Časopis pro pěstování matematiky

Andrew Grant

A further note on the P.N.T. error term

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 4, 348--350
Persistent URL: http://dml.cz/dmlcz/108566

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A FURTHER NOTE ON THE P.N.T. ERROR TERM

Andrew Grant, London
(Received January 5, 1987)

Summary. It is shown that the author's method from the previous paper makes it possible to obtain much better estimate of the error term in the Prime Number Theorem.

Keywords: Prime Number Theorem, Fourier Transform.
Classification AMS: 10H05 (10H15, 42A38).

1. INTRODUCTION

In [1], C'ižek proceeds from simple estimates of Riemann's zeta'function, ζ, and by way of Fourier transform theory he obtains the class of error terms

$$
\begin{equation*}
\pi(x)-\operatorname{li} x=O\left(x \ln ^{-n} x\right) \text { as } x \rightarrow \infty, \quad n \in \mathbb{Z}_{+} \tag{1}
\end{equation*}
$$

In [2] we note that the O-relation in (1) is not uniform with respect to n, but by examining the nature of the non-uniformity we deduce the improved result

$$
\begin{equation*}
\pi(x)-\operatorname{li} x=0\left[x \exp \left\{-\frac{1}{25} \frac{(\ln \ln x)^{2}}{\ln \ln \ln x}\right\}\right] \text { as } \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

The purpose of this note is to show that our method easily yields a much better error term than that in (2).

2. THE ERROR TERM

In [2] (14) we quote the underlying Fourier transform theorem in the form

$$
\begin{equation*}
|a| \geqq d_{r} \Rightarrow|\hat{f}(a)| \leqq c_{r}|a|^{-r} \quad(r=1,2, \ldots) \tag{3}
\end{equation*}
$$

where f is a function involving ζ. It emerges that we can choose $d_{r}=2, c_{r}=K(C r)^{12 r}$ for some $K>0$ and $C>9$. The procedure in [2] was to make the positive integer r depend on a, say $r=\varrho(|a|)$. Then (3) yields

$$
\begin{equation*}
|a| \geqq 2 \Rightarrow|\hat{f}(a)| \leqq c_{e(|a|)}|a|^{-e(|a|)}, \tag{4}
\end{equation*}
$$

where upon we choose the function ϱ to give an estimate (4) which leads to (2). If ϱ were able to take any real value in $[1, \infty)$, the expression

$$
K(C \varrho(b))^{12 e(b)} b^{-e(b)}
$$

would be minimised for every b if we put $\varrho(b)=(C e)^{-1} b^{1 / 12}=\varrho_{1}(b)$, say. The integer part of ϱ_{1} will legitimately serve as ϱ in (4) and we have
(5) $\quad|f(a)| \leqq c_{\left[e_{1}(|a|)\right]}|a|^{-[e t(|a|)]}=A$, say,

$$
\begin{aligned}
& \leqq c_{\left[e_{1}(a)\right]}|a|^{-\left[e_{1}(|a|)\right]} \leqq c_{e_{1}(|a|)-1}|a|^{1-e_{1}(|a|)}= \\
& =K\left\{C\left(\varrho_{1}(|a|)-1\right)\right\}^{12\left(e_{1}(|a|)-1\right.}|a|^{1-e_{1}(|a|)}= \\
& =K \exp \left[12\left(\varrho_{1}(|a|)-1\right) \ln \left\{C\left(\varrho_{1}(|a|)-1\right)\right\}+\left(1-\varrho_{1}(|a|) \ln |a|\right]=\right.
\end{aligned}
$$

$$
=K \exp \left[12\left(\frac{|a|^{1 / 12}}{C e}-1\right) \ln \left\{C\left(\frac{|a|^{1 / 12}}{C e}-1\right)\right\}+\right.
$$

$$
\left.+\left(1-\frac{|a|^{1 / 12}}{C e}\right) \ln |a|\right]=
$$

$$
\begin{equation*}
=B, \text { say } \tag{6}
\end{equation*}
$$

To assess the last expression we first note that A in (5) is $K \exp \left\{-12|a|^{1 / 12} /(C e)\right\}$. We could reasonably expect B in (6) to be about the same as A for large $|a|$ and indeed,

$$
\begin{gathered}
\frac{B}{A}=\exp \left[12 \frac{|a|^{1 / 12}}{C e}\left\{\ln \left(C\left(\frac{|a|^{1 / 12}}{C e}-1\right)\right)-\ln \left(C \frac{|a|^{1 / 12}}{C e}\right)\right\}-\right. \\
\left.-12 \ln \left\{C\left(\frac{|a|^{1 / 12}}{C e}-1\right)\right\}+\ln |a|\right] .
\end{gathered}
$$

Using the inequalities

$$
-x^{-1} \geqq \ln (C(x-1))-\ln C x \geqq-(x-1)^{-1}
$$

we obtain

$$
\begin{aligned}
& \frac{B}{A} \leqq \exp \left[12 \frac{|a|^{1 / 12}}{C e}\left\{-\frac{C e}{|a|^{1 / 12}}\right\}-12 \ln \left(C \frac{|a|^{1 / 12}}{C e}\right)+\right. \\
+ & \left.12\left(\frac{|a|^{1 / 12}}{C e}-1\right)^{-1}+\ln |a|\right]=\exp \left[12\left(\frac{|a|^{1 / 12}}{C e}-1\right)^{-1}\right] .
\end{aligned}
$$

If we just write $B / A=1+o(1)$ as $|a| \rightarrow \infty$, (6) becomes

$$
|\hat{f}(a)| \leqq K \exp \left(-\frac{12}{C e}|a|^{1 / 12}\right)\{1+o(1)\}=O\left\{\exp \left(-L|a|^{1 / 12}\right)\right\} \quad \text { as } \quad|a| \rightarrow \infty
$$

for some $L>0$, and it follows as in [1] and [2] that

$$
\begin{equation*}
\pi(x)-\mathrm{li} x=O\left\{x \exp \left(-L \ln ^{1 / 12} x\right)\right\} \quad \text { as } \quad x \rightarrow \infty \tag{7}
\end{equation*}
$$

(7), unlike (2), is an error term of a familiar type, normally obtained by consideration of zero-free regions in the critical strip - or by "elementary" methods.

Finally we remark that if we have

$$
\int_{3}^{\infty}\left|\frac{\mathrm{d}^{r}}{\mathrm{~d} t^{r}}\left\{\frac{\zeta^{\prime}}{\zeta}(1+\mathrm{i} t)(1+\mathrm{i} t)^{-2}\right\}\right| \mathrm{d} t \leqq K(C r)^{G r}
$$

for some $G \geqq 1$, our method implies that

$$
\pi(x)-\operatorname{li} x=O\left\{x \exp \left(-L \ln ^{1 / G} x\right)\right\}
$$

References

[1] J. Čižek: On the Proof of the Prime Number Theorem. Časopis pěst. mat. 106 (1981) 395--401.
[2] A. Grant: Fourier Transforms and the P.N.T. Error Term. Časopis pěst. mat. 337-347.

Souhrn
DALŠf POZNÁMKA KE ZBYTKU V PRVOČÍSELNÉ VĚTĚ

Andrew Grant

Je ukázáno, že autorova metoda z předchoziho clánku umožňuje odvodit ještě podstatně lepší odhad zbytku v prvočiselné větě.

Резюме

ЕЩЁ ОДНО ЗАМЕЧАНИЕ ОБ ОСТАТКЕ В ТЕОРЕМЕ О ПРОСТЫХ ЧИСЛАХ Andrew Grant

В статье похазано, что при помощи метода автора из предыдущей статьи можно получить значительно лучшую оценку остатка в теореме о простых числах.

Author's address: Department of Mathematics, Birkbeck College, Malet Street, London, WC1E 7HX Great Britain.

