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In the classical measure theory the following extension theorem is well-known: 
A non-negative, a-additive real measure, defined on a ring of sets, has a unique 

extension to a measure, defined on the a-ring generated by the original ring. 
An examination of the extension procedure reveals the fact that a real-valued mea

sure on a ring could be replaced by a set function with values in a more general space, 
having the linearity and order — or topological — properties of real numbers. With 
respect to the range space of the measure there are two main lines of generalization, 
one in the direction of linear topological spaces, the other using the order character 
of some linear spaces. 

Recently, some authors (see [ l], [2], [3] and [8]) have suggested another aspect 
of generalization. They are dealing with an extension of a real, finite, subadditive (not 
necessarily additive) measure. 

The aim of this paper is the construction of extensions of certain non-negative 
measure-like set functions (namely: measure, submeasure, strong submeasure and 
strong supermeasure) from a ring 0t to the a-hng (or <5-ring) generated by 0t, where 
the range space of n is a partially ordered group G. 

For proving such an extension theorem one always needs some sort of completeness 
of the range space of the measure. (If, e.g., 0t is a ring of subsets which are finite 
disjoint unions of intervals with rational endpoints, G is the group of rational 
numbers, and n : 0t -» G is the restriction of the Borel measure to ^ , then p has no 
extension to the generated ex-ring.) Our completeness property will be the so called 
monotone cr-completeness (for definitions see below). 

The second main tool we will use is the assumption that the family of additive, 
monotone, and order continuous functional on G is "large enough", i.e., it separates 
points of G. If this is the case we say that G is separative: 

Using this assumption we are able to transfer the convergence and related pro
perties from the original group to the space of real numbers, where the measure 
extension is known. 
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Our assumption about separativeness of G seems to be tod strong. As Floyd [4] 
pointed out, there exists a monotone complete linear space X (this is clearly a group) 
which is not Hausdorff in any vector topology compatible with the order. As we shall 
see (Theorem 3), a separative group has always a Hausdorff group topology, which is 
tr-compatible with order. So our result gives only a partial solution of the extension 
problem for measures and measure-like set functions with values in a partially ordered 
group. Our result about the extension of an additive measure is unrelated to [11] and 
[12]. In [11] G is assumed to be ^-regular and o-separable, and in [12] the range 
space of fi is a vector lattice. 

1. DEFINITIONS AND PRELIMINARY RESULTS 

A partially ordered group is a set G endowed with a structure of a partially ordered 
space and a structure of a group satisfying the following compatibility condition: 

If x, y and z are in G and x ^ y, then 

x + z ^ y + z . 

0 will denote the neutral element of G. By G+ we denote the set of all non-negative 
elements in G. 

1. Lemma. Let G be a partially ordered group. Let xn s x (xn \ x) and yn S y 
(yn \ y). Then 

(0 xn + yn /" x + y (xn + yn \ x + y), 
(ii) - x n \ - x (-x„ /• - x ) . 

We say that a sequence {xn} of elements of a paratially ordered group G converges 
in order to x (in symbols xn -> x or x0 -^ x)iif there exist sequences {un} and {vn} 
in G with un ^ xn ^ v„ and un S x s vn. 

An easy consequence of the above lemma and the definition of the order con
vergence is the following 

- 2. Theorem, Let G be a partially ordered group. Then G is a convergence group 
with respect to the order convergence (i.e., the map (x, y) h-> x — y is order con
tinuous). 

If G is a partially ordered group, then by the order dual of G we mean the set G< 

of all order continuous additive functional on G which can be represented as a dif
ference of two monotone additive functional. 

For our extension process one of the basic assumptions is that G< separates points 
of G, i.e., for x € G, x =# 0, there exists an x< in G< with x<(x) =f= 0. If this is the 
case, we shall say that G is separative. It is easy to see that G< separates points of G 
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if and only if the set of all monotone elements from G< (denoted^ by <S£) separates 
points of G. The ordering on G< is defined as follows: 

xK <: yK iff yK - x<eG< . 

We say that a partially ordered group G is upward filtering if to any x and y in G 
there exists z in G with x = z and y = z. 

Let now G be a separative upward filtering group. Similarly as in [10] one can 
prove that G can be embedded into its second dual G<K (the dual of G<) in the fol
lowing way: Let x be in G. We define a real valued map {x on G< by 

The map X K ^ embeds the group G into its second dual. 

It is easy to see that a separative group is always a Hausdorff topological group 
with respect to the G< — weak topology (the coarsest topology-on G in which every 
xK G G< is continuous). Moreover, the following theorem holds: 

3. Theorem. If G is a separative group, then there exists on G a Hausdorff group 
topology o-compatible with the ordering (namely, the G< — weak topology), 
such that every additive continuous functional on G is order continuous. 

Our completeness property is the following: We say that a partially ordered group G 
is monotone o-complete if every monotone increasing bounded sequence {xn} has 
a limit in G, i.e., 

lim„ xn = Vn *n 

exists in G. 

By if(^) ($($)) we denote the c-ring (d-ring) generated by $. 

Let G be a partially ordered group. By G we denote the semigroup G u {oo}, where 
g + oo = o o + g = oo and g < oo for every g in G. 

We say that \i : ^ -• G is 

(i) additive if 
fi(A n B) + /i(A u 5 ) = li(A) + JU(JB) , 

(ii) subadditive if 
fi(A u B) = n(4) + M-9), 

(iii) strongly subadditive if 

li(A nB) + n{A u £) < A*U) + /«(*) > 

(iv) superadditive if 

A*(il u B) = |i(i4) + M(B) , 
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(v) strongly superadditive if 

fi(A n B) + n(A uB)^ »(A) + »(B), 

(vi) monotone if 
/i(A n -3) _ n(A), 

for every A and B in &t, and 

(vii) monotone continuous if An S A or An \ A (An, A in $) and }i(An) < oo 
implies /J(-4„) -» 1*(-4) in G. 

A pre-measure is a set function defined on a ring with values in an extended 
partially ordered group which is monotone and vanishes at empty set. 

An additive (subadditive, strongly subadditive, superadditive, strongly superad
ditive) pre-measure is called a measure (submeasure, strong submeasure, super-
measure, strong supermeasure, respectively). 

2. EXAMPLES 

Since considerations concerning group valued set functions will occupy us during 
most of the remainder of this paper, we shall now have a look at a few of them. 

4. Example. Let G be any group ordered by the discrete order, i.e., x _ y iff x = y 
(no distinct elements are comparable). 

5. Example. Let Pm be the set of all polynomials of the form 

a0 + aYx + ... + a^^-1 + amxm 

(m fixed) with the pointwise ordering. Then Pm is a separative, monotone complete 
group (see Example 7 in [10]). If m is even then Pm is upward filtering, if m is odd then 
Pm is not upward filtering. 

For the terminology and dotation in the next example see [10]. 

6. Example. Let (Q, Sf, v) be a real measure space. Let X be a monotone c-com-
plete separative linear space. Let / : Q --> X be a non-negative integrable function. 
Then 

m=J = | fdv 

for E in S? is an X - valued measure on y . 

For the terminology aiid proofs in the following examples see [5], [6], and [7]. 
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7. Example. If Z is a locally convex topological space with a lattice ordering given 
by a closed cone, such that every linear continuous functional on Z is order con
tinuous, then Z is separative. 

8. Example. If Y is a vector lattice regularly ordered by a cone such that every 
order bounded linear functional is order continuous, then Y is separative. 

Subadditive and superadditive set functions, via outer and inner measures, have 
occurred in the theory of measure from its beginning. 

9. Example. Let G be a monotone complete group, 0t a ring of subsets of Q, and 
let n : 0t -> G+ be a measure. Define \xx on 0tc u 0td by \ii(A) = lim* }i(Ak) if A* /" A 
or Ak \ A, Ak e 01, and for E <= Q put 

li*(£) = inf{/i1(A); EcAeat.}, 

H*(E) = sup {/ilvA); A c E lbd Ae@d} . 

Then ^* is a strongly subadditive and JU* is a strongly superadditive set function on 2Q. 

3. THE EXTENSION 

Throughout this section we shall assume that G is a partially ordered, separative, 
monotone cr-complete group, 0t is a ring of subsets of the set Q, and \i: 0t -* G+ 
is a continuous pre-measure on 0t. 

We shall extend the pre-measure \i from ^ to Sf(0t) (&($))- Our extension process 
is related to the classical Borel method of extending a measure. The system Sf($) 
is the minimal system on 01 containing the limit of every monotone sequence of its 
members. 

Throughout this section k and / will denote natural numbers and n and m countable 
ordinals. 

Define 0tn and \in inductively as follows. 0to = 0t. 01 ̂  is the system of all sets expres
sible as the union of an increasing sequence {Ak} of elements in 0to, Hi(\Jk^k) — 
= lim* fi(Ak). 012 i

s ^ e family of all sets expressible as the intersection of a decreasing 
sequences {Ak} in 0tu 

/^(OkA) = limk fix(Ak), and so on. Further, 

%n-i)* iff n - 1 is "odd", 
%n-t)d iff n — 1 exists and is "even" , 

- U 0tm iff n = 1 does not exist. 
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It is well-known that 

Sf($) = U \0tn\ n is a countable ordinal} . 

If .A e 0tn9 we define 

lin(A) = l im^^^A fc ) 

if Ak S A and n — 1 is odd (Ak \ A and n — 1 is even), and we put 

lin(A) = ixm(A) 

if n — 1 does not exist and .4 e ^ m . 
Finally, we define p, on &($) by putting 

/l(A) = \in(A) whenever A is in 0tn . 

10. Lemma, j ^ is well-defined. 

Proof. Let A e Stl9 Ak S A and Bl S A, where .A* and Bl are in &. Then Akr\Bl/
{ 

/* Ak(l -> oo); so 

^(A*) = lim, n(Ak n £,) = lim/ n(B) . 

Hence 

limfc n(Ak) = lim, /i(B,) . 

The converse inequality can be proved in the same way. Thus 

limfc n(Ak) = lim, fi(Bt) 

and ii1 is well-defined. 

11. Lemma. The set function ii1 is continuous iff the real-valued pre-measure 
x< o fi has a continuous extension $tafor every x < in G+. 

Proof. The necessity of the condition is easy to see. Let now xK be in G+ and let v 
be a continuous extension of x< o /j . Then clearly x < o fix(A) = v(A) for every A 
in &tx. Hence xK o Hi(A) = v(A). 

Let now Ak9 A e 0tu Hi(Ak) < oo and let Ak \ A. Denote 

lim, ^(Ak) = z . 

Clearly v(Ak) \ v(A) and so 

x\z) = x<(limfc nt(Ak)) = lim* x < o /it(Ak) 

= lim* v(Afc) = v(A) = xK o /^(A) . 
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Since x< was arbitrary and G+ separates points of G, we have z == Pi(A) and so 

limk fix(Ak) = px(A) . 

The case Ak /* A is similar. 

We shall assume in this section that every real pre-measure x < o p. (xK e G+) has 
a continuous extension from 0t to Sf(0L). 

Using this assumption and a similar technique as in the last two lemmas we get 

12. Theorem. Every pn is a well-defined continuous set function defined on 0tn. 

13. Lemma, (i) 0tn is a lattice. 
(ii) 0tm c Mn whenever m S n. 

( m ) ^nimm = Vm whenever m g n. 

14. Lemma, (i) pn(A) ^ O for all A in 0tn. 
(ii) \in is monotone. 

(iii) If \i is additive (subadditive, strongly subadditive, superadditive, strongly 
super additive) on 0t, then pn is additive (subadditive, strongly subadditive, super-
additive, strongly superadditive, respectively) on 0tn. 

Proof, (i) and (ii) are obvious. Let Ak, Bk be in 0to and let A,,B be in 0tx with 
Ak S A, Bk /" B. Then 

AknBk s An B and Ak u Bk S A u B . 

Since Ak n Bk and Ak u Bk are in 0to and A n B and Au B are in 0t± and since p 
is additive on 0to we have 

p(Ak n Bk) + p(Ak u Bk) = p(Ak) + p(Bk). 

Passing to limits and using Theorem 2 we get 

H±(A nB) + n,(A u B ) = p,(A) + px(B). 

The proof for a general n proceeds by transfinite induction. The proof for non-
additive pre-measures is similar. 

We can formulate the results of this section as follows: 

15. Theorem. Let G be a separative, monotone a-complete group, and let p be 
a G — valued pre-measure defined on a ring 0t. Let every pre-measure x< o p 
(x< G G+) have a continuous extension form 0t to Sf(0t). Then there exists a unique 
pre-measure Jx : ¥($) -• G+ such that 
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(i) fi is the extension of p., 
(ii) / / p is additive (subadditive, strongly subadditive, superadditive, strongly 

superadditive), then fi is additive (subadditive, strongly subadditive, superadditive 
or strongly superadditive, respectively). 

4. SPECIAL CASES 

In this section 0t will denote a ring of subsets of Q and G a partially ordered group. 
We will apply the theory developed in Section 3 to special cases. 

First, we give some notes about our terminology. Let p.: 0t -> G+ . We say that jx 
00 00 00 00 

is continuous if An, Aet%, An-* A (i.e. f) (J An = (J fl An = A), and p(An) < oo 
fc=ln=k * = 1 n = k 

imply p(An) -> p(A). It is easy to see that p is a real measure, then the concepts of the 
monotone continuity and continuity are equivalent. It is also obvious that if 0b is 
a cr-ring and ^ is monotone, then p. is monotone continuous iff p is continuous. 
However, as the next example shows, this is not true in general (i.e., when 01 is not 
a cr-ring). 

16. Example. Let N be the set of all natural members. Let 0 be the family of all 
finite subsets of N. Clearly 0> is a ring which is not a cr-ring. We put p(A) = 1 if 0 #= 
-# A e 0> and ^(0) = 0. Then p is a strong submeasure. Obviously jU is monotone 
continuous. We shall show that p is not continuous. Put 

An = {n, n + 1, ..., In} ; . 

then ^ n -> 0 but 1 = p(An) -+-> /i(0) = 0. 

17. Theorem. Lef G be a separative, monotone o-complete group, and let p. be 
a continuous G-valued measure defined on a ring 0t. Then there exists a unique 
extension fi of p such that fi : Sf(0t) -> G+ is a continuous measure. If p. is bounded 
on M then fi is G - valued on £7(01). 

Proof. Let x< e G+ . Then x < o p is a continuous real measure on 0t and so it 
has a continuous extension on Sf(0i). The proof now follows by Theorem 15. 

We note that in the last theorem the continuity can be replaced by order continuity. 
For our next consideration we shall need the following result of B. Riecan. 

18. Lemma. ([8] p. p. 217—218.) Let v be a real-valued monotone continuous 
submeasure on $. Then v can be extended to £/>(0L) iff v is exhausting (i.e., if 
Ak cz Ak+1 are in 0t and {v(Ak)} is a sequence bounded from above, then 
\\mk v(A*+1 — Ak) = 0). It is obvious that a continuous pre-measure is exhausting. 
Combining this by Theorem 15 and by the last lemma we get: 
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19. Theorem* Let G be a separative, monotone complete group, and let p. be a con
tinuous G — valued submeasure (strong submeasure) defined on a ring 9t. Then 
there exists a unique extension p, of p such that p.: £?($) -> G+ is a continuous 
submeasure (strong submeasure), and p : Q)(0t) -> G+ is a G — valued continuous 
submeasure (strong submeasure). If \i is bounded on 0t, then p is G — valued 
on 9>(0t). 

The central role in our extension theorems is played by functional x< from G+ 

and so our main assumption throughout this paper has been that the range space of 
the pre-measure is separative. It is possible to replace this assumption by a weaker 
one. We say that a functional rj : G -» <0, oo) is subadditive if it is monotone, 
rj(0) = 0, and 0 g x, y e G implies 

rj(x + y) ^ rj(x) + rj(y). 

We say that a partially group is subseparative if the family of all subadditive order 
continuous functionals on G separates points of G. 

It follows from Lemma 18 and from the reasoning following lemma 18 that in 
Theorem 17 and Theorem 19 it suffices to assume that G is subseparative (instead of 
being separative). It is also clear that the results of Section 3 remain valid provided G 
is only subseparative. 
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