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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 95 * PRAHA 8. 11. 1970 * ČÍSLO 4 

NOTES ON INTEGRATION 

VLADIMIR LOVICAR, Praha 

(Received August 8, 1967) 

The following result plays a fundamental role in the integration theory: 

Theorem. Let C be the set of all real-valued continuous functions on a compact 
Hausdorjf space S. Let r be a positive linear functional on C and let {/n, neN} c: C, 
\fn\ = M < oo for all neN and lim/„(s) = 0 (s e S). Then lim r(/„) = 0. 

One of the "elementary" proofs is given in [ l ] . More general results from which 
the above theorem follows can be found in [2] and [3]. In this paper we prove a theo
rem from which the above theorem immediately follows. 

Theorem 1. Let S be a nonvoid set and let C denote a set of real-valued functions 
on S which satisfies 

(CI) oeC, where o(s) = 0 (s e 5); 
(C2) Iff, geC then 

a) / + geC 
b) / v g = sup (/, g) e C 
c) / A g = inf(/, g)eC. 

Let {/„, neN} be a sequence of C, lim/rt(s) = 0 (s e S) and let r be a real-valued 
functional on C such that 

(rl) Kf + 9) = Kj) + <») (f 9 e C); 
(r2) supsup{ |r(/) | ; Af, A O g / g \/f. v o,feC} < oo; 

neN i = l i = l 

(r3) if {#„, neN} and {hn, neN} are sequences of C such that for some keN 

A / i A ^ U ... ^ hH-x = K = ... ^ o = ... = gn g gn^ ^ ... 
-*! * 

... = gi ^ V / i V O 
i = l 

and lim #n(s) = lim hn(s) = 0/or a// se S, then lim r(^„) = lim r(h„) =s= Q. 

T/î /t Urn r(fn) = 0. 
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Proof. Let e > 0 and let {sn\ n e N} be a sequence of positive numbers, e = ]T en. 
Let fn = o for all n e N. We set "6" 

Gx = { V/i- -K is a finite subset of N} . 
ieK 

Let # t be a& element of G1 such that 

r(gt) ^sup{f{f)9feGi} - el . 

Let Gj, . . . , Gn and g1?..., g.x be defined; then we set 

Gn+1 = { V (ft A 0„), K is a finite subset of Nn+ x} 
ieK 

where N* = {n e N, n ^ fc} for any fc e N; let gn+1 be an element of G„+1 for which 

r(g«+1) = sup {r(/), feGn+1} - en+1: 

Then we have: 
k 

a) 0 n eC for all neN , 0 = ...g„ = gn^1 = ... = gi = V/ i for some fceN, 

gn(s) ^ sup/k(s) and hence lim gn(s) = 0 (s e 5). So, by (r3): 
*£» 

(1) limr(t?-) = 0. 

b) /„ v 3j e G( and consequently 

Ks'i) = K/» v 0i) - £i 

for any neN. Further we have 

(f. A 0i) + (/» v 0 i ) = L + 0i 

and hence we obtain 

(2) r{fn A ff/) = r(L) + rfo.) - rtf. v «.) J> r(/„) - 8, . 

c) For fc _ 2 and n ^ fc we have 

<*i = ( / » A 0 ^ ) A ^ = / n A gk9 a2 = ( / n A gk_t) v g^ C<< • 

From the equality 

aL + a2 = (fn A gfc_x) + gk 

we obtain that 

(3) r(fn A gk) = r(/n A 0 ^ ) + r(gk) - r(a2) = r(fn A g*^) - c* • 
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The relation r(gk) ^ r(/„ A gk-i) - h for n ^ fe together with (2) and (3) imply the 
following assertion: 

(4) r(>*) = KL) - .>> for keN and n £ .V . 

Hence, by (1), lim sup r(/„) g e for any e > 0 and so 

(5) lim sup r(/„) ^ 0 . 

Since the functional ( — r) also satisfies the assumptions of Theorem 1, we have 

(6) 0 = lim sup ( - r) (fn) = - lim inf r(fn) . 

(5) and (6) imply lim r(fn) = 0. 

If fn <; o for n e N, we can prove lim r(fn) = 0 analogously, by replacing v by A , 
sup by inf etc. For arbitrary/, (which satisfy the assumptions of Theorem 1) we have 

lim r(fn) = lim r((fn v 0) + (fn A 6)) = lim r(fn v 0) + lim r(fn A O) « 0 

because {/„ v o, n G N} and {/„ A O, n e N} also satisfy the assumptions of 
Theorem 1. 

Theorem 2. Let S be a nonvoid set and let C denote a set of real-valued bounded 
functions on S such that (C2) and 

(C3)IffeCthen(-f)eC 

are fulfilled. 

Let p be a real-valued functional defined on C with the following properties: 

(pi) p(f + g) = p(f) + p(g) (/, geC) 

(p2) |P(/)| ;= & sup {|/(s)|, s G S} /or a n y / e C 

(p3) lim p ^ ) = 0 for any sequence [gn, n 6N} 0/ C such rfeaf gn + 1 g gfn / o r 
n G N and lim 0n(s) = 0 (s e S). 

Let {/,, n e N} be a sequence of C such that \f„(s)\ ^ M (n e N, s e S) and 
lim fn(s) = 0 (s G S). TTien lim p(/„) = 0. 

Proof. Theorem 2 is an easy consequence of Theorem 1. 

Theorem 3. Let S be a nonvoid set and let C be a set of real-valued bounded 
functions on S such that (C2) and (C3) are fulfilled. Let p be a real-valued funct
ional on C which fulfils the assumptions (pi), (p2), (p3). Let {fn, neN} be a sequence 
of functions from C such that |/„(s)| ^ M (neN,seS) and lim fn(s) = f(s) (s e S). 
Then lim p(fn) exists and lim p(fn) = p(f) if f £ C. 
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Proof. It is very Well known that a sequence {xm neN} of real numbers is a Cauchy 
sequence (lim xn exists) if and only if lim(xJtn+1 — xkt) = 0 for any sequence 
{k„ neN} of natural numbers with kn + l > kn. 

Let {kn9 neN} be SL sequence of N such that kn+l > kn for any neN. Then the 
functions gn = fkn+l - fkn satisfy the assumptions of Theorem 2 and so 0 = 
= lim p(gn\ = lim (p(fkn+l) - p(fkn))> Hence we obtain that lim p(fn) exists. 

Iffe C, then lim p(fn - f) = 0 by Theorem 2, i.e. lim p(fn) = p(f). 

Example. Let AP be the set of all continuous almost periodic real-valued functions 
on the set of real numbers R and let b be a functional defined on AP by 

*>(/) = lim J-1 f /(s)ds. 
T-"» Jo 

Then there exists a sequence {/„, neN} a AP such t h a t / „ ^ / f l + 1 ^o(ne iV) , 
lim/„(s) == 0 (s e JR) and b(f„) ^ c > 0. 

Proof. If such a sequence does not exist, then the assumptions of Theorem 3 are 
obviously fulfilled. But for the sequence {gm neN} where gn(s) = cos n~1s (se S) 
we have 1 = fe(lim gn) # lim b(gn) = 0. 

Bibliography 

[1] Eberlein W. F.: Notes on integration I., Communications on pure and applied mathematics, 
VoLX.pp. 357-360(1957). 

[2] Pták V.: A combinatorical lemma on the existence of convex means and its applications to 
weak compactness, Ąmer. Math. Soc. Proceeâings on the Symposium on Pure Mathematics, 
7 (1963) pp. 437-450. 

[3] Simons S.: A theoгem on lattice oгdered groups, Pac. Journ. of Math., Vol. 20 No. 1. (1967) 
pp. 149-154. 

Authoґs address: Praha 1, Žitn4 25 (Matematický ústav ČSAV v Praze). 

344 


		webmaster@dml.cz
	2012-05-12T03:24:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




