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Summary^ It is shown that the author's method from the previous paper makes it possible 
to obtain much better estimate of the error term in the Prime Number Theorem. 
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1. INTRODUCTION 

In [1], Ci2ek proceeds from simple estimates of Riemann's zetaPfunction, £, and 
by way of Fourier transform theory he obtains the class of error terms 

(1) n(x) — li x = 0(x ln"w x) as x -» oo , ne Z+ . 

In [2] we note that the 0-relation in (1) is not uniform with respect to n, but by 
examining the nature of the non-uniformity we deduce the improved result 

as x -» oo (2) ^)-lix=OrxexpJ-l0^^il 
W W L I 251nlnlnxJJ 
The purpose of this note is to show that our method easily yields a much better error 
term than that in (2). 

2. THE ERROR TERM 

In [2] (14) we quote the underlying Fourier transform theorem in the form 

(3) \a\Zd,~\f(a)\£cr\a\-' (r = l ,2, . . .) 

where/is a function involving £. It emerges that we can choose dr = 2, cr = K(Cr)l2r 

for some K > 0 and C > 9. The procedure in [2] was to make the positive integer r 
depend on a, say r = Q(\a\). Then (3) yields 

(4) | a | ^ 2 ^ | / ( « ) | g C e ( H ) | a | - ^ l > , 
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where upon we choose the function Q to give an estimate (4) which leads to (2). If Q 
were able to take any real value in [1, oo), the expression 

K(CQ(b))l2<™ b-«» 

would be minimised for every b if we put Q(b) = (Ce)'1 61/12 = Qi(b), say. The 
integer part of Q1 will legitimately serve as Q in (4) and we have 

(5) m\^cUlWn\a\-^^ = A, say, 

= -_,.«, l«|-£e,(,a|)1 = e.,cw)-i|«l1-,,<W) -
= K{C(6l(\a\) - l)}--<-«(W)-- |a|i-«.(l-D = 

= X exp [12(_ .(|a|) - 1) In {C(_.(|a|) - 1)} + (1 - ei(|a|) In |a|] = 

+ (.-^H]-
(6) = £ , say . 

To assess the last expression we first note that A in (5) is K.exp{ — 12|a|1/12/(Cc)}. 
We could reasonably expect B in (6) to be about the same as A for large \a\ and 
indeed, 

- - - M ^ - ^ - H ] . 
Using the inequalities 

-x'1
 = In (C(x - 1)) - In Cx = - ( x - l)"1 

we obtain 

+-C^-*)",+"w]-4«(-^-.)r]-
If we just write JB/_4 = 1 + 0(1) as |a| -> oo, (6) becomes 

| / ( a ) | _ i X e x p ( ' - g | a | 1 A A { l + o(l)} = O{exp(-LH1/»)} as |a|-> co 

for some L > 0, and it follows as in [1] and [2] that 

(7) n(x) - li x = 0{x exp (-Lln1 /12 x)} as x -• oo . 
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(7), unlike (2), is an error term of a familiar type, normally obtained by consideration 
of zero-free regions in the critical strip — or by "elementary'* methods. 

Finally we remark that if we have 

lШ(i+i,)(i+u)"} dř g K(Cr)' ,Or 

for some G ^ 1, our method implies that 

jr(x) - li x = 0{x exp (-Lln1/<? x)} . 
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