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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

A NON-ABSOLUTELY CONVERGENT INTEGRAL WHICH 
ADMITS C1-TRANSFORMATIONS 

JIŘÍ JARNÍK, JAROSLAV KURZWEIL, Praha 

(Received June 30, 1983) 

1. I N T R O D U C T I O N 

It has been known since 1957 — cf. [ l ] — that a formally inconspicuous modi­
fication of Riemann's definition of integral leads to a concept of integral that includes 
both Lebesgue and Perron integrals. Roughly speaking, the modification consists 
in replacing the (positive) constant that measures the "fineness" of a partition of the 
domain of integration by a (positive) function called a gauge. Analogously to 
Riemann's definition, each interval of a partition is associated with a "distinguished" 
point at which the function value is taken and the integral sum corresponding to the 
partition is evaluated. (The conditions imposed on the partition together with the 
""distinguished" points make it possible to obtain a definition equivalent either to 
Lebesgue's or to Perron's one.) If the integral sums converge (in a certain sense), 
then their limit is called the S-integral (summation integral). 

J. Mawhin in [2] suggested a generalization that consisted in reducing the class 
•of "admissible" partitions by introducing a "rate of stretching" of an interval as 
a measure of the "irregularity" of a partition. His aim was to obtain a concept of 
integral (in n-dimensional Euclidean space) for which the divergence theorem would 
hold under the possibly weakest assumptions. 

Mawhin's paper stimulated further research in this direction. In [3] the present 
authors and §. Schwabik gave some other modifications. The resulting concepts of in­
tegral preserved the "nice" features of Mawhin's integral and, moreover, possessed 
some other useful properties (additivity and continuity with respect to the integration 
domain, availability of a Lebesgue-type dominated convergence theorem). Another 
feature worth mentioning is that all these concepts cover some nonabsolutely con­
vergent integrals. This suggested the possibility of obtaining a concept of a (non­
absolutely convergent) multiple integral that would admit transformation. The first 
step in this direction is made in the present paper, where such a concept of integral 
will be introduced and studied in the Euclidean plane; this restriction considerably 
diminishes the technical difficulties. 
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2. DEFINITION 

Let us recall some notations used throughout the paper. R2 is the Euclidean plane 
with the usual Euclidean norm || • ||. If M cz R2, then m(M) stands for the Lebesgue 
measure of M and dM, Int M, CI M are the boundary, interior and closure of M, 
respectively. Moreover, if x e R2, we denote by dist (x, M) the distance of x from M 
and by B(x, r) the open ball with center x and radius r > 0. 

We shall say that two sets Ml9 M2 cz R2 are nonoverlapping if Int Mx n Int M2 = 
= 0. 

Our definition follows the general scheme given in the conclusion of [3]. 
Let «/ be the family of compact domains I cz R2, whose boundaries consist of 

a finite number of disjoint piecewise smooth simple closed curves. 
Let # be the family of compact domains J cz R2, whose boundaries are piecewise 

smooth simple closed curves. 
Given l e i , then we denote by CPL(l) the collection of partitions A of I: 

A = {(x',J');j = l,...,p} 

P 

with xJ el, JJ e f, I = (J JJ, JJ non-overlapping sets, and by CPP(l) the collection of 
i = i 

all partitions A e CPL(I) satisfying xJe JJ, j = 1,..., p. (In [3], indices 1, 2 were 
used instead of P, L, respectively. Here we wish to indicate that in the simplest case 
we obtain the Perron and Lebesgue integral, respectively — cf. [l],) 

A gauge on I is a function S : I -> (0, -f- oo) and we say that A is d-fine if JJ cz 
cz CI B(xJ, S(xJ)). Finally, we define the function I : CPL(I) -> R by 

I(A) = Í í \\x-xl\\ds, 
J=í JejJ 

where s represents the length of arc on dJJ. 

Definition. Let I e J, f : I -> R, i e {P, L]. Let y e R. If for every s > 0 and K > 0 
there is a gauge 3 on I such that for every (5-fine A e CPt(l) with 1(A) = K the 
inequality 

\y-S(l,f,A)\ge 

holds, then / is said to be MTrintegrable over I and y is called the MTrintegrat 
of f over I and we write y = (MTt) jjf. 

p 

Here, of course, S(l, / , A) = £ / ( x 9 m(JJ). 
I=i 

The letters MT stand for "Mawhin's Transformable". Notice that CPP(/) c: 
cz CPL(l) implies that an MTL-integrable function is MTP-integrable as well (over 
the same domain U), and both integrals coincide. 

In order for our definition to make good sense, we have to prove 
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Proposition. For every J e f there is such a K > 0 that for every gauge S on I 
there is a b-fine partition A e CPP(l) that satisfies 1(A) = K. (In view of the inclusion 
CPp(I) c CPL(I)9 Proposition justifies both the definitions, of MTP- as well as MTL-
integral.) 

Proof. Let I e J. Then the boundary dl consists of a finite number of disjoint 
piecewise smooth simple closed curves, say F0, Tl9 ...,Ffc. Let us assume without 
loss of generality that the curves Fl9 ..., Ffe lie in the inner domain of the curve F0. 

Each curve Ti9 i = 0, 1, ..., k, can be partitioned into a finite number of smooth 
arcs yij9j = 1, ...,I/, with parametrizations 

x = <Pij{s), se[aij9
 ai,j+1] , I = l , . . . , I i , 

<p(ai,ji+i) = <p(an), where the parameter s represents the length of arc on Ff, and 
the arcs ytj have the following property: if we write 

x(s) = u(s) , 

where u(s) is a unit vector, u(s) = (cos a(s), sin a(s)), then for fixed i,j and all s e 
e [au> aij+i] w e have either 

(i) — 2co _ a = 2co or TC — 2co = a = n + 2co 
(a "horizontal" arc), 

or 

/ • • \ TC - » ^ ^ T C _ 3TC _ ^ 3 T C 

(n) 2co ^ a = - + 2co or 2co < a < — + 2co 
2 2 2 2 
(a "vertical" arc), 

or 

/•••\ ^ ^ n n ^ ^ ^ ^ 3 T C (m) co < a < co or — h c o < a < 7 c - - c o o r 7 C + c o < a < a> 
V 7 ~ ~ 2 2 ~ ~ ~ ~ 2 

3n: ^ 
or l - c o < a < 2 7 c — co 

2 
(an "oblique" arc), 

7C 

where co is a fixed constant, say 0 < co < — . 
16 

Let us denote 
Vi = {x; x = (pijfaij), j = 1, . . . , j j , 

v = U v{. 
i = 0 

Let us denote by <50 a gauge on I with the following properties: 

(1°) if xel\dl then (50(x) = 2 dist (x, 5I); 

(2°) if x e 5I \ V then 
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(<x)<50(x) = ±dist(x, V); 
(P) B(x, 2 d0(x)) n dl is connected (in particular, the neighborhood B(x, 2 S0(x)) 

contains points of a single arc y«y); 

(3°) if x e V, then 

(ex) <50(x) = idist(x, V\{x}); 
(P) B(x, S0(x)) n dl is connected (in particular, the neighborhood B(x, S0(x)) 

contains points of only two adjacent arcs yip yt j+i for which x is the com­
mon endpoint). 

Let 5 be an arbitrary gauge on I. Without loss of generality we may assume that 
S(x) = <50(x) for all xel. Our task is to construct a <5-fine CPP-partition II of I 
such that Z(n) _ K, where K is a constant independent of the gauge S and the 
partition II (K may depend on the parameters of the domain I, viz. on m(l)). 

The construction of the partition II will proceed in three parts. First we shall 
cover the "vertices" of I, i.e. the points from the set V, then the "edges", i.e. the rest 
of the boundary, and finally the rest of the interior of I. 

Pa r t 1. We start by covering I with a square net whose nodes are the points 
(k! 2" r , k2 2" r) with kx, k2 arbitrary integers, r a fixed positive integer. Denote 

Q"p.q = ~P 2~r> (P + !) 2 " r ] x U 2 _ r - (<? + i ) 2 _ r ] 

and choose r so that the inclusion 

QrpM.q^<-B{v,^5(v)) 

holds for all ve V (V is a finite set!), where p(v), q(v) are such integers that v e 
€ Qp(v),q(v)' - ^ t 

1 

Iv(v) = U Qp(v) + X,q(v) + v • 
A „ u = - 1 

Then I*(v) c B(v, S(v)) and we include (v, l(v)) with I(v) = I*(v) n I in the parti­
tion II. 

Let us estimate the value of the integral 

f I - - A -
J dl(v) 

We evidently have ||v — x|| = 3 yj(2) . 2 " r for x e dl(v). The integration path con­
sists of part of the perimeter of the square with sides of length 3 . 2" r and of the curved 
part (which is part of boundary of I); the latter is again estimated by const. 2" r . 
Thus the above integrals contribute to -2(i7) by const. 4 " r . |V |, where |V| is the 
number of elements of V. By choosing r sufficiently small we can make this contribu­
tion arbitrarily close to zero. 

Pa r t 2. Let us consider a square Qpq such that no part of it was included in the 
partition II in the previous step, but such that Qr

pq n dl 4= 0. Assume that 
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(*) there is a point u e Qr
pq such that Qr

pq cz B(u, £ S(u)), 

It is evident that in this case the intersection Qr
pq n dl contains only points of one 

arc y-tj (cf. 2°(P)), and consequently, for all points x e Qr
pq n dl c y.. one of the ine­

qualities (i) —(iii) holds (the same for all such x). 
Moreover, u e yi7- (cf. 2°(oc)). The are three possibilities according to which one of 

the inequalities (i) — (iii) holds. We shall deal with each case separately. 
First, let ytj be "horizontal". Then either ytj n Int QPtq+x = 0 for A = + 1 , or 

one (and only one) of these intersections is nonvoid. (See Figs, (a), (b)). In the former 
case, one of the squares Qr

Ptq+)L, X = + 1 , is in I (this follows from the fact that y{j 

is "horizontal"); we add this square to Qp q, set 

(**) !(и) = (Є^ß;,,н)п/ 

and include the pair (u, l(u)) in the partition I7. In the latter case, we add the square 
Qp,q+x (A = 1 or — 1) that has nonvoid intersection with yij9 set again (**) and include 

*P 

Qfto-i 

û PЯ 

öt>.q-1 

(a) (b) 

ш\ 
(c) 
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(u, I(u)) in the partition 17. (Evidently l(u) c B(u, S(u)).) If yu is "vertical", we pro­
ceed analogously, adding to Qpq either the square Qr

p-\,q or Qp+ltr (Notice that the 
assumptions on S and u guarantee that no square is required more than once: for 
example, if yi} is "horizontal" in Qpq, and if the square Q^-i is added to it, then yu 

cannot be vertical in Qr

p-\,q-1 nor in Qp+itq-i and the square Qr

Ptq-1 is not added 
to any of them.) Finally, if y(J is "oblique", we put I(u) = Qr

pq n I and include I(w) 
in II again. 

In this way we deal step by step with all intervals Qr

pq that fulfil Qr

pq n dl =j= 0, the 
condition (*), and that have not yet been included in II. (It can be proved from 2° (p) 
that all sets I(w) obtained in this way are non-overlapping.) 

Put Ir+1 = I\\Jl(u). If Ir+1 n dl =f= 0, we cover Ir + 1 with squares g r + 1 of the 
form u 

[P2"<r+1), (p + l ) 2 " ( r + 1 ) ] x [a2" ( r + 1 ) , (q + l)2-< r + 1 )] 

(i.e., Ir+1 n Q r + 1 # 0 for every couple p, q). 
Let Q^1 n 3I 4= 0 and assume that there exists such a u e Qr+ 2 that 

v + i c -B(II, ł ^ j ) . 

Then obviously u e y0-. For such a square g r + 1 construct I(w) in a way analogous 
to that used above. After dealing with all such squares Qpq1, put Ir+2 = I \ \J I(u) 

u 

(the union is taken over all sets l(u) constructed till now and corresponding to the 
squares Qpq and Qp+1). If Ir+2n dl #= 0, cover Ir+2 with squares Qr

pq

2, etc. After 
a finite number of steps we obtain such a set It that Itn dl — 0, i.e. 3I c U I(w), 

u 

where the sets I(w) are all the sets resulting in the described way from the squares 
of "orders" r, r + 1, ..., /. 

Indeed, if there were z satisfying z e dl n Im for m = r + 1, r + 2,..., then there 
would exist such a square Qv

pq that z e Q]^ c ^(z, £ <5(z)) and consequently, z e 
edl n Iv+lJ a contradiction. 

Let us again estimate the contribution of all the sets just constructed to the value 
of I(n), i.e. the sum 

£ f ««-
uečIW 

Denote tan 2co = k. If ytj is a "horizontal" arc, then for the case sketched in Fig. 
(a) we have estimates 

|» - x|| g 2 - ' V5 for x e dl(u), 

f(3I(u)) g 5 . 2" r + (1 + k2)1'2 2~', 

m(l(u)^2-2r, 

where t denotes the length of a curve. Hence 
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[, |u - x|[ = 2~2r V5 [5 + (1 + k2)1/2] = C(k)m(l(u)). 
; di(u) 

Similarly, the situation sketched in Fig. (b) allows estimates 

||u - x|| = 2"r(v/(2) + k) for x e dl(u) , 

*(M(u)) = 5 . 2~r + (1 + k2)1/2 2~r, 

^(/(u)) = 2~2r - (1 + k2)1/22"2r, 
which yields 

f || ii - x|| = 2"2r(V(2) + k) [5 + (1 + k2)1/2] = Cm(l(u)) , 
J C5/(M) 

C a constant. 
The case of "vertical" arcs is symmetrical, so that we obtain analogous estimates. 
If yu is an "oblique" arc, there are four possible intervals for the angle a (cf. (Hi)). 

Suppose, for instance, that the inequality 

co < a = co 
2 

holds (the other cases are quite analogous). Denote tan co = ft, then tan [(rc/2) — co] = 
= ft-1 and 

ft = tana = ft_J . 

Figs, c, d show the two essentially different situations. For (c) we obtain the estimates 

||u - x|| = 7(2). 2~r for x G 0J(u) , 

/ (d I (w))^4 .2- r , 

^(/(u)) = i 2 - r . 2 - ' f t . 
Hence 

flu - x|| g V(2) . 22~2 ' g 8 V(2) *.</(«)) h"1 • 
JÕ1 ISHu) 

For (d) we have 
flu - xfl ^ ri(l + h'2)1'2 for x e dl(u) , 

f(?i[u)) g >i(i + r 1 ) + »,(i + h-2)112, 

m(l(u)) ^ Wh , 
which yields 

f flu - x\\ g (1 + h'2)1'2 [1 + ft"1 + (1 + h"2)1'2] r,2 < 
J ai(u) 

g 2h"1(l + h-2)1'2 [1 + h-1 + (1 + h"2)1'2] m(l(u)). 
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Combining the above estimates and summing over all "distinguished" points u e 
e dl \ V we obtain an estimate 

Z f | « - x | s c z «(/(«)), 

where C denotes a constant. 

Par t 3. The closure of the set I, is the union of squares Ql
pq, all squares included 

in this union are part of the interior of I. Thus, let 

e i , c I n t / -
We proceed similarly as in the preceding case. If there is w e Ql

pq such that Ql
pq c 

c B(w, <5(w)), we include the square in II; if not, we halve both sides and try the same 
with the resulting squares; after a finite number of steps we arrive at squares for 
which the above condition is fulfilled (this follows by the same argument as above), 
so that the partition II of I (which of course is (5-fine) is fully constructed. The estimate 
of the contribution of these "inner" squares to £(I1) is easy: we have 

JÕІ 
lw-x | | š 4V(2) .2- = 4V(2)ЧQL), 

and 

Q%<=lnt/ JeQipq Q'p,<-Tntl 

Putting together all three estimates corresponding to points from V, from dl \ Vand 
from Int I, we eventually obtain 

Z j \u3 - x|| ^ const. m(l), 
(«i./ j )6// ) n i 

where the constant depends only on the angle co. This completes the proof of Pro­
position. 

3. TRANSFORMATION THEOREM 

Theorem 1. Let U', V e J', let <P :U -• V be a regular diffeomorphism of U onto V. 
Let ie{P,L}. Then 

(1) (MTt) f fdx = (MTi) f (fo &-1) |det D<P~l\ Ay 

provided one of the integrals exists. 
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Proof . Let us prove the theorem for the MTL-integral; the proof for the other 
integral is analogous. Assume, for instance, that the lefthand side integral exists. 
Let e > 0, K be given. Set 

(2) K' = K s u p ( | | D < ř - 1 ( > ' ) | + l ) 2 

ynV 

and find a gauge 6' on U such that for every O*'-fine partition A' e CPL(U) with 
I{A') ^ K ' we have 

(3) (MTL)[fdx-S(U,f,Л') < 4 є . 

Further, find a gauge S on Vsuch that 

(4) r ^ ^ c B ^ i t x ) ) for y = <P(x), xeU, 

£ 
(5) |det D Ф- Қy) - det D Ф~ Ҷř/)| 

2 ^ V ) [ l + | / (*- 1 ( , ? )) | ] 

for y,r\eV, y e B(r\, S(r\)), 

(6) \\<I>-i(y)-<p-i(r\)\\^(\\D *-i(r\)\\ + l).\\y-r\\\ 

again for j , >j e V, ye B(r\, 5(r\)) . 

Let A e CPL(V) be a d-fine partition of V with l ( j ) = K, 

A = {&,&); j = l , . . . , p } . 

Put xJ = * _ 1 ( y ) » H} = (p-\GJ'), j = 1,..., p. Then 

J ' = {(x^,/i J );; = l, . . . , | ,}eCP l .(C !) 

is a partition of U and, in view of (4), it is <5'-fine. Further, we have 

W) = t[ ll*-*J'IMS=£f ||^-1(>')-^-V)ll«^^"1(>')|d<T = 
J=1JdHJ J=1JcGJ 

= £ sup (\\D<p-\y)\\ + lj|D*-1(>.)|| f h-Ad° 

in view of (6), so that l(A') = K sup (j]Z> *_1(>>)|| + l)2 . 
yeV 

Let us estimate the difference 

\S(U,f, A') - S(V, (fo 0-')\ det D * " - | , A)\ = 

= | £ {/(V) m(H') - /(*" V)) | det D *" V ) \m(G% = 

= £ |/(*0| • HH*) - ldet D *~ V ) HG!)\ • 
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Since m(HJ) = \HJ dx = \GJ |det D #~ l(y)| dy, we have by (4) and (5) 

\m(HJ) - |det D <f>"\yJ)\ ™(GJ)\ = f |det D ^"1(y) - det D #'l(yJ)\ dy = 

JGJ 

. s m(GJ) , 
s \—f— ; consequently , 

2^(V)(l + | / ( $ - V ) ) | ) 

|S(U,L 40 - S(V,(/o 4)"1)! det D ^ - 1 ! , A)\ g 

= 1 IIИІ 
A 1 + |ДxO| 2 ЦV) У ~ 2 

Hence in view of (3), 

(MTL) f /dx - S(V, (/c f - 1 ) ! det i9*- l [ , A) < £ 

which proves (1). 

4. DIVERGENCE THEOREM 

Theorem 2. Let Q c R2 be an open domain, let f: Q -> R2 be differentiable. 
Let H cz Q9 H e J, i e {P, L}. Then div/ is (MTi)-integrable over H, and 

(?) (Af T,) ľ div/ = ľ % = ľ Л dx2 - / 2 dx, 
J H JðH J ôH 

Proof. Let us again give the proof for i = L. Given e > 0, K we find for every 
x e H a f 3 = (5(x) > 0 such that 

(8) \\f(y)-f(x)-Dfx(y-x)\\^s\\y-x\\, 

where Dfx denotes the differential of/ at x. 

The function <5 : x i-+ 5(x) defines a gauge on If. Let 

A = {(*'*, HJ); j = 1,..., m} e CPL(H) 

be a (5-fine partition of H with 1(A) ^ K. Then 

ľ <*>/ = Z û>y 
J Ő Я J=lJдHJ 

We estimate the difference 

(9) S(H, div/, .4) - f o J - I X [div/(x0 «(HO - f o>/l 
JIH I w=l L Jaw JI 
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Following Mawhin's proof of Theorem 1 [2] we set 

g\y) = f(x>) + DfxJ(y - x>), h>(y) = f(y) - g>(y) , 

j = 1, ..., m, y e HJ. Then 

g{ dx2 - gJ
2 dxt = divf(xJ) dxt dx2 = divf(xJ) *n(HJ) . 

J dRJ J HJ 

Further, by (8) we have 

I f h{dx2 - hidxj g e f | | y - x ' | d s . 
\JdHJ I JdHJ 

Since f(y) = gJ(y) + h;(j>) for y e HJ, j = 1, ..., m, we conclude from (9) 

S(H, div j,J)- f W J ^ Í f «-J = ľ f II 
JćЯ-' I J=ІJHJ 

K}\\ < sK, 

This proves (7). 
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