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FOURIER TRANSFORMS AND THE P.N.T. ERROR TERM 

ANDREW GRANT, London 

(Received October 19, 1984) 

Summary. This paper shows that under suitable conditions the property f(x) = 0(x~n) as 
x—> oo for every n implies f(x) =- O [expg—p(x)ln •*}] for some <p such that <p(x)-*- oo with 
JC-> co. As an application it is shown that from n(x) — li x =- 0(x ln~n x) as *-> oo for every /l 

- . T f - (In ln^) 2)! 
we can derive n(x) — h x = OI *exp .1 — — - — — — > I as *-> oo. 

. • Г f 1 ( ln ln j t ) 2 ! ! 
denve -( , ) - h , - O | x « p j - ^ ^ - J ^ J J 

Keywords: Prime Number Theorem, Error term of Prime Number Theorem, Fourier Trans
form. 

Classification AMS: 10H05 (10H15, 42A38). 

1. INTRODUCTION 

J. Cizek [2] has shown that the Prime Number Theorem error term can be written 
in terms of a Fourier transform and that a well-known theorem yields the form 

(*) n(x) — li x = 0(x ln"B x) as x -> co for any neZ+ . 

He conjectures that no better error term can be obtained by the same method. It is 
shown here that an improvement on the type of error term in (*) is obtainable in 
quite general circumstances and that using only those properties of £ employed 
by Cizek we can obtain 

w L i 251nlnlnxjJ as x -» oo 

2. THE ASYMPTOTIC BEHAVIOUR OF FOURIER TRANSFORMS 

We aim to improve on Lemma 1 in [2]. It is convenient to reformulate it in terms 
of the families of functions defined below: 

Definition 1. For each n e Z j let stn denote the set of all functions f: R -» C 
such that 
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(i) / , / ' , ...,fn) are all in &X(R) and 
(ii) / ' , /* , . . . , / (w_1) are all absolutely continuous on R (i.e. they are all absolutely 

continuous on every closed interval). 

oo 

Definition 2. Let s4 = n **C 

Remark. s4, s/l9 $£l9... are distinct and non-empty. For example if a e Sf^R) 
is a discontinuous step function, the convolution a*a* ...*a with n factors is in 
^n-i ~ dn\ and exp (—x2) is in s/. 

Definition 3. Let <p: R+ -» R+ be monotonic non-decreasing with <p(t) = 0 for 
t e [0,1). Then we denote by 38^ the set of all functions g:R -+ C such that 

g(i) = 0[exp {-<p(|f|) In |f|}] as t -> ±co . 

We can now write Lemma 1 in [2] as 

/ e < = > / e ^ . 
/•oo 

Here / means the Fourier transform f:R-+C given by f(y) = I e(—ty) f(t) dt 
J —oo 

(e(a) = exp 2nia) and on the right hand side n denotes the constant function n(u) = 
= n. In proving Theorem 1 in [2] Cizek uses this in the form 

(1) fes*=>fer\®n-
n = l 

We might hope to improve on this by finding a <p as in Definition 3 with the further 
property 
(2) lim<p(w) = + oo , 

u-* + 00 

and such that 
(3) / e ^ = > / e ^ . 

Unfortunately, such a function does not exist, since we have 

Theorem 1. For every <p as in definition 3 and satisfying (2) there exists a function 
fes/ such that f$ &„. 

Proof. Let <p be as required by the theorem. We define the functions G, T, g and/., 
all with domain R, as follows: 

(4\ ^ = f « P { - M M - . ) l n ( H - i ) } -(W-5 1). 
u 1° (M<i) . 
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(5) ПУ) = 

0 (Ы-î-). 

e x p ( т Ь ) (H<1)' 
(6) g = G*T. 

(7) /O0-*(->) . 

The following properties follow from definitions (4) to (7): 

(8) G(-y) = G(y) , G e if.(W), G \ on [*, oo) , G(>>) = o(l) as j> -+ ±co , 

(9) Te ̂ t(R) , re C°°(0?), T % on [0,1] , 

(10) f(y) = G(-y)t(-y). 

First we show that fes/. Differentiating n times under the integral sign (n ^ 0) 
we have 

(11) [G(-y)Y« = i r e(ty) G(t) dtT = J°° e(ty) (2nit)» G(t) dt 

and 

(12) [f(-,)]<">= ľ e(ty)(2кityт(t)dt, 
J - 00 

(4) and (5) imply that tn G(t) and tn T(t) both belong to &t(R) and that tn T(t) is 
continuous, so the integrals in (11) and (12) all exist. Hence the basic properties 
of Fourier transforms give us 

and 
[ő(->>)]<"' = o(l) as y -* ±oo 

[-\-.v)](" )єÄ'1(łř). 

When we differentiate (10) N times we deduce that fiN) exists for 1V == 0, 1, 2,... 
with 

(13) f«>(y)-I ( * ) l<K-y)T>in-y)Y-n)**i(»). 

It follows from (13) that/e s/. Theorem 1 will be proved if we show that / ^ ^ . 
From (8) and (9) both G and T belong to S£X(R) and hence so does their convolution g. 
Therefore we can apply the Fourier inversion theorem to (7) and obtain 

f(y) = 9(y) 
= (G*T)(y) 

-І. G(y-t)T(t)dt 
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= Г G(y-t)Щdt 

[1/2 

= G(y ~ 0 ^(0 ^ because G a n d -Tare non-negative 
J-1/2 
n/2 

= G(\y\+t)T($dt if H > 2 
J -1/2 

by the monotonicity properties in (8) and (9) 

= exp(-f)G(M + i) 

= exp (-$) exp {-i<p(M) l n \y\} • 

It follows that f$ &9 and Theorem 1 is proved. • 
Although we have ruled out a theorem which asserts (3), we can at least prove the 

following which is our main result. 

Theorem 2. For every fe s/ there exists a <p as in Definition 3 and satisfying (2) 
such thatfe3tr 

Proof. We have (1), from Cfzek's Lemma 1, whence given fe s/ there exist 
sequences (cr) and (dr) (r = 1, 2,...) of positive numbers such that 

(14) \a\ = dr => \f(a)\ = cr|a|-' (r = 1, 2,...) . 

We shall suppose that (cr) and (dr) are both non-decreasing and that cr = dr. We are 
certainly free so to choose them. We distinguish two cases: 

(i) (cr) bounded as r -» oo and 
(ii) (cr) unbounded. 

Case (i). Let C be an upper bound of the sequence (cr) with C > 1. Then (14) 
gives 

|a| = C=> |/(a ) |^C |a | - (r - 1,2,...), 

so /is zero outside the interval (-C, C), hence 

for every <p. 

Case (ii). Define <p: R + -* R+ by 

(15) <p(t) as max {r e Z: cr ^ f} , taking c0 = 0. 

This q> satisfies (2). For any a such that \a\ ^ cx we let r = <p(|a|) and get from (14) 
and (15) that 

|/(a) |^c r |a |-g |a | |a |-=|ar^H> 

= exp[{l-<?,(|a|)}ln|a|] 
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=-= (?[exp {-(1 - e) <p(\a\) In |a|}] as a -> ±00 
for any s > 0, i.e. 

fe @(l _f)„ for any e e (0,1] . • 

Our proof of Theorem 2 is a pure existence proof but will nevertheless help us in 
constructing an error term for the Prime Number Theorem. Obviously the theorems 
also hold for other definitions of the Fourier transform such as 

f(y) - «|" exp {~ity)f(t) d' (« = 1 or (2jt)"1/2) . 
0 

Cizek deals with the function / : R -> C given by 

f(t) - (1 + u)-» [ | (1 + it) + (.«)-»] (/(i) = /(i+)). 

Applying our Theorem 2 to this function we shall obtain 

Corollary. There is a function <p as in Definition 3 and satisfying (2) such that 
y 

g(x) = £ A(n) In - = 0[x exp {—<p(ln x) In In x}] as x -> ex). 
n£x n 

(cf. [2], p. 396, Theorem 1.) 

Proof of Corollary. In this proof we follow Cizek and define the Fourier transform 
by 

f(y)= P f(t)exp(-ity)dt. 
J —00 

In proving his Theorem 1, Cfzek shows that/e $t and deduces that 

f(y) = (-wYm f /(m)(0 ^ P (-iv) dt 
j -00 

for every m e Z+. So for the sequence (c,) in the proof of our.Theorem 2 we can take 

cr = m a x | l , r |/(r)(t)| dfj , r = 1,2,3,..., 

with (cr) non-decreasing. By Theorem 1 there is a <p: R+ -> R+, non-decreasing and 
unbounded, such that 

(17) f(y) = 0[exp {-<p(y) In y}] as y -> 00 . 

Hence, as in the proof of Cizek's Theorem 1, 

(18) g(x) = 0[x exp {-<p(ln x) In In x}] as x -> 00 . • 

In the next section we find a <p for which (18) holds. 
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3. THE PRIME NUMBER THEOREM ERROR TERM 

We shall need two lemmas: 

Lemma 1. Let AeR\ be fixed and let f be any function analytic on [—.4, 4 ] . 
Then there is a number /? > 0 such that 

(19) Ґ J/ҶOИ'=0(r !/Г) as г -> oo 

where r takes the values 1, 2, 3, — 

Remark. This lemma does not hold for every C00 function on [—_4, A\. See for 
example [5] p. 418 ex. 13, which shows how to construct a C00 function for which 
(19) does not hold. 

Proof of Lemma 1. Our proof is similar to that of Mandelbrojt ([4] p. 49) who 
is proving a related theorem. 

For every a e [—A9 A\ there is an open disc B(a; Q) = {s e C; \s - a\ < Q] in 
which/is analytic. If we choose one such disc for every a, they form an open covering 
of the interval [—-4, A\9 which is compact in C. Hence there is a finite subcover 
comprising, say, the open discs 

B(a1;Q1)9...9B(ax;Qx)9 

with aQ = —A^a1^...^ax^A = ax+1. The boundary of the union of these 
discs comprises arcs of a finite number of circles and does not intersect [—A9 A\. 
Hence it is the image of a closed loop y: [0,1] -» C. y is continuous, hence so are 
Re y9 Im y9 \y — A\ and \y + A\. The distance from a point of im y to the nearest 
point of [—A, .4] is given by the function 5: [0,1] -> W* with 

\y(u) + A\ if Rey(«)< -A9 

. 5(u) = « jlm y(u)\ if -_4 ^ Re y(u) ̂  A , 
\y(u) - A\ if Re y(u) > A . 

8 is continuous and since [0,1] is compact, 5 has a positive minimum, say 5(u) ^ e. 
There is therefore a loop T with [—-4, -4] in its interior and with/analytic on im T. 
For example we take im r to be the closed curve which is everywhere distant £e 
from the nearest point of [—-4, A\. We integrate around r to get 

a e I-A, A] - . /«(«) = £ ! - & L dw 
2mJr(w - a)r+1 

where 44 + erc is the length of im r, is is inf \w — a\ for weimT, and we have 
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defined 

Hence 

'.e. 

M = sup |Дw)| 
weimr 

í |/M(,)| át =
 2A(4A + sn) r ! M^e)—1 = Br\ F, say, 

á 2K 

f |/(r)(r)| d* = 0(r\ /T) as r-+oo. • 

Lemma 2. Lef Tn; n = 0, 1, 2, . . . be the Bell numbers defined by T0 = 1, Tn = 
n 

= ^ SZ(-i ^ 1), wftere «S£ are Stirling numbers of the second kind (SJ = SJ == 1, 
*-= I 

SJ = kSr1 + SJl}; fc = 2, 3,..., n - 1; n = 3 - see [6] p. 230 ex 6.94). Then 
we have Tn < nlfor all n greater than some number N. 

Proof. A well-known generating function is 

e x p ( e z - l ) = f ; ^ z " . 
n=o n! 

See for exampe [1] p. 216. As the left-hand side is an entire function, Hadamard's 
formula for the radius of convergence of a Taylor series gives 

V n! 
0 as n -* oo , 

It follows that Tnjnl < 1 for all large enough n. • 
We cannot extend Lemma 1 directly to the interval in (16) because the lemma does 

not in general hold uniformly for A e \A09 + oo), but we shall use the lemma in 
/•CO 

conjunction with a separate estimate of I |/(r)(t)| dt. The fact that for our particular 

function / 

f(-t)=m 
implies that |/(r)(-*)l = |/(r)(0l for r == 0,1, 2 , . . . , so we do not need to consider 

\fir\t)\ dt separately. We shall take _4 = 3 and first deal with the second term 
J —oo 

on the right-hand side of the following inequality: 

(20) J>'>(,)| d. = £ | £ | | (1 4- if) (1 + if)"2} | dt + 

+ n£{(i<)-1U+i')-2}K 
J 3 ldt^ I 
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We have 

(21) n£{(tt)--(-+io-a} 
j s id^ 

J3 \o=o\vJdt"y ' dr-"v ' 

= PI Z (T\l~\-iy"}- t~~~l?~\r ~ v + 1)! (1 + it)-,+v 

J3 |«-o\tf/ 

= f" E f^ "! (~ - " + 1)! <"'"3 dt = (r + 2)! f V ' - s df = (r + 1)! Z~r~2 , 
_ J 3 - - o \ t > / J 3 

which is similar in magnitude to the integral in Lemma 1. Finally we apply a similar 
method to the first term on the right-hand side of (20). We write 

M = ( l n o - ) w , k = 1,2,3, . . . . 

It is easily shown by induction that 

(22) (lПoC)w = IS*F ł + 1 _,ln«>oí, 
•/=! 

where S) are Stirling numbers of the second kind and the function F„ is a weighted 
average of products of the type 

£(«)£(.*) # m m £(*) 
where a + /} + ... + v=~fc and max (a, jS,..., v) -g n. We use the same estimates 
as Cizek in [2] p. 396, namely 

\Cw(s)\^pkln
k+1t and) 

(23) 

ОД 
= gin7* 

(s = 1 + it, t = 3) 

for some constants q, pl9 p2,.... Ingham's method of deriving the first inequality 
in (23) (see [3] p. 28), using Cauchy's integral formula, shows that we may take 
Pk = fc! Pi- We substitute (23) into (22) to obtain 

|{laoC(s)H 

where K is that value of j which gives the largest value of the last factor on the right 
hand side, and Tk is the fcth Bell number. 

We also have ln(i) o ' = (-1)*"1 (k - 1)! C"*, so 

|ln(K) o C(s)| = (K - 1)! q \n1Kt = (k - 1)! q \nlkt. 
Thus we get 

(24) |{ln o C(s)}w| = Tkkl pi ln2kt(k - 1)! q lnlkt = 

= rp\q(kf)2 (k - 1)! \n9kt for some r > 0 
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by Lemma 2, where r does not depend on k. Now we return to (20) and estimate 

[{(lnoO'(l+iO}(l + iO-T° = 

= i (") i*(In - 0ft+1' (1 + -0 (-i)""* (« - *: + 1)! (1 + i0""+*"2 • *=o\fc/ 

We have, using (24), 

|[{(lnoC)'(l + i O } ( l + i O " 2 ] ( 1 = 

= i ("] P\+Iqr{(k + l)!}2 fc! ln9k+9t(n - k + 1)! |(1 + h)-"+*-2 | g 
*=o \fc/ 

g £ (n) p\+1qr{(k + l)!}2 fc! ln9*+9f(n - fc + 1)! r«+k~2 . 
*=o\fc/ 

(' = 3) 
So 

Jj[{(lnoC)'(l + iO}(l + iO- 2 ] W | d t š 

= Z (") P\+1Vr{(k + l)!}2 fc! (n - fc + 1)! pn 9 * + 9 ť r'+k~2 dt, 

Because 

we have 

P°(ln9*+90 rn+k~2 dt = r ( ln 9 * + 9 0 r " + * ~ 2 át = 

= f°°(ln9*+90 í"2 dt = (9fc + 9)!, 0 = fc = n , 

|j[{(lno0'(l+i0}(l + i0- 2] (1^á 

= S ( " W V{(fc + l)!}2 fc!(n - fc + 1)! T (ln9*+90 r»+*-2 dt = 

-= arn! 2 p5+ '{(fc + l)!}2 (» - fc + 1) (9fc + 9)! g 
*-=0 

^ (n + 2) p5+1«r{(n + l)!}3 (9n + 9)! (assuming that Pl ^ 1) = 

(25) = OftCn)12"} as n -* oo , 

which is enough to absorb the other terms (21) and (19). So in (16) we can choose 
cr = K(Cr)12r for some constants C > 9 and K. We have case (ii) in the proof of 
theorem 2 and we look for a function <p* such that <p*(t) ^ <p(t) for all large enough t, 
with <p defined by (15) and <p* having an elementary form. It is not difficult to see that 
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a suitable expression is 

(26) <?*(y) = l i a y 

251nlny 

(17) and (18) are therefore satisfied for <p = (1 — e) <p*. 

At this stage we can make use of Walfisz's Lemmas 14-16 in V. 3 [7]. For this 
purpose we need to verify that our function <p(ln x) In In x (see (18)) has the same 
properties as Walfisz's 2 co(x), so we define 

calx) = Kl - e)<p*(lnx)lnlnx = (1 - e ) i . ( l n l n x ) 2 

w y251nlnlnx 

and note that for all x ^ exp exp e we have both 

(a) 0 < co(x) < — In x 
w w " 48 

and (b) — In x — c»(x) is increasing. 

We then obtain from (18) our 

Theorem 3. 

JT(JC) — li x = O\ x exp < i '—\ I 

L i 251nlnlnxJJ 
as x -> oo . 
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Souhrn 

FOURIEROVA TRANSFORMACE A ZBYTEK V PRVOČÍSELNÉ VËTË 

ANDREW GRANT 

V pгáci je dokázáno, že za jistých podmínek z vlastnosti/(jc) = 0(JC~Я) pro JC-> co pro vsechna 
n plyneДjc) = Ø[exp g—ę(x) In JC}] pro jisté ç>, ç>(x)-> oo pro JC-> oo. Jako aplikace je ukázáno, 
ře ze vztahu тr(jc) — 1 І J C = 0(JC1П~ПJC) pro JC-> oo pгo vsechna n plyne n(x) — li JC = 

Г í 1 (ln ln JC ) 2 )1 

°^ЄXҶ-^---nln^|J pro JC-> oo. 

Резюме 

ПРЕОБРАЗОВАНИЕ ФУРЬЕ И ОСТАТОК В ТЕОРЕМЕ О ПРОСТЫХ ЧИСЛАХ 

АМЖЕ\У СКАМТ 

В статье доказано, что при некоторых условиях из свойства/(х) = 0(х~п) при .*-> оо для 
всех я следует /(х) = 0[ехр [д—(р(х) 1п ^с}] для некоторой функции <р со свойством <р(х)-> оо 
при х -> оо. В качестве приложения этого результата показано, что из соотношения п(х) — 

— И х = 0(х 1п п х) при х -> оо для всех п следует л(х) — М х = 

при^с-> оо. 

[ f 1 (lnlnx)2n 
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