdorff space S. Let r be a positive linear functional on C and let $\left\{f_{n}, n \in N\right\} \subset C$, $\left|f_{n}\right| \leqq M<\infty$ for all $n \in N$ and $\lim f_{n}(s)=0(s \in S)$. Then $\lim r\left(f_{n}\right)=0$.

One of the "elementary" proofs is given in [1]. More general results from which the above theorem follows can be found in [2] and [3]. In this paper we prove a theorem from which the above theorem immediately follows.

Theorem 1. Let S be a nonvoid set and let C denote a set of real-valued functions on S which satisfies
(C1) $o \in C$, where $o(s)=0(s \in S)$;
(C2) If $f, g \in C$ then
a) $f+g \in C$
b) $f \vee g=\sup (f, g) \in C$
c) $f \wedge g=\inf (f, g) \in C$.

Let $\left\{f_{n}, n \in N\right\}$ be a sequence of $C, \lim f_{n}(s)=0(s \in S)$ and let r be a real-valued functional on C such that
(r1) $r(f+g)=r(f)+r(g)(f, g \in C)$;
(r2) $\sup _{n \in N} \sup \left\{|r(f)| ; \bigwedge_{i=1}^{n} f_{i} \wedge o \leqq f \leqq \bigvee_{i=1} f_{i} \vee o, f \in C\right\}<\infty$;
(r3) if $\left\{g_{n}, n \in N\right\}$ and $\left\{h_{n}, n \in N\right\}$ are sequences of C such that for some $k \in N$

$$
\begin{gathered}
\bigwedge_{i=1}^{k} f_{i} \wedge o \leqq h_{1} \leqq \ldots \leqq h_{n-1} \leqq h_{n} \leqq \ldots \leqq o \leqq \ldots \leqq g_{n} \leqq g_{n-1} \leqq \ldots \\
\ldots \leqq g_{1} \leqq \bigvee_{i=1}^{k} f_{i} \vee o
\end{gathered}
$$

and $\lim g_{n}(s)=\lim h_{n}(s)=0$ for all $s \in S$, then $\lim r\left(g_{n}\right)=\lim r\left(h_{n}\right)=0$.
Then $\lim r\left(f_{n}\right)=0$.

Proof. Let $\varepsilon>0$ and let $\left\{\varepsilon_{n} ; n \in N\right\}$ be a sequence of positive numbers, $\varepsilon=\sum_{n \in N} \varepsilon_{n}$. Let $f_{n} \geqq o$ for all $n \in N$. We set

$$
G_{1}=\left\{\bigvee_{i \in K} f_{i} . K \text { is a finite subset of } N\right\} .
$$

Let g_{1} be an element of G_{1} such that

$$
r\left(g_{1}\right) \geqq \sup \left\{r(f), f \in G_{1}\right\}-\varepsilon_{1} .
$$

Let G_{1}, \ldots, G_{n} and $g_{1}, \ldots, g_{;}$be defined; then we set

$$
G_{n+1}=\left\{\bigvee_{i \in K}\left(f_{i} \wedge g_{n}\right), K \text { is a finite subset of } N_{n+1}\right\}
$$

where $N_{k}=\{n \in N, n \geqq k\}$ for any $k \in N$; let g_{n+1} be an element of G_{n+1} for which

$$
r\left(g_{n+1}\right) \geqq \sup \left\{r(f), f \in G_{n+1}\right\}-\varepsilon_{n+1} .
$$

Then we have:
a) $g_{n} \in C$ for all $n \in N, o \leqq \ldots g_{n} \leqq g_{n-1} \leqq \ldots \leqq g_{1} \leqq \bigvee_{i=1}^{k} f_{i}$ for some $k \in N$, $g_{n}(s) \leqq \sup _{k \geq n} f_{k}(s)$ and hence $\lim g_{n}(s)=0(s \in S)$. So, by (r3):

$$
\begin{equation*}
\lim r\left(g_{n}\right)=0 \tag{1}
\end{equation*}
$$

b) $f_{n} \vee g_{1} \in G_{1}$ and consequently

$$
r\left(g_{1}\right) \geqq r\left(f_{n} \vee g_{1}\right)-\varepsilon_{1}
$$

for any $n \in N$. Further we have

$$
\left(f_{n} \wedge g_{1}\right)+\left(f_{n} \vee g_{1}\right)=f_{n}+g_{1}
$$

and hence we obtain

$$
\begin{equation*}
r\left(f_{n} \wedge g_{1}\right)=r\left(f_{n}\right)+r\left(g_{1}\right)-r\left(f_{n} \vee g_{1}\right) \geqq r\left(f_{n}\right)-\varepsilon_{1} . \tag{2}
\end{equation*}
$$

c) For $k \geqq 2$ and $n \geqq k$ we have

$$
a_{1}=\left(f_{n} \wedge g_{k-1}\right) \wedge g_{k}=f_{n} \wedge g_{k}, \quad a_{2}=\left(f_{n} \wedge g_{k-1}\right) \vee g_{k} \in G_{k}
$$

From the equality

$$
a_{1}+a_{2}=\left(f_{n} \wedge g_{k-1}\right)+g_{k}
$$

we obtain that

$$
\begin{equation*}
r\left(f_{n} \wedge g_{k}\right)=r\left(f_{n} \wedge g_{k-1}\right)+r\left(g_{k}\right)-r\left(a_{2}\right) \geqq r\left(f_{n} \wedge g_{k-1}\right)-\varepsilon_{k} \tag{3}
\end{equation*}
$$

The relation $r\left(g_{k}\right) \geqq r\left(f_{n} \wedge g_{k-1}\right)-\varepsilon_{k}$ for $n \geqq k$ together with (2) and (3) imply the following assertion:

$$
\begin{equation*}
r\left(g_{k}\right) \geqq r\left(f_{n}\right)-\sum_{i=1}^{k} \varepsilon_{i} \text { for } k \in N \quad \text { and } \quad n \geqq k \tag{4}
\end{equation*}
$$

Hence, by $(1), \lim \sup r\left(f_{n}\right) \leqq \varepsilon$ for any $\varepsilon>0$ and so

$$
\begin{equation*}
\lim \sup r\left(f_{n}\right) \leqq 0 \tag{5}
\end{equation*}
$$

Since the functional $(-r)$ also satisfies the assumptions of Theorem 1, we have

$$
\begin{equation*}
0 \geqq \lim \sup (-r)\left(f_{n}\right)=-\lim \inf r\left(f_{n}\right) \tag{6}
\end{equation*}
$$

(5) and (6) imply $\lim r\left(f_{n}\right)=0$.

If $f_{n} \leqq o$ for $n \in N$, we can prove $\lim r\left(f_{n}\right)=0$ analogously, by replacing \vee by \wedge, sup by inf etc. For arbitrary f_{n} (which satisfy the assumptions of Theorem 1) we have

$$
\lim r\left(f_{n}\right)=\lim r\left(\left(f_{n} \vee o\right)+\left(f_{n} \wedge o\right)\right)=\lim r\left(f_{n} \vee o\right)+\lim r\left(f_{n} \wedge o\right)=0
$$

because $\left\{f_{n} \vee o, n \in N\right\}$ and $\left\{f_{n} \wedge o, n \in N\right\}$ also satisfy the assumptions of Theorem 1.

Theorem 2. Let S be a nonvoid set and let C denote a set of real-valued bounded functions on S such that (C2) and
(C3) If $f \in C$ then $(-f) \in C$
are fulfilled.
Let p be a real-valued functional defined on C with the following properties:
(p1) $p(f+g)=p(f)+p(g)(f, g \in C)$
(p2) $|p(f)| \leqq K \sup \{|f(s)|, s \in S\}$ for any $f \in C$
(p3) $\lim p\left(g_{n}\right)=0$ for any sequence $\left\{g_{n}, n \in N\right\}$ of C such that $g_{n+1} \leqq g_{n}$ for $n \in N$ and $\lim g_{n}(s)=0(s \in S)$.
Let $\left\{f_{n}, n \in N\right\}$ be a sequence of C such that $\left|f_{n}(s)\right| \leqq M(n \in N, s \in S)$ and $\lim f_{n}(s)=0(s \in S)$. Then $\lim p\left(f_{n}\right)=0$.

Proof. Theorem 2 is an easy consequence of Theorem 1.

Theorem 3. Let S be a nonvoid set and let C be a set of real-valued bounded functions on S such that (C 2) and $(\mathrm{C} 3)$ are fulfilled. Let p be a real-valued functional on C which fulfils the assumptions $(\mathrm{p} 1),(\mathrm{p} 2),(\mathrm{p} 3)$. Let $\left\{f_{n}, n \in N\right\}$ be a sequence of functions from C such that $\left|f_{n}(s)\right| \leqq M(n \in N, s \in S)$ and $\lim f_{n}(s)=f(s)(s \in S)$. Then $\lim p\left(f_{n}\right)$ exists and $\lim p\left(f_{n}\right)=p(f)$ if $f \in C$.

Proof. It is very well known that a sequence $\left\{x_{n}, n \in N\right\}$ of real numbers is a Cauchy sequence ($\lim x_{n}$ exists) if and only if $\lim \left(x_{k_{n+1}}-x_{k_{n}}\right)=0$ for any sequence $\left\{k_{n}, n \in N\right\}$ of natural numbers with $k_{n+1}>k_{n}$.

Let $\left\{k_{n}, n \in N\right\}$ be a sequence of N such that $k_{n+1}>k_{n}$ for any $n \in N$. Then the functions $g_{n}=f_{k_{n}+1}-f_{k_{n}}$ satisfy the assumptions of Theorem 2 and so $0=$ $=\lim p\left(g_{n}\right)=\lim \left(p\left(f_{k_{n+1}}\right)-p\left(f_{k_{n}}\right)\right)$. Hence we obtain that $\lim p\left(f_{n}\right)$ exists.

If $f \in C$, then $\lim p\left(f_{n}-f\right)=0$ by Theorem 2, i.e. $\lim p\left(f_{n}\right)=p(f)$.
Example. Let $A P$ be the set of all continuous almost periodic real-valued functions on the set of real numbers R and let b be a functional defined on $A P$ by

$$
b(f)=\lim _{T \rightarrow \infty} T^{-1} \int_{0}^{T} f(s) \mathrm{d} s
$$

Then there exists a sequence $\left\{f_{n}, n \in N\right\} \subset A P$ such that $f_{n} \geqq f_{n+1} \geqq o(n \in N)$, $\lim f_{n}(s)=0(s \in R)$ and $b\left(f_{n}\right) \geqq c>0$.

Proof. If such a sequence does not exist, then the assumptions of Theorem 3 are obviously fulfilled. But for the sequence $\left\{g_{n}, n \in N\right\}$ where $g_{n}(s)=\cos n^{-1} s(s \in S)$ we have $1=b\left(\lim g_{n}\right) \neq \lim b\left(g_{n}\right)=0$.

Bibliography

[1] Eberlein W. F.: Notes on integration I., Communications on pure and applied mathematics, Vol. X. pp. 357-360 (1957).
[2] Pták V.: A combinatorical lemma on the existence of convex means and its applications to weak compactness, Amer. Math. Soc. Proceedings on the Symposium on Pure Mathematics, 7 (1963) pp. 437-450.
[3] Simons S.: A theorem on lattice ordered groups, Pac. Journ. of Math., Vol. 20 No. 1. (1967) pp. 149-154.

Author's address: Praha 1, Žitná 25 (Matematický ústav ČSAV v Praze).

