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SEMIGROUPS ON D-SPACES 

HUNG-TZAW Hu 1 ), Gainesville 

(Received July 2, 1975) 

In this paper we are seeking sufficient topological conditions on the underlying 
space of a semigroup S under which if S2 = S 4= K, then S must have either a left 
or a right identity. We show that S be a D-space with a nondegenerated maximal 
level set M (to be defined) is such a condition. A point p of a continuum space is 
a D-point if and only if for any two subcontinuua Ct and C2 with p as a common 
point then either Ct c C2 or C2 c Cj. A continuum X is called a D-space if X 
contains a D-point p and the naturally induced relation on X is a closed relation. 
Also we prove that a locally connected D-space is an arc. 

Throughout this work a space will always be a Hausdorff topological space. 
A continuum is a compact connected space. An arc is a continuum with exactly 
two non-cutpoints. For standard semigroup-theoretic definitions and results we 
refer to [l] and [2]. It is well known that a compact semigroup has unique minimal 
ideal and is denoted by K [2]. If S is a semigroup and b is an element of S, the 
smallest ideal containing a is denoted by J(b). Clearly we have the identity j(b) = 
= b u Sb u bS u SbS. Green's relation ^f are defined on S as x ^ / 7 if J(x) c 
c: J(y). An element x in a semigroup S is ^-maximal, if it is maximal relative to 
the quasi-ordering ^#. It is well known that if S is compact, then each element 
of S is below a ^/-maximal element; in particular maximal element exists [2]. 

Definition 1. Let X be a continuum. A point p of X is a D-point iff for any two 
subcontinuua C t and C2 with p e CL n C2, either Cx c C2 or C2 <z Ct. 

Let X be a continuum with D-point p. For each point a of X, let ^ be the collec
tion of all subcontinuua of X which contains both a and p. Then 2Fa is a non-empty 
collection of compact connected subsets of X and !Fa is totally ordered by inclusion. 
If L[a] = O&a, then L[a] is the unique minimal subcontinuum containing a and p. 
It is easy to see that L[p] = {p} since {p} is itself a subcontinuum which contains p. 

1 ) The result of this work was contained in the author's doctoral dissertation written at the 
University of Florida under Professor K. N. SIGMON and Professor A. D. WALLACE. 
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We define a relation ^ o n X a s a ^ f e iff L[a] c L[b], Since L[a] and L[b] are always 
comparable under inclusion for any pair of elements a and b of X, ^ is a total 
quasi-order on ^T. By the definition of ^ and construction of L[a] we have L[a] = 
= {fe j b ^ a}, and call L[a] the Zower sef of a in X. The sets U[a] = {6 | a. ^ 6} 
and La = L[a] n l/[a] are called the upper set and /eve/ set of a respectively. For 
convenience, we write a « b iff a ^ b and b ^ a, and a < b iff a ^ b and b % a. 
Recall that a quasi-order g on a set X is called order dense if and only if for any 
pair of elements a and b of X satisfying a < b, there exists a point c of X such that 
a < c < fe. 

Lemma 2. Lett X be a continuum with a D-point p. If U[a] is closed for each 
point a of X, then ^ is order dense. 

Proof. Suppose not; i.e., suppose there exists a pair of elements a and b in X, 
with a < b and no point c in X satisfies a < c < b. Since g is a total quasi-order 
on X we have L[a] u U[b] -= X and L[a] n U[b] = •. Then X is a union of 
a pair of disjoint nonempty closed subsets L[a] and U[b], which contradicts the 
assumption that X is connected. Hence the proof is complete. 

Proposition 3. Let X be a continuum with a D-point p and g be the induced 
quasi-order. Then the following two statements are equivalent. 

(1) ":g" is a closed relation on X, and 
(2) U[a] is closed for each point a of X. 

Proof. (2) => (1). Let b and c be a pair of elements of X such that (b, c) $ :g. 
Since g is a total quasi-order on X we have c < b. By Lemma 2 there is a point d 
in X satisfying c < d <b. If U = X\ L[d] and V = X \ U[d], then U is an open 
set containing b while Vis an open set containing c. It is claimed that (U x V) n 
n ^ = Q. Suppose not; i.e., suppose there exists a pair of elements x and y of X 
such that (x, y) e (17 x V) n g . Then d < x,y < d and x ^ y, which implies that 
d < d. But this is a contradiction. Hence the proof is complete. 

(l) => (2) We omit the proof because it is trivial. 

Remark 4. There exists a continuum with a D-point whose induced quasi-order ^ 
is not closed. Let X be a space defined by 

*-{(»,,) | , - ^ - i ^ ) , -l/.<„ S o} u 

{(,,,) I y = s f a (_L_),o **<.,,,} U 

{(*, ^) | - 1 й У š 1, X ш 1/я or x = -1/я}, 

106 



with the usual topology as seen in the following figure. 

, 
Y 

P jì íl Л | Л 

X 

? 1 JУ \y \y V l 1 
Then X is a continuum with a D-point p = ( - 1/TT, 1). But the induced quasi-order 

^ is not closed, since U[q] = X \ {(x, y) j x = - 1/TT, - 1 ^ y .= 1} is not a closed 
set in X where g = (-1/7T, -1). By Proposition 3 we know that ^ is not a closed 
relation. 

Definition 5. A continuum X with a D-point p is called a Dspace if the induced 
quasi-order ^ is a closed relation on X. 

We have seen in Remark 4 that X is not locally connected at p, while the induced 
quasi-order rg is not closed. But if X is a D-space, then X is locally connected at its 
D-point p. 

Proposition 6. If X is a D-space with D-point p, then X is locally connected at p. 

Proof. Let Vbe an open proper subset containing the D-point p. If S£ is the col
lection of all L[x] n (X \ V) for each x of X \ V, then S£ is a nonempty collection 
of nonempty closed subsets of X and J£? is totally ordered by inclusion, so that 
(\S£ 4= D. If d is a point of ()&, then d ^ x for all x of X \ V, since d e L[x] for all x 
of X \ V. This implies that X\Vc U\d]. It is not difficult to verify that X \ U[d] = 
«= U{-MX11 c < *0- Then Z \ U[d] cz Vand is an open connected set containing p. 
Hence the proof is complete. 

Suppose X is a D-space with a D-point p. We let % be the collection of all U\b] 
for each point b of Z. Then * is a collection of closed subsets of X which is totally 
ordered by inclusion. If we define M = f|^> then Af is a nonempty closed subset 
of X9 and is called the maximal level set of X. Recall a point d in a continuum X 
is a weak ct/t point between a and bit a and b are points in X different from d9 and 
any subcontinuum of X containing a and b also contain d. The point d is simply 
a weak cut point if there exist a and b such that d is a weak cut point between a 
and b. 
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Theorem 7. Let X be a D-space with D-point p. Then the following statements 
hold. 

(1) X is irreducible between its D-point p and any point m of M. 
(2) Each point zeX\(M u {p}) is a weak cut point of X. Furthermore, if M 

contains more than one point, then every point z, except D-point p9 is a weak 
cut point of X. 

(3) Each level set Ld9 except Lp = {p} and the maximal level set M, cuts X. 
(4) If .furthermore, X is locally connected, then X is an arc. 

Proof, (l) Let A be a subcontinuum in X which contains p and a point m of M. 
Since m e M we have L[m] = X. But L[m] is the minimal continuum which con
tains p and m so that L[m] c A and hence A = X. 

(2) From (l) we know that each point z e X \ (M u {/?}) is a weak cut point 
between p and m a point of M. In the case that M contains more than one point, it is 
sufficient to prove that each point m of M is also a weak cut point. Let n be a point 
of M which is different from m. Then it can be easily verified that m is a weak cut 
point between p and n9 since L[n] = X is the minimal continuum which contains p 
and n. 

(3) If we let P = L[d] \ Ld and Q = U[d] \ Ld, then X \ Ld = P u Q and both P 
and C are nonemty sets since M a Q and p e P . Also P* n Q = • , since P* n 
n Q c L[d] n Q = • . Similarly it is true that P n Q* = • . Thus X\Ld is 
a disconnected set, which completes the proof. 

(4) We prove this part by steps. 
(i) We show that for each a 4= p, there exists some point a0 e La such that if Vis 

an open neighborhood of a0, then there exists a point b e V with b < a0. Suppose 
not and let a be a point such that for each / e La there exists an open neighborhood Vt 

of / for which / = b for all b e Vt. Then U[a] = (X \ L[a]) u ( U Vt) is both open 
leLa 

and closed in X. Since a 4= p, U[a] is a proper subset of X which is both open and 
closed in X9 which is impossible because X is connected. 

(ii) We prove that each level set La is a singleton set. Recall that Lp = {p}9 since 
L[p] -= {p}. So we assume that a + p and La contains more than one point. By (i) 
there exists a point a0 e La which satisfies the statement mentioned in (i). Since La 

contains more than one point, we let ax be a point in La which is different from a0 

and let Vao be a connected neighborhood of a0 which is small enough that ax £ Va*. 
By (i) there is a point b in Vao such that b < a0. Then L[b] u Va* is a closed connected 
set containing p and a0. Since P is a D-point, we have L[a0] <-= L[&] u Vao, which 
implies that at e L[b]. But this is a contradiction since b < a0 and a0 « at. 

(iii) From (3) and (ii) we know that each point b e X \ M u {p} is a cut point of X. 
From (ii) we know that M is a singleton set, hence let M = {m}. In order to prove 
that X is an arc, it is sufficient to prove that p and m are noncut points. So suppose p 
is a cut point, i.e., X \ {p} = P u Q9 where P and Q are disjoint nonempty open sets, 
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and P* n Q* = {p}. Since P* n Q* = {p} and P* u Q* = X is a connected set 
it is not difficult to prove that both P* and Q* are connected. Then both P* and Q* 
contain the D-point p, but neither of them contains the other as a subset, which 
contradicts the fact that p is a D-point. On the other hand we have X\{m} = 
= U{-^-M \deX and d + m} is a connected set, which implies that m is not a cut 
point. Hence the proof is complete. 

Remark 8. (1) The converse of part (1) in Theorem 7 is not true. The space X in 
Remark 4 is irreducible between points (— 1/rc, l) and (1/rc, l) but is not a D-space. 

(2) In application 11, there are two D-spaces which are not locally connected. 

It has been shown by MCCHAREN that if S is a compact semigroup satisfying S2 = S 
and b is a ^-maximal element of S, then there exist idempotents u and v such that 
b = ubv [3]. We can derive easily from this result that if S is compact and S2 = S, 
then there exists a ./-maximal idempotent Also it has been shown by McCharen 
that if S is a continuum semigroup satisfying S2 = S and e is a ^-maximal idem-
potent of S which is a weak cut point of S, then S = K [3]. 

Theorem 9. Let S be a D-space with a D-point p whose maximal level set M 
contains more than one point. If S satisfies S2 = S 4= K, then the D-point p is either 
a left or a right identity for S. 

Proof. We know there exists an idempotent e which is a ^/-maximal element of S 
since S is compact and S2 = S. Then e is not a weak cut point of S since, by assump
tion S 4= K. Thus e must be the only point of S which is not a weak cut point of, 
namely, e = p. Since by part (2) of Theorem 7 we know that every point, except the 
D-point p9 is a weak cut point of S. Therefore e is the only ^-maximal element S. 
This implies that SeS = S, since e is an idempotent and hence J(e) = SeS. 

On the other hand we know that each eS and Se is a subcontinuum and contains 
the D-point p, so that either eS c Se or Se c eS. Without loss of generality we may 
assume eS c= Se. Then we have 

S = SeS c S(Se) = S2e = Se . 

In this case e is a right identity. Similarly if Se cz eS then e is a left identity. 

Remark 10. The closed unit interval J = [0,1] is a D-space with one end point 
as a D-point and the other end point as the maximal level set. It is possible to 
construct a semigroup S on I which satisfies condition S2 = S 4= K but S has 
neither a left nor a right identity. 

Application 11. (1) Let the underlying space of S be defined as S = {(x, y) \ y = 
= sin (1/x), 0 < x ^ 1/TC} U {(X, J ) J x = 0, — 1 g y <S 1, with the usual topology 
as seen in the following figure. 
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If S satisfies S2 = S * K, then v = (1/TT, 0) is either a left or a right identity for S. 
Since S is a D-space with D-point v = (1/rc, 0) its corresponding maximal level set 
is M = {(*,)>) | x - = 0 , - l g ^ 1}. 

(2) Let S = {(e2nit, e~') \ t e [0, co]} u [C x {0}] where C is a unit circle, with 
the usual topology as seen in the following figure. 

If S satisfies S2 =* S ^ K then p is either a left or a right identity for S. Since S 
is a D-space with a D-point p, its corresponding maximal level set is M = C x {0}. 

We end thi& paper with an example. This is an example of a continuum semigroup 
on a triod, probably the simplest continuum one can find which is not a D-space, 
which satisfies S2 = S + K and has neither a left nor a right identity. 
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Example 12. This example is constructed as follows. Let T = {v, a, b, 0} with 
multiplication defined in the following table 

• v a b 0 

V v a 0 0 
a 0 0 0 0 
b 6 0 0 0 
0 0 0 0 0 

Then Tis a semigroup, with discrete topology on it, with an idempotent v such that 
vTv = {v, 0}, vT= {v, a, 0}, Tv = {v, b, 0} and TvT = T. Let I = [0,1] denote 
the closed real unit interval with the usual multiplication. Let S0 = T x I with 
product topology and coordinewise multiplication, then S0 is a semigroup. If we 
let S± = {(v, 0), (a, 0), (b, 0)} u [{0} x / ] , then 5 t is a closed ideal in S0. Then 
the Rees quotient S = S0lSx is a semigroup with zero and (v, 1) as their only two 
idempotents, and it is easy to check that (v, 1) S * S, S(v, 1) 4= S but S2 = S. The 
underlying space of S is homeomorphic to a triod [5] as in the following figure 

(0,0) 

It is not difficult to see that this space is not a D-space, because none of the points 
in S can be a D-point. 
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