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Časopis pro pěstování matematiky, rot* 108 (1983), Praha 

OSCILLATION AND ASYMPTOUC PROPERTIES 
OF STRONGLY SUBLINEAR DIFFERENTIAL EQUATIONS 

WITH DEVIATING ARGUMENTS 

CHRISTOS G. PHILOS, Ioannina 
(Received Juny 4, 1981) 

This paper deals with the oscillatory and asymptotic behavior of the solutions of 
the n-th order (n > 1) differential equation with deviating arguments 

(E) [r(t)*<•-->(.•)]' + a(t) 4»(x[a,(0],.... x[gm(t)]) = 0, t Z t0 , 

where the real-valued functions involved are subject to the following assumptions: 

(i) r is a positive continuous function on the interval [t0, oo) such that 

dt Í 00 
r(t) 

(ii) a is a continuous function on [f0, oo) which is of constant sign; 

(iii) 0 is a continuous function which is defined at least on R"l \J /??_, where 
R+ = (0, oo) and R_ = (—00, 0), and has the following sign property: 

&(y) > 0 for all yeR+ , <P(y) < 0 for all y e R1 ; 

(iv) gj (j = 1,..., m) are continuous functions on [t0i oo) with 

lim gfi) = oo (j: = 1,..., m). 
f-+oo 

Smoothness sufficient for the existence of such solutions x(t) of the equation (E) 
which are defined for all large t will be assumed. In what follows, we consider only 
such solutions x(t) which are defined for all large t. The oscillatory character is con
sidered in the usual sense, i.e., a continuous real-valued function defined on an 
interval [T, 00) is said to be oscillatory if the set of its zeros is unbounded above, 
and otherwise it is said to be nonoscillatory. 

The oscillatory character and the asymptotic behavior of the bounded solutions 
of the differential equation (E) are well described by the following theorem, which is 
a particular case of a result due to the author [8]. 
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Theorem 0. Let (i) — (iv) be satisfied and suppose that 

(C0) either \a(t)\ dt = co or \a(s)\ ds dt = 
J J KOJt 

00 

If a is nonnegative (nonpositive), then for n even (odd) all bounded solutions of 
the differential equation (E) are oscillatory, while for n odd, (even) respectively 
every bounded solution x of the equation (E) is either oscillatory or such that x( , ) 

(i = 0 , 1 , . . . , n — 2) and rx ( n _ 1 ) tend monotonically to zero at oo. 

Our aim is to study the oscillatory and asymptotic behavior of all solutions of the 
differential equation (E). Our interest is concentrated on the case when the equation 
(E) is strongly sublinear in the sense that the function <P is increasing and such 
that 

C dy . [ dy 
< oo and < oo . 

J+o #0% >.>,y) J - o <Ky> •••>y) 
Note that the increasing character of <P is considered with respect to the usual order 
in Rm defined by the positive cone {y = (yl9..., yn) e Rm : (V j = 1, . . . , m) ys = 0}, 
i.e., y g z o (V / = 1, . . . , m) y3 g zjt Moreover, it is noteworthy (cf. Staikos [9,10]) 
that, if the equation (E) is strongly sublinear, then 

lim * f r ' " ' * ) - - co. 
y-o y 

For our purposes, we need the following lemma which has originated in two 
well-known lemmas due to Kiguradze [2, 3] (cf. also [1], [9, 10] and [7]). 

Lemma. Suppose that (i) holds and let h be a positive and (n — l)-fimes dif-
ferentiable function on an interval [T, oo), T i_ t0, such that the function rh ( n _ 1 ) 

is differentiable with its derivative of constant sign on [T, CO) and not identically 
zero on any interval of the form [T/, CO), T' ^ T. 

Then there exist a T ^ T and an integer I, 0 ^ / ^ n, with n + I odd for [rh(rf~1}]' 
nonpositive or n + I even for [ rh ( w - 1 ) ] ' nonnegative so that 

(7 = n - l=>(-l)l+JhU) > 0 on [T, oo) (; = / , . . . , n - 1) 

{ / > l=>h ( I ) > 0 on [T, co) (i = 1 , . . . , / - 1). 

If, in addition, h is eventually increasing and h(n"1)[r/i(ff~1)]' is eventually 
nonpositive, then for every 9,0<S<l,we have: 

h{t) 1 —2— |r(0 ft("-" (r)| f' ( S ~ / ° ) B " 2 ds for all large t, 
("--) ' J'o K») 

i / / < n — 1; 
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h{t) £ — 9 — \r(t) fc<--> (0| f - " - ^ — ds for a// far* e *, 

if / = n - 1. 

Proof. The .first part of the lemma is a special case of a lemma given by the same 
author in [7]. Furthermoie, let us supoose that h is eventually increasing and 
^(»-i)j-r̂ Oi-i)-|/ j s eventuaUy nonpositive. Then we must have 1 ̂  J ̂  n — 1. 
Next, we consider the following two cases. 

Case 1. / < n — 1. By using the Taylor formula with integral remainder, for every 
t ^ Twe obtain 

HO - I - - ^ « ( iW + TT-1-::, f ( ' - s)'"1 '>(,,(s) ds >= 
i=o i! ( / - l ) ! j r 

- ( l - l ) l j r ' U 

Furthermore, by applying again the Taylor formula with integral remainder, for 
every s, t with T ̂  s ̂  t we get 

«("(s) = E 2 1 ^ 4 r «("(0 + T — f - x , f (» - «r-2-' ft0-1^) <»« = 
j=i (j - /)! (n - 2 - Z)!J, 

- Z i 7 r - ^ r
, [ ( - i ) , + y * c , X 0 ] + 

J-« (/ - 0! 

+ ? ^ r , f("-;)B"2"' R- 1 ) '*- 1 K«) * ( " - » ] d« = 
( n - 2 - / ) ! j s r(«) 

> lift) «<"-JV0| f t ( " - s ) "~ 2 " ' dM . 
- ( n _ 2 - / ) ! I U W |JS r(«) 

Thus, for every t ^ T we have 

«(0 >- — |r(r) h^-l>lt)\ (\t - s)'"1 f'(" ~ ' )""2"' d« ds Si 
W - ( / - l ) ! ( „ - 2 - / ) ! | W W ' J r ' is K") 

= ^ ^ f t ( " " 1 > ( 4 ^ i ) [ j > - s r 3 d s ] d M = 

= ^ ^ ^ - ^ £ L u j K . r d " . -
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Next, by the L'Hospital rule, we derive that 

_ГГ('~?"''-/Г('~',r'-'1-' 
t-oo[J г Г(s) IJt0 Г(s) J 

and hence for every 9, 0 < 9 < 1, we have 

f,_-гJ___d,_ 5 Г 1-ZJoГ! d s 
Jг Ks) Jto Ks) 

for t sufficiently large. Thus, 

h(t) __ — - — |r(r) ft<»-^(01 f ^ ~ ^ " 2 ds for all large t. 
( " - 2 ) ! J ̂  Ks) 

Case 2. / = /i — 1. By the Taylor formula with integral remainder, for * ^ Twe 
obtain 

*(0 =".£ ^ - ^ ft("(-T) + [\t - s)rt"2 M ' - ^ d s __ 
i = o i! (n — 2)! J T 

Ł Г^-лï ľ"-м- [ r ( s ) / l ( ' , _ 1 , ( s ) ] d s = 
( n - 2 ) ! j г ф ) 

_ —^— |K0 «(rt--'(0| ľ (< ~/
S)""2 ds . ( « - 2 ) ! | W W 1 J Г Қs) 

But, by applying the L'Hospital rule, it is easy to see that 

ds | = 1 
l.o Ks) 

and hence for every 9, 0 < 9 < 1, we get 

"«Uг к») I!,. Ф) J 

h(t) = — ? — |r(0 A"" ^(Ol f' __-_-__ ds for all large *. 
( n - 2 ) ! | W W | J t 0 r(s) 

Now, in order to present our main result we introduce the functions a} (j = 
= 1,..., m) and Ru R2 defined on [f0, oo) as follows: 

<T,.(0 = min {f, fl/0} (j -= 1, • . . , m) , 

^(0=f(S"/°r2d5 and R2(t) = f'-Z-^ds. 
Jr0 Ks) Jr0 Ks) 

Moreover, for two vectors y = ( j^ , . . . , jm) , - = (z l5..., zm) in ~T we define 

>?~ = ( j ' i~ i , ...,ymzm). 
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Theorem. Suppose that (i) — (iv) hold. Moreover, let the differential equation (E) 
be strongly sublinear and suppose that the function # has the exponential property 

(p) f #(yZ) = K *O0 *(*) > r « « y> z in km
+ , 

^ } *[-*(-yz) = K <P(y) <*>(z) for a// j , z in PTL , 

where K is a positive constant. 

Then, under the condition 

(C) I*"|«7(0| K ^ O J O ) ] , ..., 3Rk[c7m(t)-])\ At = oo («5 = +1; * = 1, 2), 

we have the following results'. 

(I) For a nonnegative and n even, every solution of (E) is oscillatory. 

(II) For a nonnegative and n odd, every solution x of(E) is oscillatory or satisfies 

flim x(i)(t) = 0 monotonically (i = 0, 1, ..., n — 2), 
| f->00 

jlim r(t) x(n"i)(t) = 0 monotonically . W 

(III) For a nonpositive and n even, every solution x of{E) is oscillatory or satisfies 
one of (X0), 

(XJ lim xU)(t) =oo (i = 0,1, ..., n - 2) and lim r(t) xin~ 1}(t) = oo , 
f-+oo f-*oo 

(X_ „,) lim x(0(t) = - oo (i = 0, 1,..., n - 2) and lim r(t) x(B_ 1}(t) = - oo . 
t->oo f-+oo 

(IV) For a nonpositive and n odd, every solution x of(E) is oscillatory or satisfies 
oneof(Xx),(X_x). 

Proof. By (P), for all y > 0 we have 

K<P(y,..., y)4> (± , ...A S *(h .-., 1) 

But, because of the sublinearity of the equation (E), the function 0 is such that 

r _/l 1\ r <f>(z,...,z) 
lim y<P { - , . . . , - J = lim —̂  L = 00 
y-*oo \y y) z-0 z 

and consequently for all large y, 

K4>(y,..., y) g K<f>(j;,..., y)y$(~ , ..., - ) ^ * (1 , . . . , l )y . 

Therefore, since # is increasing and lim Rt(t) = 00, we have that for all large t 
t-*co 

K^Rfc^t)],..., /?,W0]) = x*(/?.(o,.... *.(0) = *(i , . . . , 1) R,(t). 
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Thus, by (C), we obtain 
/•oo 

| f l(f) |/?!(*)(!* = CO 

that is 

- ' o f 

Now it is a matter of elementary calculus to obtain 

Г И l ľ ( 5 " / 0 / "dsd. = oo. 
J Jto Ң?, 

r^fiy^- 00 

provided that J00 \a(t)\ dt < oo. Thus, we have proved that the condition (C) implies 
(C0). Hence, by Theorem 0, it remains to Study the unbounded solutions of the 
equation (E). 

The substitution w = — x transforms (E) into the equation 

{r(t) W < - »(t]]' + a(t) $(w[9l(t)l..., W[gm(t)]) = 0 . 

where $(y) = — <P( — y) for all y in the domain of #. This equation is subject to the 
assumptions posed for the equatign (E). Thus, with respect to the nonoscillatory 
solutions of (E) we can restrict our attention only to the positive ones. 

Now, let x be a positive unbounded solution on an interval [T 0, OO), T 0 _ t0, of the 
equation (E). Moreover, by (iv), let T = T0 be chosen so that 

g/t) _ T0 for every t = T (; = 1,..., m) . 

Then, in virtue of (iii), (E) implies that 

[r(t) x(rt" *>(/)]' 1(a) = 0 for every t = T , 
where 

„ ч í + 1 if fl^O 
J ^ = i - 1 i f a g O 

is the so called sign index of the function a. Moreover, the function [rx ( n - 1 )] ' is not 
identically zero on any interval of the form [T', oo), T' _ T, since, because of (C),, 
the same holds for the function a. Thus, by Lemma, there exist a T ^ T and an 
integer /, 0 ^ / g n, with n + / odd for a nonnegative or n + / even for a non-
positive so that 

f/ = n - ! - = > ( - l)l+Jxu'(t) > 0 forevery f = T (j = /,. . . , n - 1), 
[/ > 1 => x(i)(t) > 0 for every t = T (/ = 1 , . . . , / - l) . 

Because of the unboundedness of x, we always have / >-0. 

Next, let us suppose that lim r(t) x(n~1}(r) = 0. Then we must have 

x(n"1,(r)/(a) > 0 for every t^T. 
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Furthermore, by Lemma, for some Tx ^ Tand every t ^ Tx we have 

x(t) = M R(t) r(t) x(n" 1}(r) /(a) , 

where M is a positive constant, and R = Rx for / < n - 1 or R = R2 for / = w — 1. 
Thus, since the function rxin~1} 1(a) is decreasing on [T, OO), we get 

*M)1 = ***!>/<)] <t) x(n" "(01(a) (j = 1, ..., m) 

for all f = T2, where T2i T2 ^ Tu is chosen so that 

<r/f) = 7\ for every * = T2 (; = 1 w). 

Hence, by taking into account the increasing character of # and its exponential 
property (P), for every t = T2 we obtain 

wo *<»- *v)]' I(«) - - KOI *(*i>i(0]. • •.. *hjm < 
g-|a(0|<P(x[(r1(0],... )x[ f fm(0])^ 

< -\a(t)\ <P(MR[ffl(0] r(r)x<-"(0/(fl)..... MR[<rm(0] <0*("_1,(0I(<0) ^ 

^ - -K2 |«(0| <K*[*i(0]. • • - «W' ) ] ) * ( M . • • •• M ) • 

. <P(K0 *("-1}(0 I(4 • • •. K0 *("~ X)(0 - («)). 
that is 

^ S 

KOl-K-iWOl.-.-^MOD 
-[r(0x<"-»(Q]'/(a) 

< 

*(r(0 x*- "(01(a),..., r(0 x^""(t) I(«)) ' 
/ 

where S = l/K2#(M,..., M). Therefore, by integration, we derive that 

rK0l^[oi(0].---.*W0])*^ s f —^—,, 
JT 2 J + O ^ - J ) 

where 5 = r(T2) x ^ " 1 ^ ) J(A) > 0. Because of (C) and the fact that (E) is strongly 
sublinear, the last inequality leads to a contradiction. 

We have thus proved that lim r(t) x(n_1)(r) must be nonzero. If lim r(t) x(n_1)(r) < 
t->oo f->oo 

< 0, then, by using (i), it is easy to derive that lim x(t) = — oo which contradicts the 
f-*oo 

positivity of x. Hence, we always have that lim r(t) x(n_1)(r) > 0. This by (i) gives 
t-->oo 

lim x{i)(t) = oo (i = 0 ,1 , . . . , n — 2). Thus, by using the L'Hospital rule, it is easy 
f->oo 

to obtain that 

(n-2)\ lim x(t) [ f ' (' ~ 5 ^ 2 ds] -= lim r(t) x ("- x\t) > 0 . 
' - * . LJ.o Ks) J '— 
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Therefore, we have for some xt > T and every t ^ xt that 

- s)""2 

x(0^Lf'íi-
J.o K 

ds = LЯ 2 (0, 
r(s) 

where L is a positive constant. Hence, 

*k(0] = I^kW] 0 = i,...,m) 

for all t _ T2, where T2, T2 ^ i j, is chosen so that 

<rjj) = ?i for every t = T2 (j = 1, ..., m). 

Next, by the increasing chaiacter of <P and its property (P), for t — T2 we get 

[KO x"- »(0]' /(a) = - koi *(*[>i(o]. • •.. xbjm = 

= -KOI *(*k(0], •••> *k(0]) = -KOI *(-«2No] --R2W0]) = 

= -X*(L,.... L) |A(0| *(*-l>i(0]. •••> K2KO)]) • 

Therefore, by integration, 

1(a) lim r(0 x(M~ l>(t) - 1(a) r(r2) x("- 1)(x2) ^ 
t-*co 

= -X*(L,.... L) p f l ( 0 | *( R a[*i(0]. . . . ,«2K( t)])d' 
J T 2 

and hence, by the condition (C), 

limr(f)x(n-1'(t) = -I(a)oo. 
t-*oo 

However, this is case where a is nonpositive and therefore (X^) can easily be derived. 

Next, let us consider the special case where r = 1, i.e. the differential equation 

(E) x(">(0 + a(t) $(x[gi(t)l...; x[gm(t)1) = 0 . 

Then we obviously have for k = 1, 2 

Rk(t) = (t - t0)
n~l

 = fif~l for all large t, 
n — 1 

where JI is a positive constant. Thus, if (ii) — (iv) hold and the function <P is increasing 
and has the exponential property (P), then the condition (C) follows from the follow
ing one: 

(c) J ^ K O I I ^ M ) ] - 1 — ^ w o r 1 ) ! ^ - » . *- ±1. 
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So, in the special case of the equation (£) our theorem leads to some recent results 
of Staikos [9, 10]. Note that the method used here patterns after that of Staikos 
[9,10]. For earlier oscillation results concerning sublinear retarded differential 
equations we refer to Kusano [4], and Kusano and Onose [5, 6]. 

Now, we remark that in the case of ordinary or retarded differential equations of 
the form (E) the condition (C) becomes 

±1 ; /c = l ,2) . (C*) r\a(t)\ \$(5Rk[9l(t)l..., SRk[_gm{tj\)\ d/ = oo (6 

For differential equations of the form (E) which are of advanced or mixed type our 
theorem ceases to hold with the condition (C*) in place of (C). This is illustrated by 
the following four examples of advanced differential equations. These equations 
fail to satisfy the condition (C). However, they satisfy the rest of the assumptions of 
Theorem and the condition (C*). 

Example 1. The equation 

[*1/3 *'(')]' + I1/9) >"5/3 *1/3(>3) = o > ' = i 

has the nonoscillatory solution x(t) = t1/3, a contradiction to conclusion (I) of 
Theorem. 

Example 2. The equation 

[t1/2 x"(t)]f + sr 3 /2(l + t6)~1/3 x1/3(t6) = 0 , t = 1 

has the solution x(t) = 1 + 1/* for which lim x(t) = 1, a contradiction to conclusion 
(II) of Theorem. **"> 

Example 3. The equation 

[*1/2 x'"(0]' - (3/8) r 7/2 x1/3(f3) = 0 , * = 1 

has the solution x(t) = f3/2 for which lim x(t) = lim x'(t) = 0 while lim x"(t) = 
f-+oo f-+oo f-*oo 

= lim t1/2 xf"(t) = oo, a contradiction to conclusion (III) of Theorem. 
f-*oo 

Example 4. The equation 

[t1/2 x"(ij\f - (1/4) t"5/2 x1/3(*3) = 0 , t = 1 

has the solution x(t) = *1/2 for which we have lim x(t) = oo while lim x'(t) = 
f-»oo f->oo 

= lim *1/2 x"(t) = 0, a contradiction to conclusion (IV) of Theorem. 
t-+oo 

We now turn our attention to a particular class of differential equations of the 
form (E), which includes the ordinary, retarded equations and some others of ad
vanced or mixed type. This class is characterized by the condition 
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(H) l i m s u p ^ j ^ ] < ° o 0 = l , . . . , m ; f c = l , 2 ) . 

For sublinear equations of the class considered the condition (C) can be replaced 

by (C*) in our theorem. That is, we have the following corollary. 

Corollary. Suppose that (i) — (iv) hold. Moreover, let the differential equation (E) 

be strongly sublinear and suppose that the function 3> has the exponential property 

( - » ) • 

If (H) holds, then, under the condition (C*), we have the conclusions (I)~(IV) 

of Theorem. 

Proof. For any j e {1, ..., m} and for all large t we have 

P . i f 9j(t)^t 
Д»[-ЫQ] _ 
Ч Ш Ш - if gj(t)>t. (fc = 1 > 2 ) 

Thus, by virtue of (H), there exists a positive constant M so that for k = 1,2 

**[ f fX0] = MRk[9j(t)] for all larger (j = l, ..., m) 

and consequently, by taking into account (iii) and the increasing character of # and 

its exponential property (P), we obtain that for all large t 

\^SRk[al(t)],...,SRk[cm(t)])\^ 

= \<P(dMRk[gi(t)], ..., 6MRk[gm(t)])\ = KL\<P{6Rk[gi(t)l..., SRk[gm(t)])\ , 

where L = min {<2>(M, ..., M), |<J>(-M, ..., ~M)j} > 0. Thus, the condition (C*) 

implies (C) and hence the corollary follows from our theorem. 

Note that the condition (H) cannot be omitted from the above corollary. This is 

demonstrated by Examples 1—4 of advanced differential equations which fail to 

satisfy (H). Also, we notice that in the special case where r = 1 the condition (H) 

is satisfied if 

(H) l i m s u p - ^ < oo (j = 1, ..., m) . 
t-*ao t 

In the conclusion we remark that it would be desirable to study the oscillatory 

and asymptotic behavior of the solutions of sublinear differential equations of the 

form (E) without the condition of the exponential property (P). From the arguments 

presented here it is apparent that the role of this condition is essential to our method. 

Perhaps another method would be of significant importance. This is said in view of 

the fact that in the superlinear case no such condition is imposed. We hasten to add 

that as far as we known the sublinear equations that appeared in the bibliography 

satisfy the exponential property mentioned above. So, one usually encounters sub-
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linear differential equations of particular forms of (E) with the continuous function <_> 
defined by 

<*>(yl,..-,ym) = l y l h - . - l y ^ S g n ^ 

at least on R+ \rj R™. The simplest case where m = 1, i.e. <P(y) = \y\* sgn y9 drew 
much attention in the literature. 

It remains an open question to the author whether our theorem can be extended 
to more general strongly sublinear differential equations of the form 

(E) [r.-_(0 [r...(0 [-.. [r_(0 WO *'(<)]']' •• •]']']' + 
+ a(t) *(*[t7i(0]. -> *[&-(0_) = ° > 

where rf (i = 1,..., n — 1) are positive continuous functions on the interval \t0, oo) 

such that J00 [l/r ;(0] df = oo (i = 1,..., n - 1). 
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