Časopis pro pěstování matematiky

Miroslav Fiedler
Isodynamic systems in Euclidean spaces and an n-dimensional analogue of a theorem by Pompeiu

Časopis pro pěstování matematiky, Vol. 102 (1977), No. 4, 370--381
Persistent URL: http://dml.cz/dmlcz/108520

Terms of use:

© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ISODYNAMIC SYSTEMS IN EUCLIDEAN SPACES AND AN n-DIMENSIONAL ANALOGUE OF A THEOREM BY POMPEIU

Miroslav Fiedler, Praha

(Received April 29, 1977)

INTRODUCTION

Isodynamic tetrahedrons and more generally, isodynamic n-simplexes have been studied in [1], [2].

We shall investigate here isodynamic systems of points in Euclidean spaces, i.e. unordered systems of points A_{1}, \ldots, A_{m} such that for some positive numbers c_{1}, \ldots, c_{m},

$$
\begin{equation*}
\varrho\left(A_{i}, A_{k}\right)=c_{i} c_{k} \tag{1}
\end{equation*}
$$

for all $i, k=1, \ldots, m, i \neq k$. By ϱ we mean throughout the whole paper the Euclidean distance. In particular, we shall be interested in maximal isodynamic systems in an n-dimensional Euclidean space and their properties.

PRELIMINARIES

Under an $(n-1)$-sphere we understand here and in the sequel a hypersphere in an n-dimensional Euclidean space; a generalized $(n-1)$-sphere is either an $(n-1)$ sphere or an $(n-1)$-dimensional linear space. We say that, in an n-space, a generalized $(n-1)$-sphere K_{1} bisects the $(n-1)$-sphere K_{2} with centre A_{2} and radius r_{2} iff either $r_{1}^{2}=\varrho^{2}\left(A_{1}, A_{2}\right)+r_{2}^{2}$ in the case K_{1} is an ($n-1$)-sphere with centre A_{1} and radius r_{1}, or if K_{1} contains A_{2} in the case K_{1} is a hyperplane. If K_{1} and K_{2} are two ($n-1$)-spheres in E_{n} with centres A_{i} and radii $r_{i}(i=1,2)$ then we call $\left(K_{1}, K_{2}\right)$ harmonic $(n-1)$-sphere the set $\left\{X ; \varrho\left(X, A_{1}\right) / \varrho\left(X, A_{2}\right)=r_{1} / r_{2}\right\}$. It is thus the (generalized) sphere of Apollonius of the points A_{1} and A_{2} with the ratio r_{1} / r_{2}.

As usual, the power of a point X in E_{n} with respect to an $(n-1)$-sphere K (in E_{n}) with centre A and radius r is $\varrho^{2}(X, A)-r^{2}$. If K is a hyperplane, we shall agree that any point of K has any real number as its power with respect to K, and no point outside K has a defined power with respect to K.

Two points X, Y in E_{n} are inverse with respect to a generalized ($n-1$)-sphere K iff either they are symmetric with respect to K if K is a hyperplane or, in the other case, if they lie on one ray starting in the centre A of K and $\varrho(X, A) \cdot \varrho(Y, A)=r^{2}$, r being the radius of K.

RESULTS

It will be useful to assign to an isodynamic system satisfying (1), a new set of numbers t_{1}, \ldots, t_{m} by

$$
t_{i}=c_{i}^{2}, \quad i=1, \ldots, m
$$

We shall call these numbers t_{i} radii of the isodynamic system corresponding to the points A_{i}. The following theorem is easy to prove.

Theorem 1. Let $A_{1}, \ldots, A_{m}, m \geqq 3$, be points in a Euclidean space which form an isodynamic system with the corresponding radii t_{1}, \ldots, t_{m}, i.e.

$$
\begin{equation*}
\varrho^{2}\left(A_{i}, A_{k}\right) \dot{=} t_{i} t_{k}, \quad i \neq k, \quad i, k=1, \ldots, m \tag{2}
\end{equation*}
$$

Then the radii t_{i} are uniquely determined by (2).
Another trivial observation is formulated in the following
Theorem 2. Any subsystem of an isodynamic system of points is isodynamic as well.

Theorem 3. A system $\left\{A_{1}, \ldots, A_{m}\right\}$ of points is isodynamic iff any subsystem with four points is isodynamic.

Proof. The "only if" part following from Thm. 2, assume that any subsystem with four points is isodynamic.

To prove that the given system is isodynamic, we shall use induction with respect to m. For $m \leqq 4$, the assertion is clearly true. Suppose that $m>5$ and theassertion holds for any system with $m-1$ points. Thus A_{1}, \ldots, A_{m-1} is isodynamic with (uniquely determined) radii t_{1}, \ldots, t_{m-1}. Let $\tilde{t}_{m} \tilde{t}_{1}, \tilde{t}_{2}, \boldsymbol{t}_{3}$ be radii of the isodynamic subsystem $\left\{A_{m}, A_{1}, A_{2}, A_{3}\right\}$. Since the radii of $\left\{A_{1}, A_{2}, A_{3}\right\}$ are uniquely determined by Thm 1 , we have $\boldsymbol{t}_{i}=t_{i} i=1,2$, 3 . Similarly, if $k>3$, let $\hat{t}_{m}, \boldsymbol{t}_{1}, \hat{t}_{2}, \boldsymbol{t}_{k}$ be radii of the subsystem $\left\{A_{m}, A_{1}, A_{2}, A_{k}\right\}$. Then $\hat{\boldsymbol{t}}_{m}=\boldsymbol{I}_{m}, \hat{\boldsymbol{t}}_{1}=\boldsymbol{t}_{1}, \hat{\boldsymbol{t}}_{2}=\boldsymbol{t}_{2}, \hat{\boldsymbol{t}}_{k}=\boldsymbol{t}_{k}$ so that

$$
\varrho^{2}\left(A_{i}, A_{k}\right)=t_{i} t_{k} \quad(i \neq k)
$$

is satisfied for all $i, k=1, \ldots, m$ if $t_{m}=\boldsymbol{Z}_{\boldsymbol{m}}$. This completes the proof.
Remark. It is easily seen that a quadruple $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of points is isodynamic iff these points are mutually distinct and

$$
\varrho\left(A_{1}, A_{2}\right) \varrho\left(A_{3}, A_{4}\right)=\varrho\left(A_{1}, A_{3}\right) \varrho\left(A_{2}, A_{4}\right)=\varrho\left(A_{1}, A_{4}\right) \varrho\left(A_{2}, A_{3}\right)
$$

To investigate existence of isodynamic systems, we recall the following theorem essentially due to Menger [3] which is a point analogue of the well known theorem that the Gram matrix of a vector system is positive semidefinite and conversely.

Theorem 4. Let m be a positive integer. The m^{2} real numbers $e_{i j}=e_{j i}, i, j=$ $=1, \ldots, m$, are squares of distances of some m points A_{1}, \ldots, A_{m} in a Euclidean space:

$$
\varrho^{2}\left(A_{i}, A_{j}\right)=e_{i j}
$$

iff $e_{i i}=0, i=1, \ldots, m$, and for any real m-tuple $\left(x_{1}, \ldots, x_{m}\right)$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i}=0 \tag{3}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
\sum_{i, j=1}^{m} e_{i j} x_{i} x_{j} \leqq 0 \tag{4}
\end{equation*}
$$

holds.
If this is the case, the points A_{1}, \ldots, A_{m} are linearly independent iff the only mtuple satisfying (3) for which equality in (4) is attained, is the zero m-tuple. More generally, all linear dependence relations among the points A_{1}, \ldots, A_{m} are exactly those relations

$$
\sum_{i=1}^{m} y_{i} A_{i}=0
$$

satisfying

$$
\sum_{i=1}^{m} y_{i}=0
$$

for which

$$
\sum_{i, j=1}^{m} e_{i j} y_{i} y_{j}=0
$$

Now we are able to state the existence theorem on isodynamic systems.
Theorem 5. Let $m \geqq 2$, let t_{1}, \ldots, t_{m} be positive numbers. A necessary and sufficient condition that there exist in a Euclidean n-dimensional (and not ($n-1$)dimensional) space m points A_{1}, \ldots, A_{m} the mutual distances $\varrho\left(A_{i}, A_{j}\right)$ of which satisfy

$$
\begin{equation*}
\varrho^{2}\left(A_{i}, A_{j}\right)=t_{i} t_{j} \quad(i \neq j, i, j=1, \ldots, m) \tag{5}
\end{equation*}
$$

is : either
(i) $n=m-1$ and

$$
\begin{equation*}
(m-1) \sum_{k=1}^{m} \frac{1}{t_{k}^{2}}<\left(\sum_{k=1}^{m} \frac{1}{t_{k}}\right)^{2} \tag{6}
\end{equation*}
$$

or
(ii) $n=m-2$ and

$$
\begin{equation*}
(m-1) \sum_{k=1}^{m} \frac{1}{t_{k}^{2}}=\left(\sum_{k=1}^{m} \frac{1}{t_{k}}\right)^{2} . \tag{7}
\end{equation*}
$$

In the second case, the only relation among the points A_{1}, \ldots, A_{m} is

$$
\begin{equation*}
\left(\sum_{k=1}^{m} \frac{1}{t_{k}}\right)^{-1} \sum_{k=1}^{m} \frac{1}{t_{k}} A_{k}-\left(\sum_{k=1}^{m} \frac{1}{t_{k}^{2}}\right)^{-1} \sum_{k=1}^{m} \frac{1}{t_{k}^{2}} A_{k}=0 . \tag{8}
\end{equation*}
$$

Proof. Let first A_{1}, \ldots, A_{m} satisfy (5). We shall show that then

$$
\begin{equation*}
(m-1) \sum_{k=1}^{m} \frac{1}{t_{k}^{2}} \leqq\left(\sum_{k=1}^{m} \frac{1}{t_{k}}\right)^{2} . \tag{9}
\end{equation*}
$$

By Thm. 4,

$$
\sum_{1 \leqq i<k \leqq m} t_{i} t_{k} x_{i} x_{k} \leqq 0,
$$

whenever x_{1}, \ldots, x_{m} satisfy $\sum_{i=1}^{m} x_{i}=0$. Especially, the numbers y_{1}, \ldots, y_{m} where

$$
\begin{equation*}
y_{i}=\frac{1}{t_{i}} \sum_{k=1}^{m} \frac{1}{t_{k}^{2}}-\frac{1}{t_{i}^{2}} \sum_{k=1}^{m} \frac{1}{t_{k}}, \quad i=1, \ldots, m \tag{10}
\end{equation*}
$$

satisfy $\sum y_{k}=0$; therefore,

$$
\begin{equation*}
2 \sum_{1 \leqq i<k \leqq m} t_{i} t_{k} y_{i} y_{k} \leqq 0 . \tag{11}
\end{equation*}
$$

The left hand side is equal to

$$
\begin{gathered}
\left(\sum t_{i} y_{i}\right)^{2}-\sum t_{i}^{2} y_{i}^{2}=\left(m \sum \frac{1}{t_{i}^{2}}-\left(\sum \frac{1}{t_{i}}\right)^{2}\right)^{2}-\left(m\left(\sum \frac{1}{t_{i}^{2}}\right)^{2}-\right. \\
\left.-2\left(\sum \frac{1}{t_{i}^{2}}\right)\left(\sum \frac{1}{t_{i}}\right)^{2}+\left(\sum \frac{1}{t_{i}^{2}}\right)\left(\sum \frac{1}{t_{i}}\right)^{2}\right)=\left(m \sum \frac{1}{t_{i}^{2}}-\left(\sum \frac{1}{t_{i}}\right)^{2}\right) . \\
\cdot\left((m-1) \sum \frac{1}{t_{i}^{2}}-\left(\sum \frac{1}{t_{i}}\right)^{2}\right) .
\end{gathered}
$$

The first factor is by the Schwarz inequality nonnegative, and positive if not all the t_{i} 's are equal. If the t_{i} 's are equal, (9) is satisfied. If not, the first factor is positive and (9) is satisfied by (11).

Observe that $\cdot(7)$ implies that for $e_{i j}=\varrho\left(A_{i}, A_{j}\right)=t_{i} t_{j}(i \neq j)$ and $e_{i i}=0$,

$$
\sum_{i, j=1}^{m} e_{i j} y_{i} y_{j}=0
$$

The numbers (10) are easily seen not to be all equal to zero. By Thm. 4, (7) implies that the points A_{1}, \ldots, A_{m} are linearly dependent, i.e.

$$
\begin{equation*}
n \leqq m-2 \tag{12}
\end{equation*}
$$

and moreover, (8) holds.
This means that if A_{1}, \ldots, A_{m} are linearly independent then (6) is satisfied.
Let us show now that conversely, (9) implies that there exist, in a Euclidean space, points A_{1}, \ldots, A_{m} satisfying (5) and even that (6) implies that they are linearly independent.

We shall use Thm. 4 again. Let x_{1}, \ldots, x_{m} be real numbers satisfying $\sum x_{i}=0$. Assume first (6). Then

$$
m \sum \frac{1}{t_{i}^{2}}-\left(\sum \frac{1}{t_{i}}\right)^{2}<\frac{1}{m-1}\left(\sum \frac{1}{t_{i}}\right)^{2}
$$

and we can write for $e_{i i}=0, e_{i k}=e_{k i}=t_{i} t_{k}(i \neq k)$:

$$
\begin{gathered}
\sum_{i, j=1}^{m} e_{i j} x_{i} x_{j}=\frac{1}{m}\left((m-1)\left(\sum t_{i} x_{i}\right)^{2}-\left(m \sum t_{i}^{2} x_{i}^{2}-\left(\sum t_{i} x_{i}\right)^{2}\right)\right)= \\
=\frac{m-1}{m\left(\sum \frac{1}{t_{i}}\right)^{2}}\left(-\frac{1}{m-1}\left(\sum \frac{1}{t_{i}}\right)^{2}\left(m \sum t_{i}^{2} x_{i}^{2}-\left(\sum t_{i} x_{i}\right)^{2}\right)+\right. \\
\left.+\left(m \sum x_{i}-\sum \frac{1}{t_{i}} \sum t_{i} x_{i}\right)^{2}\right)<\frac{m-1}{m\left(\sum \frac{1}{t_{i}}\right)^{2}}\left(\left(m \sum x_{i}-\sum \frac{1}{t_{i}} \sum t_{i} x_{i}\right)^{2}-\right. \\
\left.-\left(m \sum \frac{1}{t_{i}^{2}}-\left(\sum \frac{1}{t_{i}}\right)^{2}\right)\left(m \sum t_{i}^{2} x_{i}^{2}-\left(\sum t_{i} x_{i}\right)^{2}\right)\right)= \\
=\frac{m-1}{m\left(\sum \frac{1}{t_{i}}\right)^{2}}\left(\left(\sum_{i<j}\left(\frac{1}{t_{i}}-\frac{1}{t_{j}}\right)\left(t_{i} x_{i}-t_{j} x_{j}\right)\right)^{2}-\right. \\
\left.-\left(\sum\left(\frac{1}{t_{i}}-\frac{1}{t_{j}}\right)^{2}\right) \sum_{i<j}\left(t_{i} x_{i}-t_{j} x_{j}\right)^{2}\right) \leqq 0
\end{gathered}
$$

by the Schwarz inequality. By Thm. 4, this implies the existence of linearly independent points A_{1}, \ldots, A_{m} in a Euclidean space which satisfy (5). If only (9) is assumed, a similar chain of inequalities as above yields $\sum_{i, j=1}^{m} e_{i j} x_{i} x_{j} \leqq 0$ and by Thm. 4, m points A_{1}, \ldots, A_{m} satisfying (5) also exist but are not necessarily linearly independent.

It remains to show that if (7) is fulfilled then $n=m-2$. By (12), it suffices to disprove that $n<m-2$. Suppose $n<m-2$. Then some $n+1$ points, say A_{1}, \ldots, A_{n+1} of the points A_{1}, \ldots, A_{m} are linearly independent and the points A_{1}, \ldots \ldots, A_{n+3} also satisfy (5). Consequently, for each $k, 1 \leqq k \leqq n+3$, the relation corresponding to (7) holds, i.e.

$$
\begin{equation*}
(n+1) \sum_{\substack{i=1 \\ i \neq k}}^{n+3} \frac{1}{t_{i}^{2}}=\left(\sum_{\substack{i=1 \\ i \neq k}}^{n+3} \frac{1}{t_{i}}\right)^{2} \tag{13}
\end{equation*}
$$

since the points $A_{1}, \ldots, A_{k-1}, A_{k+1}, \ldots, A_{n+3}$ are linearly dependent. Also

$$
\begin{equation*}
(n+2) \sum_{i=1}^{n+3} \frac{1}{t_{i}^{2}}=\left(\sum_{i=1}^{n+3} \frac{1}{t_{i}}\right)^{2} \tag{14}
\end{equation*}
$$

by the same reason.
However, (13) can be rewritten in the form ${ }^{\circ}$

$$
\begin{equation*}
\sum_{\substack{1 \leqq i<j \leqq n+3 \\ i \neq k \neq j}}\left(\frac{1}{t_{i}}-\frac{1}{t_{j}}\right)^{2}=\sum_{\substack{i=1 \\ i \neq k}}^{n+3} \frac{1}{t_{i}^{2}}, \tag{15}
\end{equation*}
$$

(14) in the form

$$
\begin{equation*}
\sum_{1 \leqq i<j \leqq n+3}\left(\frac{1}{t_{i}}-\frac{1}{t_{j}}\right)^{2}=\sum_{i=1}^{n+3} \frac{1}{t_{i}^{2}} \tag{16}
\end{equation*}
$$

Subtracting (15) from (16), we obtain

$$
\sum_{i=1}^{n+3}\left(\frac{1}{t_{i}}-\frac{1}{t_{k}}\right)^{2}=\frac{1}{t_{k}^{2}}, \quad k=1, \ldots, n+3
$$

Therefore, by summing up these equalities,

$$
2 \sum_{1 \leqq i<j \leqq n+3}\left(\frac{1}{t_{i}}-\frac{1}{t_{j}}\right)^{2}=\sum_{k=1}^{n+3} \frac{1}{t_{k}^{2}}
$$

a contradiction with (16). The proof is complete.
This theorem enables us to call complete such an isodynamic system which consists of $m \geqq 3$ points and is contained in an $(m-2)$-dimensional Euclidean space.

Theorem 6. (i) In a Euclidean n-dimensional space, $n \geqq 1$, the maximum number of points in an isodynamic system is $n+2$.
(ii) A linearly independent isodynamic system with $m \geqq 3$ points is contained in exactly two complete isodynamic systems in the same space, with the only exception that the points A_{1}, \ldots, A_{m} form vertices of a regular ($m-1$)-simplex; in this case, there is only one complete isodynamic system in the same space in which the given system is contained. The additional point is the center of the simplex.
(iii) For any $m \geqq 3$, there exist complete isodynamic systems with m points.
(iv) Any complete isodynamic system \mathfrak{S}_{1} with $m \geqq 3$ points in E_{m-2} is contained in a complete isodynamic system \mathfrak{S}_{2} with $m+1$ points in E_{m-1} (containing $E_{m-2}{ }^{-}$). \mathfrak{S}_{2} is determined in E_{m-1} uniquely up to congruence leaving all points of E_{m-2} invariant. The radius of the $(m+1)$-th point is

$$
t_{m+1}=\left(\frac{1}{m-1} \sum_{i=1}^{m} \frac{1}{t_{i}}\right)^{-1}
$$

where t_{1}, \ldots, t_{m} are the radii of the points of \mathfrak{S}_{1}.
(v) Any isodynamic system which contains a complete isodynamic subsystem is complete.
(vi) A complete isodynamic system \mathfrak{S} contains a minimal complete isodynamic subsystem, i.e. a complete isodynamic subsystem which is contained in every
 those points of \mathfrak{S} whose coefficient in the (up to a factor unique) relation among the points in \mathfrak{G} is different from zero.
(vii) If $\left\{A_{1}, \ldots, A_{n}\right\}$ is a complete isodynamic system and $\left\{A_{1}, \ldots, A_{k}\right\}$ its minimal complete isodynamic subsystem then A_{k+1}, \ldots, A_{m} are vertices of a regular simplex.
(viii) Any three different points in a line form a complete isodynamic system.

Proof. (i) is a consequence of Thm. 5. To prove (ii), let $\left\{A_{1}, \ldots, A_{m}\right\}(m \geqq 3)$ be a linearly independent isodynamic system so that (5) and (6) holds. Assume this system to be contained in a complete isodynamic system $\left\{A_{1}, \ldots, A_{m+1}\right\}$ (by (i), not more than $m+1$ points exist). By Thm. 1, the corresponding $m+1$ radii are unique and the first m coincide with $t_{i}, i=1, \ldots, m$. Let t_{m+1} be the $(m+1)$-th. Then, an analogous relation to (7) holds:

$$
m \sum_{k=1}^{m+1} \frac{1}{t_{k}^{2}}=\left(\sum_{k=1}^{m+1} \frac{1}{t_{k}}\right)^{2}
$$

so that

$$
(m-1) \frac{1}{t_{m+1}^{2}}-2 \frac{1}{t_{m+1}} \sum_{i=1}^{m} \frac{1}{t_{i}}+m \sum_{i=1}^{m} \frac{1}{t_{i}^{2}}-\left(\sum_{i=1}^{m} \frac{1}{t_{i}}\right)^{2}=0 .
$$

The discriminant of this quadratic equation for $1 / t_{m+1}$ is easily computed to be positive by (6).

If the t_{i} 's are not all equal, the absolute member of the equation is positive by the Schwarz inequality and the two positive roots yield two distinct complete isodynamic systems.

If all the t_{i} 's are equal, $t_{i}=t, i=1, \ldots, m$, i.e. if the given system is the set of the vertices of a regular ($m-1$)-simplex (with all edges having the same length), one root of the equation is zero and there is only one positive root

$$
t_{m+1}=\frac{m-1}{2 m} t
$$

(iii) follows e.g. from the preceding case of the vertices and center of the regular simplex.

To prove (iv), assume \Im_{1} consists of the points A_{1}, \ldots, A_{m} with radii t_{1}, \ldots, t_{m} so that

$$
(m-1) \sum_{i=1}^{m} \frac{1}{t_{i}^{2}}=\left(\sum_{i=1}^{m} \frac{1}{t_{i}}\right)^{2}
$$

Assume \Im_{2} arises from \Im_{1} by adding a point A_{m+1} with radius t_{m+1} (the radii t_{1}, \ldots, t_{m} coincide).

Then

$$
m\left(\sum_{i=1}^{m} \frac{1}{t_{i}^{2}}+\frac{1}{t_{m+1}^{2}}\right)=\left(\sum_{i=1}^{m} \frac{1}{t_{i}}+\frac{1}{t_{m+1}}\right)^{2}
$$

from which, the discriminant of the quadratic equation for $1 / t_{m+1}$ being zero,

$$
\frac{1}{t_{m+1}}=\frac{1}{m-1} \sum_{i=1}^{m} \frac{1}{t_{i}}
$$

Since the converse is also true, \mathfrak{G}_{2} exists by Thm. 5. The distances $\varrho\left(A_{i}, A_{m+1}\right)$ are thus uniquely determined which completes the proof of (iv).
(v) follows from the fact that the assumption implies the points of the system are linearly dependent so that case (ii) of Thm. 5 occurs.

To prove (vi), we shall also use the fact that an isodynamic system is complete iff its points are linearly dependent. Thus, if the essentially unique relation among the points of \mathcal{G} has non-zero coefficients corresponding to points A_{j} for $j \in J$, the subsystem $\left\{A_{j}\right\}_{j \in J}$ is complete and every complete subsystem contains this subsystem. Before proving (vii), we shall prove the following lemma:

Lemma. Let k, n be integers, $2 \leqq k<n$. Let x_{1}, \ldots, x_{n} be real numbers such that

$$
(k-1) \sum_{i=1}^{k} x_{i}^{2}=\left(\sum_{i=1}^{k} x_{i}\right)^{2}
$$

Then

$$
(n-1) \sum_{i=1}^{n} x_{i}^{2}=\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

iff

$$
x_{k+1}=\ldots=x_{n}=\frac{1}{k-1} \sum_{i=1}^{k} x_{i}
$$

Proof. From the equality

$$
\sum_{i=1}^{k+1} x_{i}^{2}-\frac{1}{k}\left(\sum_{i=1}^{k+1} x_{i}\right)^{2}=\sum_{i=1}^{k} x_{i}^{2}-\frac{1}{k-1}\left(\sum_{i=1}^{k} x_{i}\right)^{2}+\frac{k-1}{k}\left(x_{k+1}-\frac{1}{k-1} \sum_{i=1}^{k} x_{i}\right)^{2}
$$

it follows that

$$
\text { - } \sum_{i=1}^{k+1} x_{i}^{2}-\frac{1}{k}\left(\sum_{i=1}^{k+1} x_{i}\right)^{2} \geqq \sum_{i=1}^{k} x_{i}^{2}-\frac{1}{k-1}\left(\sum_{i=1}^{k} x_{i}\right)^{2},
$$

with equality iff

$$
x_{k+1}=\frac{1}{k-1} \sum_{i=1}^{k} x_{i} .
$$

Thus,

$$
\sum_{i=1}^{n}\left(x_{i}^{2}-\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \geqq \ldots \geqq \sum_{i=1}^{k} x_{i}^{2}-\frac{1}{k-1}\left(\sum_{i=1}^{k} x_{i}\right)^{2},\right.
$$

with equality of the first and last member iff

$$
\begin{gathered}
x_{k+1}=\frac{1}{k-1} \sum_{i=1}^{k} x_{i}, \quad x_{k+2}=\frac{1}{k} \sum_{i=1}^{k+1} x_{i}=\frac{1}{k-1} \sum_{i=1}^{k} x_{i}, \ldots, \\
x_{n}=\frac{1}{n-2} \sum_{i=1}^{n-1} x_{i}=\frac{1}{k-1} \sum_{i=1}^{k} x_{i} .
\end{gathered}
$$

The lemma then follows.
To prove (vii), use the lemma for $n=m, x_{i}=1 / t_{i}, i=1, \ldots, m$.
The assertion (viii) being trivial, the proof is complete.
Remark. The two (or one) additional points in (iii) of Thm. 6 are the isodynamic centres [2] of the corresponding ($m-1$)-simplex.

In the following main theorem about complete isodynamic systems several characterizations are given.

Theorem 7. Let A_{1}, \ldots, A_{n+2} be different points in a Euclidean n-space E_{n}. Then the following conditions are equivalent:
$1^{\circ} A_{1}, \ldots, A_{n+2}$ is a complete isodynamic system in E_{n}, i.e. there exist positive numbers t_{1}, \ldots, t_{n+2} such that

$$
\varrho^{2}\left(A_{i}, A_{k}\right)=t_{i} t_{k} \text { for all } i, k=1, \ldots, n+2, \quad i \neq k ;
$$

2° there exists a system of $n+3$ real $(n-1)$-spheres $K_{0}, K_{1}, \ldots, K_{n+2}$ such that
$21^{\circ} K_{i}$ has centre in A_{i} for $i=1, \ldots, n+2$ and bisects K_{0},
22° for each pair $i, j(i \neq j), i, j=1, \ldots, n+2$, the ($\left.K_{i}, K_{j}\right)$-harmonic $(n-1)$ sphere $K_{i j}$ contains all points A_{k} for $i \neq k \neq j$;
3° there exists a system of $\binom{n+2}{2}$ generalized $(n-1)$-spheres $K_{i j}\left(=K_{j i}\right)$, $i, j=1, \ldots, n+2, i \neq j$, such that
$31^{\circ} A_{i}$ and A_{j} are inverse with respect to $K_{i j}$,
$32^{\circ} K_{i j}$ contains all points A_{k} for $i \neq k \neq j$;
33° there exists a point having the same negative power with respect to all $(n-1)$-spheres $K_{i j}$.
4° there exists a point R in E_{n} and a point $B_{0} \neq R$ in a Euclidean $(n+1)$ space containing E_{n}, on the line perpendicular to E_{n} in R such that the second intersection points $B_{i}(i=1, \ldots, n+2)$ of the lines $A_{i} B_{0}$ with the n-sphere $K=$ $=\left\{X ; \varrho(X, R)=\varrho\left(B_{0}, R\right)\right\}$ form vertices of a regular $(n+1)$-simplex.
5° there exists, in a Euclidean $(n+1)$-space E_{n+1} containing E_{n}, a regular $(n+1)$-simplex Σ such that A_{1}, \ldots, A_{n+2} correspond to the vertices of Σ in an inversion in E_{n+1}.
6° there exists, in a Euclidean $(n+1)$-space \hat{E}_{n+1} a regular $(n+1)$-simplex with vertices B_{1}, \ldots, B_{n+1} and a point X (different from all the points B_{i}) on its circumscribed n-sphere such that, for some $k>0$,

$$
\varrho\left(A_{i}, A_{j}\right)=\frac{k}{\varrho\left(B_{i}, X\right) \hat{\varrho}\left(B_{j}, X\right)}
$$

for all $i, j=1, \ldots, n+2, i \neq j$.
7° there exists, in a Euclidean $(n+1)$-space \hat{E}_{n+1}, a regular $(n+1)$-simplex with vertices B_{1}, \ldots, B_{n+1} and a point X (different from all the points B_{i}) such that, for some $k>0$

$$
\varrho\left(A_{i}, A_{j}\right)=\frac{k}{\hat{\varrho}\left(B_{i}, X\right) \hat{\varrho}\left(B_{j}, X\right)}
$$

for all $i, j=1, \ldots, n+2, i \neq j$.
Proof. We shall prove the implications $1^{\circ} \Rightarrow 2^{\circ} \Rightarrow 3^{\circ} \Rightarrow 4^{\circ} \Rightarrow 5^{\circ} \Rightarrow 6^{\circ} \Rightarrow 7^{\circ} \Rightarrow 1^{\circ}$.
Assume 1°. By (iv) of Thm. 6, the system $\left\{A_{1}, \ldots, A_{n+2}\right\}$ is contained in a complete isodynamic system, with the additional point A_{n+3}, of an $(n+1)$-dimensional space E_{n+1} containing E_{n}. Define for $i=1, \ldots, n+2, K_{i}=\left\{X \in E_{n} ; \varrho^{2}\left(X, A_{i}\right)=\right.$ $\left.=\varrho^{2}\left(A_{n+3}, A_{i}\right)\right\}$. If R is the orthogonal projection of the point A_{n+3} on E_{n} and $r=$ $=\varrho\left(R, A_{n+3}\right)$ then $K_{0}=\left\{X \in E_{n} ; \varrho(X, R)=r\right\}$ satisfies $\varrho^{2}\left(A_{i}, R\right)=\varrho^{2}\left(A_{i}, A_{n+3}\right)-r^{2}$ which means that K_{i} bisects K_{0}. Moreover, let $i \neq j$. The (K_{1}, K_{2}) - harmonic ($n-1$)-sphere $K_{i j}$ is easily checked to contain the points A_{k} for all $k, i \neq k \neq j$. Thus $1^{\circ} \Rightarrow 2^{\circ}$.
To prove that 2° implies 3°, it suffices to show that the $\left(K_{i}, K_{j}\right)$ - harmonic spheres $K_{i j}$ satisfy $31^{\circ}, 32^{\circ}, 33^{\circ} .31^{\circ}$ follows from the harmonic property of A_{i}, A_{j} and the intersection points of the line $A_{i} A_{j}$ with $K_{i j}, 32^{\circ}$ is immediate. To prove 33°, take R as the centre of K_{0} in 2°. Since K_{0} is bisected by K_{i} and K_{j}, it is bisected by $K_{i j}$ (belonging to the pencil determined by K_{i} and K_{j}) as well. Thus R has the same negative power with respect to all $K_{i j}$'s which are nonlinear. According to our agreement, this is also true if some - but not all - of the $K_{i j}$'s are linear. However, all the $K_{i j}$'s cannot be linear since in this case the mutual distances of $n+2$ points A_{i} in E_{n} would be equal.

Assume 3°. Let E_{n+1} be any Euclidean $(n+1)$-space containing E_{n}. Let B_{0} be a point on the line perpendicular to E_{n} passing through R, such that $\varrho^{2}\left(B_{0}, R\right)=$ $=-p, p$ being the power of R with respect to all $K_{i j}$'s. Let $\widehat{K}_{i j}(i \neq j, i, j=1, \ldots$ $\ldots, n+2)^{\text {- be }}$ the generalized n-sphere in E_{n+1} with the same centre and radius as $K_{i j}$ if $K_{i j}$ is an $(n-1)$-sphere; if $K_{i j}$ is linear, let $\widehat{K}_{i j}$ be that n-dimensional linear space in E_{n+1} which contains $K_{i j}$ and is orthogonal to E_{n}. It follows that $\widehat{K}_{i j}$ contains the point B_{0} for all $i, j=1, \ldots, n+2, i \neq j$. Let K be the n-sphere with centre in R and radius $\varrho\left(R, B_{0}\right)$, let $B_{i}(i=1, \ldots, n+2)$ be the second intersection point of the line $A_{i} B$ with K. Denote by \widehat{R} the n-sphere with centre B_{0} which bisects K. Using the well known properties of inversion, it follows that E_{n} corresponds to K in the inversion \mathscr{I} with respect to $\widehat{K} ; A_{i}$ corresponds to B_{i} in $\mathscr{I}, \widehat{K}_{i j}$ corresponds to a hyperplane $H_{i j}, i, j=1, \ldots, n+2, i \neq j$. Since $\hat{K}_{i j}$ is orthogonal to $E_{n}, H_{i j}$ is orthogonal to K and thus contains R, as well as all the points B_{k} for $i \neq k \neq j . A_{i}$ and A_{j} being inverse with respect to $\hat{R}_{i j}, B_{i}$ and B_{j} are symmetric with respect to $H_{i j}$ (since any sphere containing both B_{i} and B_{j} is orthogonal to $H_{i j}$, this being true for their transforms in \mathscr{I}). Consequently, $\varrho\left(B_{i}, B_{k}\right)=\varrho\left(B_{j}, B_{k}\right)$ for all $i, j, k, i \neq j \neq k \neq i$. It follows that the points $B_{i}, i=1, \ldots, n+2$, form vertices of a regular $(n+1)$ simplex. The proof of $3^{\circ} \Rightarrow 4^{\circ}$ is complete.

The implication $4^{\circ} \Rightarrow 5^{\circ}$ is immediate since B_{i} and A_{i} correspond to each other in the inversion determined by the n-sphere \hat{R} having the centre B_{0} and bisecting K.

Assume 5°. Denote by \mathscr{I} the inversion, by $B_{i}(i=1, \ldots, n+2)$ the points in E_{n+1} corresponding to A_{i} in \mathscr{I} so that B_{i} are vertices of a regular $(n+1)$-simplex Σ. Let X be the centre of the inversion \mathscr{I}. Thus $X \neq B_{i}$ for all $i=1, \ldots, n+2$. If C is the circumscribed n-sphere of Σ, C corresponds to E_{n} in \mathscr{I} and thus contains X.

We have then for $i \neq j, i, j=1, \ldots, n+2$

$$
\begin{equation*}
\varrho\left(A_{i}, X\right) \varrho\left(B_{i}, X\right)=\varrho\left(A_{j}, X\right) \varrho\left(B_{j}, X\right) \tag{17}
\end{equation*}
$$

so that the triangles $A_{i} A_{j} X$ and $B_{j} B_{i} X$ are similar to each other. Thus

$$
\varrho\left(A_{i}, A_{j}\right) / \varrho\left(A_{i}, X\right)=\varrho\left(B_{i}, B_{j}\right) / \varrho\left(B_{j}, X\right)
$$

as well as

$$
\varrho\left(A_{i}, A_{j}\right) / \varrho\left(A_{j}, X\right)=\varrho\left(B_{i}, B_{j}\right) / \varrho\left(B_{i}, X\right)
$$

By multiplication,

$$
\begin{aligned}
\varrho^{2}\left(A_{i}, A_{j}\right)= & \varrho^{2}\left(B_{i}, B_{j}\right) \varrho\left(A_{i}, X\right) \varrho\left(A_{j}, X\right)\left(\varrho\left(B_{i}, X\right) \varrho\left(B_{j}, X\right)\right)^{-1}= \\
& =\sigma^{2} \varrho^{2}\left(B_{i}, B_{j}\right) /\left(\varrho^{2}\left(B_{i}, X\right) \varrho^{2}\left(B_{j}, X\right)\right)
\end{aligned}
$$

by (17), if the common value is denoted by σ. Since $\varrho^{2}\left(B_{i}, B_{j}\right)$ is constant for all pairs $i, j, i \neq j, 6^{\circ}$ follows (where $\hat{E}=E_{n+1}, \hat{\varrho}=\varrho$ is taken).

The implications $6^{\circ} \Rightarrow 7^{\circ}$ as well as $7^{\circ} \Rightarrow 1^{\circ}$ being trivial, the proof is complete.
A well known theorem from plane geometry, sometimes called Pompeiu's theorem, states:

If $A_{1} A_{2} A_{3}$ is an equilateral triangle and X another point of the plane then $X A_{1}$, $X A_{2}, X A_{3}$ form lengths of sides of a triangle iff X does not belong to the circumscribed circle of $A_{1} A_{2} A_{3}$.

We shall generalize now this theorem as follows:
Theorem 8. Let A_{1}, \ldots, A_{n+1} be vertices of a regular n-simplex Σ in E_{n}. If X is a point in E_{n} then there exists an n-simplex with vertices B_{1}, \ldots, B_{n+1} such that edges $B_{i} B_{k}(i \neq k, i, k=1, \ldots, n+1)$ have lengths proportional to $\left(\varrho\left(A_{i}, X\right)\right.$. . $\left.\varrho\left(A_{k}, X\right)\right)^{-1}$ iff X does not belong to the circumscribed $(n-1)$-sphere of Σ.

Proof. Assume first that X belongs to the circumscribed ($n-1$)-sphere of Σ. If $X=A_{i}$ for some i, the n-simplex clearly does not exist. If $X \neq A_{i}$ for all $i=$ $=1, \ldots, n+1$, the equivalence of 7° and 1° in Thm. 7 shows that the realization of the points B_{i} leads to a complete isodynamic system which is linearly dependent.

Assume now that X does not belong to the circumscribed ($n-1$)-sphere of Σ. Let \mathscr{I} be any inversion with centre X. If B_{i} are points which correspond to the points A_{i} in \mathscr{I}, we have similarly as in the proof of $5^{\circ} \Rightarrow 6^{\circ}$ in Thm. 7,

$$
\varrho\left(B_{i}, B_{k}\right)=k\left(\varrho\left(A_{i}, X\right) \varrho\left(A_{k}, X\right)\right)^{-1} .
$$

Moreover, the points B_{i} do not belong to a hyperplane since this would correspond in \mathscr{I} to the circumscribed sphere of Σ and this would contain the centre of inversion X, a contradiction. The proof is complete.

References

[1] N. A. Court: Sur le tétraedre isodynamique. Mathesis 49 (1935), 345-351.
[2] S. R. Mandan: Isodynamic and isogonic simplexes. Annali di Matematica pura ed appl. Ser. IV., 53 (1961), 45-56.
[3] K. Menger: Untersuchungen über allgemeine Metrik. Math. Annalen 100 (1928), 75-163.

Author's address: 11567 Praha 1, Žitná 25 (Matematický ústav ČSAV).

