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Summary. The paper deals with the existence and uniqueness of weak (in the distributional 
sense) solutions of linear and non-linear boundary value problems for ordinary differential 
equations. The main tools are the smooth integral and classical fixed point theorems. 
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INTRODUCTION 

Distributional solutions of ordinary differential equations have not been studied 
to a sufficient extent, due to certain difficulties in defining operations on distributions: 
some operations (e.g. multiplication, substitution, definite integral) cannot be defined 
for all distributions in a natural manner. In order to overcome these difficulties we 
apply the operational approach to differential equations using the smooth integral 
(see [1], p. 201). 

In our paper we consider the existence and uniqueness of weak solutions of linear 
and non linear ordinary differential equations satisfying some additional conditions. 
The application of the smooth integral allows us to replace the given ordinary dif
ferential equations by special integral equations. Next, we apply the classical fixed 
point theorems to these equations to obtain, in particular, solutions in the Sobolev 
space Ws,p(a9 p) (a, b e R, 1 ^ p ^ oo, s ^ 0). In Chapter 2, we establish the main 
properties of the smooth integral. In Chapter 3, we discuss systems of non linear 
differential equations (of the first order) with some additional conditions which are 
expressed in the form of linear continuous functionals defined on the space U(a9 b). 
The solutions of these equations are vectors whose all coordinates are functions of 
the class LP(a9 b). In Chapter 4, non linear differential equations of order n (n ^ 2) 
are studied with additional conditions in the form of linear continuous functionals 
on the space Ws,p(a9 b) (s ^ 1, 1 ^ p ^ oo; a9 b e R). From the fact that the unique 
solution of the homogeneous problem is the trivial one we obtain in Chapter 5 
the existence of solutions of the non homogeneous problem. 

113 



The study of distributional solutions of ordinary differential equations is still 
topical (see [7]). A particularly large number of papers have been devoted to linear 
differential equations with distributional coefficients (see [6], [9], [10], [17], [19], 
[20], [23], [26], [27], [29]). Other possibilities of generalization of the notion of 
a solution of an ordinary differential equation are considered in [8], [11], [12], [15], 
[16], [25], [28], [32]. 

Our considerations will be based on the sequential theory of distributions (see [1]). 

1. NOTATION 

Let R denote the set of all real numbers and N the set of all naturals. Let I denote 
a closed interval [a, fc] and I0 the open interval (a, b) (a, b e R). By LP(I) we denote 
the space of all real Lebesgue measurable functions / defined on the interval I such 
that 

| / L = ( l / | / | P ( 0 d 0 1 / P < ^ ^ 1 * 1 X 0 0 , 
and 

||/"||ao = SUP ess |/(r)| < oo if p = co . 
tel 

We put 

Lp
n(l) = Lp(l) x ... x Lp(I), \\y\\p,n = £ \\yil, |I| = b - a , 

n times t= 1 

where y = (yi9..., yn) and yt e 1S(1) for i = 1,..., n. We adopt the following con
vention: if p = 1 and q = oo, then \jp + \jq = 1 and \jq = 0. 

Let Ws,p(l) or Ws,p(l0), s e N, p — 1 denote the set of all functions y possessing 
a continuous derivative of order 5 — 1 on the interval 1 or on 70, respectively, and 
such that y{s) e LP(I). We introduce the following norm on these spaces: 

M-lV , ,L + l-wL-
i = 0 

The spaces (Ws>p(l), ||-||) and (Ws'p(l0), ||-||) are Banach spaces. For s = 0, we put 

. . W°>p(l0) = Lp(I0) and ||z||, = ||z|| , 

where z e Lp(/0)-
If s GNu {0} and Lis a linear continuous functional in (Ws,p(l), ||*||), then we 

write Le(fF'p(I), ||-||)*. 
The symbol Lp(k)(I0) denotes the set of all the k-th derivatives (in the distributional 

sense) of functions of the class Lp(/0). 
By Ck(l) we denote the space of all real functions with a continuous k-th derivative 

on I, and by C(l) we denote the set of real continuous functions on /. 
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Throughout the paper co and to stand for infinitely differentiable functions with 
bounded carriers inside 70 such that 

J7 co(t) &t = J, co(t) dt = l. 

We adopt the convention that a, be R and p = 1. 

2. SMOOTH INTEGRAL 

In the theory of differential equations the solving of various problems leads to 
integral equations. However, for distributions the definite integral does not exist 
in general. Therefore we introduce the operation v , which assigns to a distribution 
which is the fc-th derivative of a function of the class LP(J0) one of its fc-th primitives. 
In this chapter we establish some properties of the operation v while in the next 
chapters we present several applications. 

We suppose that cp = $(fc), where <P is a locally integrable function on the inter
val /0 and the derivative is understood in the distributional sense. By the smooth 
integral of cp we mean a distribution cp^tt defined as follows: 

(2.1) < 1 = *(fc-1) + (-l)kJ,*(0«>(t"1)(0<-< (-«[-])• 
The smooth integral of order r (r _ 2) of a distribution cp is defined by 

(2.2) < r = KA , 
where i/r = <p^t. 

It is easy to see that 

(2.2)' «.)<'> = cp 
and 

(2-3) XJlr + X2glr = K,r , 

where / and g are distributions defined on 70, Al5 X2eR and h = kxf 4- k2g. 
We shall use the notation f^ti(y) instead of (/(y))^,i and g„tk(y) instead of 

(9(y))lk, where/: LP(I0) -> L*(1>(/0), g: W"-fc'*(l0) ~> LP™(I0) and 2 k 2fc = n. 
Now we shall give the fundamental properties of the smooth integral. 

Lemma 2.1. Letf be a mapping, f: Lp
n(l0) -> LP(1)(J0), and let lim ||yv - y\\Pt„ = 0, 

v-+co 

where yv, y e LP(I0). Moreover, let 

\hn\\fUyv)-fl^ =0. 
v->oo 

Then 
lim \\fUyJ - flt(y)| -. 0 . 
V"*oO 

Proof. In fact, by (2.1) and (2.2)' we have 
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(2.4) fUy*) = fZM - SifUy*) (0 "(0 <-' 
and 

(2.5) fUy) = fUy) - hfUy) (0 55(0 * • 
Let 1/P + l/g = 1. Then, by (2.4)-(2.5) and by the Holder inequality, we obtain 

(2.6) jfUy*) -fUy)l = (i + l-l, HI,) VZM -/r.-O0l,. 
which proves our assertion. 

Similarly, we can prove the following lemmas: 

Lemma 2.2. Let f be a mapping, f: Wn'k,p(I0) -> LpW(l0) (2 ^ 2fc ^ n), and let 
lim ||yv — y\\ = 0, where yv, y e Wn~k,p(l0). Moreover, let 
v->oo 

Km\\fUy*)-fUy)l = o-
V-*oo 

Then 

i™\\fUy*)-fUy)h = °-
v-*oo 

Lemma 2.3. Lef f: LP(I0) -» L'(1)(/0) and Je* 

\\fUy)l^4y\\P + P> 
where 0L,PeR and ye Lp(1)(/0). 

TTzeM there exist non negative numbers a1? j5x such fhaf 

l / ^ ^ L ^ a i l ^ l U + ̂ i for yeLp(l0). 

Lemma 2.4. Let / : W"-k'p(l0) -* LpW(l0) (2 £ 2k ̂  n) and let 

\\fUy)l = «IMI + H « ' t v e JP-*"(J0) (a, /? e B). 

Then fhere exis* non negative numbers ccl9 pt such that 

\\fUy)l ^ «M + 0i f°r yew-k-»(i0). 

Lemma 2.5. Let f: Lp(l0) -• LpW(l0) and let 

WfUy)-fUy)\\p = *b -yl,» («6w)• 
T/ien 

l/^iW-A^Ip^ailly-jlU, 

where >>, j> 6 Lp
n(l0), at e W. 

Lemma 2.6. Let f: W"-k-p(l0) -• Lp(fc)(/C) (2 g 2fc = n) and Jef 

l/;»-f; ,^)| |P^«b-^« («eu). 
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Then 

lf£A?)-fiM,£*ib-H 
for y,yeWn-k>p(l0). 

Lemma 2.7. Assume that f^fi: Lp
n(l0) ->lf(l0) and f^ti is a compact mapping. 

Thenf~tl is also a compact mapping. 

Lemma 2.8. If f^y. Wn~k,p(l) -> U(l) and f*k is a compact mapping, then f&k 

is also a compact mapping. 

3. WEAK SOLUTIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS 

We consider the problem 

(3.1) y'i=fi(y), 

(3.2) Li(yi) = r{, rteR, i = 1,..., n , 

where fx are operations, Lt are functional and all derivatives are understood in the 
distributional sense. 

Let y = (yl9..., yn) e Lp(l0), /-: Lp
n(l0) - Lp^(l0), L{ e (Lp(l0), || • ||p)* for i = 

= 1,..., n and let y satisfy the system (3.1) on I0 with the conditions (3.2). Then 
we say that y is a weak solution of the problem (3.1) —(3.2). 

Theorem 3.1. Assume that 

(3.3) UL%10)-*L^\I0), i = l , . . . , n ; 

there exist a function co and a e R such that 

(3.4) \\fUy)-fUy)l^4y-yl, 
for all i = 1,..., n and y,yeLp(l0); 

(3.5) L;e(L'(J0), ||-||p)* for i = l , . . . , n ; 

(3.6) Lf(l) = l for i = l , . . . , n ; 

(3.7) A = an(l + M 0 | | l | | p ) < l -
where M0 = sup \\Li\\p. 

lgign 

Then the problem (3.1) —(3.2) has exactly one weak solution. 
Before giving the proof of Theorem 3.1 we formulate the following lemma: 

Lemma 3.1. Let us assume that the conditions (3.3), (3.5)—(3.6) are satisfied. 
Then yeLp(l0) is a weak solution of the problem (3.1) —(3.2) if and only if y is 
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a fixed point of the operation G = (Gi9..., G„), where 

(3.8) Gt(y) = fl,i(y) + 'I - --iVto.tOO) , i =- -. • •., » , 
and 

G(y) = (Gi(y),...,Gn(y)). 

Proof of Lemma 3.1. Let yelfn(l0) be a fixed point of the transformation G. 
Then y is a solution of the equation (3.1) in I0 and (by (3.5) — (3.6)) 

Lfa) = r^iOO) + W - LAfto.i(y)) = n> i = h-,n. 
On the other hand, if y e Lp

n(I0) is a weak solution of the problem (3.1) —(3.2), then 

y» =fL,i(y) + c i5 

where c^e 0? and / = 1,..., n. 
Hence, by (3.5) —(3.6) we have 

which proves the lemma. 

Proof of Theorem 3.1. By Lemma 3A and the assumption (3.4) we have 

\<*y)-<*y)\,*£*\y-y\,*-
We conclude by (3.7) that G is a contractive mapping. By virtue of the Banach 
fixed theorem our assertion follows. 

Example 3A. Let D = I0 x W\ We say that a function g: D -> ft satisfies the 
condition (C) in D if 

(3.9) the function g(t, vi9..., vn) is continuous with respect to (vi9..., vn) for every 
fixed t, 

(3.10) the function g(t, vi9..., vn) is Lebesgue measurable with respect to t for 
fixed (vl9...9vn). 

Let functions k, (i = 1,..., n) satisfy the condition (C) in D and let 

n 

(3.11) \kj(t, vi,..., v„) - kj(t, vu ..., vn)\ = £ «2,(t) |r, - »,| for j = 1,..., n ; 

(3.12) |fcXt,0,...,0)|^pXt) for j = l , . . . , n , 

where pteLl(I0), g,eL4(J0), l/p + 1/.3 = 1 and i,j = l , . . . ,n. Next, we assume 
that 

hij:/ -> J , n,,- e C1^), ftJXt) > 0 for tel. 
We define 

(3-13) (L(_v))(t) = ki(t,yi(hii(t)),...,yn(hni(t))) + fifr). 

where Qt e L"(/0), >>i e L"(/0), i = 1,..., n. 
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Then 

y^elfHo) and L: Lf„(I0) -» L"(,)(Io) for i = l , . . . , / . . 
Let 

(3.14) Rt(y) (t) = Ji kt(s, yi(hu(s)),..., )'n(hM) d s + 2.(0 for i = 1, . . . , « . 

Then, applying (2.1) and the Holder inequality we can write 

(3.15) \\fiA(y) - /Z . . . 09 I , = (i + l - l , H!<) |J-i(y) - *ffl\, = «|y - *flP„,, 
where 

« - 1 N«ii.(i-+iibMj(i- r i i(*(#r i i-) l / ' . 
»\I=-

Hence the operations/f satisfy the assumptions (3.3)-(3.4) for i = 1 , . . . , n. 
We adopt the following convention: for g e Lp(/0) we put g(t + T) = 0 for 

t + T $ I0. Let p e [1, oo). We say that an operation F: LP(I0) -* LP(I0) (F: Wm'p(IQ) -» 
-• LP(I0), meJV) has the property R on I0 if for every ball B c (LP(I0), ||-||p,n) 
(B c (JVw'p(/0), || • I)) and £ > 0 there exists (5 > 0 such that 
(3.16) lb

a\F(y)(t + T)-F(y)(t)\pdt<e 

for every 0 < T < 5 and every y e B. 
From the relation (2.4) we obtain the following corollary: 

Corollary 3.1. Let fly. Lp
n(I0) - Lp(l0) and let \\flA(y)\\p = 4y\\p,n + ft where 

p e [1, oo) and a, /? e R. Moreover, let / ^ have fhe property R on I0. Then f~tt 

also has this property on J0 for i = 1,..., n. 

Corollary 3.2. Let fly. Wn^p(I0) -» LP(I0) and let \\flk(y)\\p = <x|M| + ft where 
2 ^ 2fc _" /z; a, /? e R and p e [1, oo). Moreover, let f*k have the property R on I0. 
Thenf&k also has the property R on I0. 

Theorem 3.2. Lei* us assume that 

(3.17) conditions (3.3), (3.5) —(3.7) are satisfied and p e [1, oo); there exists func
tion (o and a, fie R such that 

(3-18) \\fUy)l = *b\,* + P 
for all y e LP(I0) and i = 1, . . . , n; 

(3.19) / ^ are continuous operations on Un(l0) for i = 1, . . . , n; 

(3.20) the operations fuoA have the property R on I0for i = 1, . . . , n. 

Then problem (3.1) —(3.2) has at least one weak solution. 

Proof. We consider the transformation G defined by (3.8). Let 

B = {yeL"„(l0):\\yl,n^K} 
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and let M0, A be defined as in Theorem 3.1. Then 

lG.(y)L^i + M0iiyK + /?, 
where 

/51=i? + (max | r ( | + M0iS)|l| |p. 

Evidently G is continuous and 

iG(y)|„ ^ AK + ft . 

Thus, if X < 1 and K = >S1/(1 - X)9 then G(fl) c J3. The property JR and the Riesz 
theorem imply that G(B) is a compact set in (L^(70), ||'||Pjn). Applying the Schauder 
fixed point theorem we conclude that the operation G has a fixed point, which com
pletes the proof of the theorem. 

Remark 3.1. It is easy to show that the operations defined in Example 3.1 satisfy 
the assumptions (3.18) —(3.20). 

Example 3.2. Let ki (i = 1,..., n) satisfy the condition (C) in D9 where D = 
= 70 x W\ Moreover, let 

(3.21) |fcf.(r, vl9..., vn)\ = iq(j(t) \vi\ + pi, 

where pi9 qtJ are non negative functions on 70, pt e Ll(l0),qij e L*(70) for i,j = 1,..., n 
and 1/P + ljq = 1. Then the operations f{ defined by (3.13) satisfy the assumptions 
(3.18)-(3.20). 

4. WEAK SOLUTIONS OF NON LINEAR DIFFERENTIAL EQUATIONS 
OF ORDER n (nl> 2) 

In this chapter we are going to discuss the problem 

(4.1) y("> = f(y) , 

(4.2) L^y) = ri9 r , e f l , i = l,...,n9 

where f is an operation, Lt are functional and the derivative is understood in the 
distributional sense. 

Let f: Wn-k>p(l0) - L*(fc)(70), 2 = 2fc = n, Lt e (Wn~k<p(I)9 || • ||)* for i = 1,..., n 
and let y e Wn~k'p(l) satisfy the equation (4.1) on 70 with the condition (4.2). Then 
we say that y is a weak solution of the problem (4.1) —(4.2). 

Before formulating a theorem, we introduce some notation. Let Q = [<?,;], 
where qtJ = Li(tJ~l), ij = 1,..., n, and let 

(4.3) Ua(y) (t) = Pj ' " f " '" /^(y) (5) d, . 
Ja(n - k - 1)! 
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Moreover, let 
do = (rt - Lx(Ujfr))9..., rn - Ln(U„(y))). 

The symbol 6>(y) will denote a matrix obtained from Q by replacing the j-th column 
by the column d0. We put 

WJ(a(y) = det QJeo(y) and T F - d c t Q . 

Now, we introduce the following hypothesis: 
Hypothesis H 4 1 : 

(4.4) /: Wn-k>p(l0) - LpW(I0) , 2 ̂  2fc = n , 

there exists a function c0 and aeW such that 

(4.5) \\f:Ay)-fUy)l^4y-y\\ 
forally>yeWn-k>p(l0). 

Theorem 4.1. Lef 

(4.6) L . G ^ - ^ J ) , ! ! - ! ! ) * for i = l , . . . ,n , 

(4.7) PV+0. 

Then there exists a number a o e(0, oo) such that the problem (4.1) — (4.2) has 
exactly one weak solution for every a e (0, a0) and for every operation f satisfying 
H 4 1 . 

Proof. We observe that y e Wn~k,p(l) is a weak solution of the problem (4.l)-(4.2) 
if and only if y is a fixed point of the operation T^ defined by 

(4-8) Tjfr) (t) = U„(y) (t) + ZaJy) tl, 
i = 0 

where 

(4.9) aj.M^^f* j = L...,n. 

Next, we shall introduce some notation. Let 

M 0 = m a x [ | L 1 | | . ) , . . . , | L B y ) 

lh = -^.AfSnK-naxd/l"-1, l))(n - k + 1)(« - l ) ! ] " " 1 , 

fc..o = max(1, |l|<) , fcw = [max (l, | j | ) ] ' ^ i... (i - ; + 1), 

i = 0,1,...... — 1, j = l,.... n — k, 0^i—j, 
and 

л-fc-1 | г |п- fc~/- 1 + 1/q 

Ьo= I Д — - + 1 . 
j=o (n- k- j - 1)! 
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It is clear that 

[l1! .= (n - l)\(n - k + 1) max(III"-1,1) for s = 0? 1,..., n - 1 . 

Hence, by (4.5) and (4.9), we infer that 

(4.10) \ai<a(y) - ai(a{y)\ = ti0<xL0\\y - y\\ for i = 0 ,1 , . . . , n - 1 . 

These inequalities and the assumption (4.5) yield 

(4.H) \(Tm(y))U) - (TM)W\ = 

[ | 7 | n - k - - l - j + llc2 n - 1 -i 

j = 0 , l , . . . , n - f c - 1 
and 

(4.12) \(Ta(y)y-k) ~ (TMr~k)\ = 

= l/^OO -LU>0I + "E »OUK«-Ay - y\\ • 
i = n-fc 

Denoting 

we have 

n - l n - f c + 1 n - l 

m = i z *u + \i\,('i <«.»-*)> 
i=-y J=-0 i = n-k 

\\Tm(y) - Tj(?)l = «L0(1 + /.„ !V(/)) ||y - y\\ . 

We conclude that Ta is a contractive mapping if a < a0, where 

(4.13) a0 = [L 0 ( l+ A i 0 N ( / ) ) ] - 1 . 

By virtue of the Banach fixed point theorem our assertion follows. 

Remark 4.1. Let 3^ (i = 0 ,1 , . . . , n — k — 1) be a function of bounded variation 

on the interval J. Moreover, let y e Wn~k'p(I), g e 13(1), where l/p + \\q = 1. Then 

L(y) =""z'fi^W^i + iiy^
k^)G(t)dte(Wn-^(l), |HD*. 

i = 0 

Thus, taking functions Wt and g in a special form, we obtain the interpolation 
problem or the de la Vallee-Poussin problem as particular cases of the problems 
considered in our paper. 

Example 4.1. Let functions gu g2 satisfy the condition (C) in the set D = I0 x R2 

and let 
(4.14) \g{t, v0, vx) - g{t, v0, vx)\ = qx(t) \v0 - v0\ + q2(t) \vt - vt\ 
and 

^( . , 0 ,0 )^ .23 (0 (»" - • - . - ) . 
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where ql9 ql9 q3 are non negative functions such that ql9 q3 e I}(l)9 q2 e I3(l) and 
1/p + ljq = 1. Moreover, let 

hl9h2:I-*I9 h^Cty, h2eC\l)9 h'2(i) > 0 for tel. 

We define 

f(y) = Q'(t) y(t) + K(t) Ji 9i(t, y(h(t))> /(^(O))d< + 
+ 9i(t, y(h(t)), y'(h2(t))) + A(t) y"(t), 

where QeE(l), r = max (p, cj), R0BLP(I), AeWu,l(l), ^eH" ' ' ( l ) and Q'y = 

= (Qy)' - Qy'- We put 

(4.15) F(y) (t) = Q(t) y(t) - ft Q(s) y'(s) ds + R0(t) J. 3i(t, y(K(t)) , 

/ (MO)) dt + ft g2(s, y^s)), y'(h2(s))) ds + A(t) y'(t) - ft A'(s) y'(s) ds . 
Evidently 

F: W*"(I0) -* U(I0), / : W1 •'(/<,) - &l\I0) 
and 

(4.16) 1/T.tCy) - /: . , (y) |F = (l + | l | - IN,) ||Jty) - -W) I, = «lb - H 
(by (2.1) and the Holder inequality), where 

«= [Id, + Del. liU + (INI, + |i|.)(l«.li + M ^ r i - ) 1 " ) + 
+ IMIU + «i||P|kllJ(i + «i«P|Hl9). 

Hence /^ t l satisfies the assumption (4.5). 
Before giving a theorem on existence of weak solutions of the problem (4.1) —(4.2), 

we formulate the following hypothesis: 
Hypothesis H42 

(4.17) / : Wn~k>p(l0) -> U^(I0) , 2 = 2k^n9 Pe[l, oo); 

there exists a function co such that 

(4.18) ||/:,fc(y)||P ^ a[|>;|| + fi , where y e Wn'k>p(l0) , a, /J e ft ; 

(4.19) /^>fc is a continuous operation on the space Wn~k,p(l); 

(4.20) the operation f„tk has the property R o n / . 

Theorem 4.2. Assume that the conditions (4.6) —(4.7) are satisfied. Then there 
exists a number a0 e(0, co) such that the problem (4.1) —(4.2) has a weak solution 
for every a e (0, a0) and for every operation f satisfying H^. 

Proof. We use the Schauder theorem for the transformation 7^ defined by (4.8). 
Let B be the ball 

{yeWn-k>p(I):\\y\\=K}. 
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By (4.8)-(4.9), we have 

(4.21) - h - i c o ( y ) | = »o(r + a M 0 K L 0 + PM0L0) , 

where r = max (\rt\,..., \rn\) and /x0, M0, L0 are defined in the proof of Theorem 
4.1. 

Hence, we infeг that 

(4.22) надii = aa0 

lк + ß , , 
where 

ßi = ßLQ + N(I) џQ(r + ßM0L0) . 

Let a < a0 and let 

K> maxГl, 
ßl l 

1 - aa0J Then T^B) c B and 

(4.23) ||rw(>;v) - r ^ ) ! = *zxlfZM ~fUy)l-
Thus 

Toj. Wn-k,p^ _^ Wn~k>P(l) 

and Tm is continuous. Let xv e B, i.e. 

*v = ?Uyv) , yv'B-

Since Tjfi) is a bounded set in (Wn~k,p(l), ||-||), there exist subsequences (by the 
Arzela theorem) {xv

J)} and {yt^} of sequences {xv
J)} and {y(vJ)}, almost uniformly 

convergent to xU) and yU), respectively, for j = 0 ,1 , . . . , n — k — 1. Without loss 
of generality we can assume that the sequences {x[J)} and {y(

v
J)} are almost uniformly 

convergent to x(j) and yU), respectively (for j = 0 ,1 , . . . , n — k — 1). The property R 
of the operation f^tk implies that the sequence {x(

v
n~"k)} satisfies the assumptions of 

the Riesz theorem. There exists a subsequence {xy
n~k)} of the sequence {x(

v~
k)} 

convergent in LF(l) to a function x(ri~k). Applying the Schauder theorem we can show 
that the problem (4.1) —(4.2) has a weak solution, which implies our assertion. 

Remark 4.2. It is easy to show that the operation / defined in Example 4.1 does 
not satisfy the assumption (4.20) (in general). If A = 0, then the operation / satisfies 
the assumptions (4.4), (4.18), (4.19) and (4.20). 

5. APPLICATIONS OF THE ROTATION OF A VECTOR FIELD 
IN THE THEORY OF WEAK SOLUTIONS 

Let (E, |-|) denote a Banach space, let SR = {ze E: \z\ = R] and KR = {ze E: 
\z\ g R], where R > 0. Moreover, let the operation F: E -> E be completely con
tinuous (i.e. continuous and compact). Then functions of the form <&(z) = z — F(z) 
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are called completely continuous vector fields. If <P(z) + 0 on SR, then to each system 
(&, SR) there corresponds a certain integer y(<P, SR), which we shall call the rotation 
of the vector field # (or the degree of the mapping <P, see [13] and [5]). If y(#, SR) 4= 0 
on the sphere SR, then there exists at least one solution of the quation 

x = F(x) (see [14], p. 189) . 

Let Ex = Un(I) x Rn and let E2 = Wn-k'p(l) x Rn (1 = p = oo, 2 ^ 2fc g n, 
J e f f ) denote linear spaces. The sum of two elements and the product of a scalar 
and an element of Et (i = 1,2) are defined in the usual way. We introduce the 
following norms on the spaces El9E2: 

\zx\x = max ( max ||yf| max \qt\) , 

|z2|2 = max(||>>||, max|qt.|), 
l ^ l £ n 

where 
*i = (yi5...,y„, ql9...9qn)eEx and z2 = (y9ql9 ...9qn)zE2. The spaces (-^.Hi) 

and (E29 J • |2) are Banch spaces. 

Theorem 5.1. Assume 

(5.1) UgtVll^^L^XU), i = l,...,n; 

(5.2) L(A>>) = Xft(y) for all Aefl , ^eLp(/0) and i = l , . . . , n ; 

(5.3) the mappings fial, g^y. LJ(/0) -» Lp(/0) arc completely continuous for a fixed 

function a> (i = 1,..., n); 

(5.4) L j e^ /o ) , ! - ! . , ) * , i = l , . . . , n ; 

(5.5) the problem 

to [yj-fb) 
u lL.(y,) = o, i = l , . . . ,n 
has only the zero solution (in the class Ifn(l0)), 

(5.6) \\gya>1(y)\\p^M<cc for all yeUn(l0). 
Then the problem 
(51\ Wt=fi(y) + gt(y)> 
V ' } W.yt) = rt, rteR, i = l , . . . ,n 

has at least one weak solution (in the class Ifn(I0)). 

Proof. We consider two vector fields: 

(5.8) <P(y, q) = (>>. - fi„ti(y)- a.,..., y„ - fna,i(y) ~ fln, ̂ (y . ) , •••» 40»)) 
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and 
(5.9) W(y9 q) = (yx -n„,i(y) - gLM) " 4-> - > 

yn - fncoM) - 9n<otl(y) - In , -^l(y l ) " rl9 . . . , L„(yn) - Tn) , 

where j = (yl9..., y,.) e L*(J0) and q = (g1?..., qn) e R\ Obviously <f>: £ t -> £ t , 
¥*: £j -> £ t and the vector fields <P and 5* are completely continuous. <P(y9 q) is non 
zero on a sphere SR in the space Et (R > 0). In fact, if #(y, q) = 0 on SR, where 
(j>, ^) e SR and 5 = (qi,..., qn), then y is a solution of the problem (*). Thus, (5.5) 
implies y = 0. Taking into account that 

*(0,g) = ( -« f 0) 
we obtain 

|#(0, 5)L = max \q\ ||l|| > 0 (because R > 0) 
l g i ^ n 

and 
$(y, q) * 0 on SR . 

By [13] (p. 112) we get 
(5.10) inf |*(y,«)|1 = a > 0 . 

(y,il)eSR 

Now, we shall show that y($9 SR) 4= 0. For this purpose we apply the Borsuk theorem 
(the antipodal theorem, [13] p. 130). Therefore, it is enough to prove that 

*(y> g) . <K-y,-g) OT1 s 

\*(y,<i)\i \*(-y,-d)\i 

Suppose the contrary, then there exists a number p > 0 satisfying the equality 

(5.11) ^(y,q) = ^(-y,-q) on SR. 

By the assumptions (5.2), (5.4) and the relation (2.3), we infer that 

flAPy) - PflAy) ^ i = i,...,n 
and 

(1 + j3) $(y, <z) = 0 on SR , 

which contradicts (5.10). Hence it follows that y(<P, SR) + 0. Let m be a real number 
such that 

am > M + max \rt\ 
l£i£n 

and let SwR be the sphere of radius mR. Then we have 

| * ( y , « ) - ^(y^)|i = |(^ivc0 , i(y)---^AW^i>...>0|i = 

= M + max |r,| < inf |*(y, q)^ ^ |*(y, g)^ on SmR . 
l ^ i - i n {y,Q)eSmR 

Using [13] (p. 128), we get 
y(!F, SmR) 4= 0 , 

which completes the proof. 
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Theorem 5.2. Assume 

(5.12) f,g:W-k'p(I0)-*Lp<kXl0), 2 < 2k = n ; 

(5.13) f(ly) = *-f{y) for AeR and ye W"-k'p(l0) ; 

(5.14) the mappings fljk, gly W"-k-p(I0) -> Lp(l0) are completely continuous for 
a fixed function co; 

(5.15) Lte(W"-k'p(l),\\>\\)* for i = l n; 

(5.16) the problem 

(*'*> Wy) = 0, i = l,...,n 

has only the zero solution (in the class Wn~k,p(l))l 

(5.17) \\dlk(y)\\P = M < « for all ye W~k'p(l) . 

Then the problem 

(sis) iy(n> =f(y) + s(y)> 
y ' ' [Li(y) = ri, rteR, i = l , . . . ,n 
has a weak solution (in the class W"-k'p(l)). 

Proof. We consider two vector fields 

(5.19) <P,(y, q) = (y- Ua(y) - £ qtt
l, L,(y),.... Ln(y)) 

i = 0 

and 

(5.20) Wt(y, q) = (y- Um(y) - g^k(y) - £.-,.•', 
i = 0 

Lx(y) - rl9...9Ln(y)- rn), 

where y e Wn~k'p(l)9 q = (q09 ql9..., q„-i) e Rn and Uj^y) is defined by (4.3). 
It is clear that d :̂ E2 -> £2, !FX: £2 -> E2 and the vector fields $1 and y t are 

completely continuous. Let SR be a sphere in the space E2 (R > 0). Then $x(y9 q) =f= 0 
on SR. Indeed, if #i(y, q) = 0 on SR ((y, 3) e SR and q = (50, 5X,..., §n-i)), then y 
is a solution of the problem (*,*). By (5.16) we have 

Hence 

and 

n - l 

y = 0 and ^i(0,q) = (X5 i í
i ,0) . 

i = 0 

1 

ІҐO 
$.(0, q)\2 = J) £ g,.'! > 0 (because R > 0) 

(5.21) inf |ф.(з,, g)|2 = « > 0 (see [13], p. 112) . 
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We shall prove that 

Фi(y. q) + ФÍ(-У, -q) 

| * l ( ^ « ) | 2 |*l(--V, - « ) | l # 

In fact, if there exists a number /? > 0 satisfying the equality 

#i(:v> «) = J5#i(-y, -«) on SR , 
then 

(1 + fi) *x(y9 a) = 0 on S* (by (2.3), (5.13) and (5.15)), 

which contradicts (5.21). By the antipodal theorem (K. Borsuk) we have 

y ( * i , s * ) * o . 

Now, we take a number m such that 

am > M + max \rt\ 

and consider the sphere SmR in the space E2 of radius mR. Evidently 

|*i(y, 9) - ^i(y> «)|a = |(<C*(y)> rl9..., rn)\2 = 

^ M + max \r\ < inf ^ ( y , g)|2 = ^ ( y , q)|2 on .SwK 
l ^ i _ i » (y,«)esmR 

and 
7(^i,SmR)=i=0 (see [13], p. 128) , 

which completes the proof. 
Now, we shall give some examples and remarks. 

Example 5.1. Let mappings fc^: J x Rn --> R satisfy the condition (C) in the set 
D = I x Rn and let 

\kij(t,u1,...,un)\ = M for (t,uu ...,un)eD, MeR, 

i = 1,..., n and j = 1,2 . 

Moreover, let fy:I -*I, h}e C\I) and Aj(0 > 0 for f e/ and j = 1,...,2n. Then 
the operations 

9>(y) (0 = M*. .vi(fci(0),.-, yJM*))) + 
= e;(0 J. M ' . .VI(A-+I(0), .... M M O ) ) d ( . 

where Q{ e IS(l), yt e U(l), p e [1, oo) and i = 1,..., n satisfy the assumptions (5.1), 
(5.3) and (5.6). 

Example 5.2. We assume that 
1° the function k0:I x R -> R is continuous and bounded, 
2° the functions fcl5 k2:I x R2 -+ R satisfy the condition (C) in the set D = 

= / x R2 and \k0(t,u)\ = M, 

\kt(t, u, v)\ ^ M for (t,u,v)eD, i = 1,2 
and M e R , ' 
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3° the functions ft/. I -> I for j = 0,1, 2, 3,4; ft0, hi9 ft3 G C(/), ft2, ft4 e C\I)9 

h2(t) > 0 and ft4(f) > 0, where tel; 
4° g is the function of bounded variation on I9 

5° SeH(l)9 pe\\, oo). 
We define 

(5.22) g(y) (t) = Q'(t) k0(t9 y(h0(t))) + S'(t) ffl k,(t, y(h,(t)), y'(h2(t))) dt + 

+ k2(t,y(h3(t)),y'(h4(t)))9 

where ye WiiP(l), the product Q'(t)k0(t,y(h0(t))) is understood as a generalized 
operation (see [ l ] , p. 256 and [2]) and the derivative is understood in the distribu
tional sense. It is worth noting that the product Q'(t) k0(t9 y(h0(t))) exists and is 
a measure (see [2]). Hence 

g:W^(I0)^H^(l0) and gly. W^(I0) -> H(l0) . 

Now, we shall show that the operation g^fl is continuous and bounded. For this 
purpose we shall define the definite integral of a measure p as 

ftj>(0cl. = P*( t2)-P*( t l ) , 
where 

P' = p on 70 , tl9 t2el09 P*(tt) = ±(P(ti+) + P(ti-)) , 

P(*i+) and P(t{ —) denote the right and left hand side limits of the function P at the 
point ti (for i = 1,2). It is known (see [3], [22]) that 

(5.23) 11\\ Q'(i) k0(t, y(h0(t))) dt\ = M\U*(t2) - U*(h)\ 
and 
(5.24) lim ft Q'(t) [k0(s, yn(h0(s))) - k0(s, y(h0(s)))] ds = 0 

n-+ao f 

(almost uniformly on I), where U' = |Q'|, \Q'\ is defined as a generalized operation 
(see [1] and [3]) and lim yn = y (uniformly on I9 yn9 y e C(/)). By the relations 

/.-•CO 

(5.22)—(5.24) we conclude that g„ti is a continuous and bounded operation and g^tX 

has the property R in I. Next, from the Riesz theorem we infer that g^fi is a completely 
continuous operation. S0 g and g^fl satisfy the assumptions (5.12), (5.14) and (5.17) 
(for n = 2 and k = 1). 

Remark 5.1. Let g^tl be mappings such that 
(a) gl.i: LP(I0) - L'(l0) for i = 1,..., n; 
(b) #tofl are bounded and continuous for i = 1,..., n; 
(c) gH<o,\ have the property R in J0 for i = 1,..., n. 

Then g^%1 are completely continuous mappings for i = 1,..., n. 

Remark 5.2. If #».* satisfies the conditions 
(a') glk: Wn'^(h) - Zf(/0) (2 g 2fc fg H), 
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C3') gZ,k is bounded and continuous, 
( c ) 9a,k has the property R in J0, 

then g*k is a completely continuous mapping. 

Example 5.3. We consider "homogeneous problems" of the form 

(5.25) / ( x ) = z(x) 

z'(x) = -y(x) 

l2
0*y(x)dx = l0*z(x)dx = 0 

and 
(5.26) y"(x) = -y(x) 

y(0) = ,-(27t) = 0 . 

It is easy to observe that the problems (5.25) —(5.26) have non trivial solutions (for 
instance y(x) = sin x, z(x) = cos x). 

Remark 5.3. In the papers [4], [12], [17], [18], [19], [21], [24], [29], [31] we 
can find some conditions which guarantee that the trivial solution is the unique solu
tion of the homogeneous problems. 

Remark 5.4. A. Filippov in [7] considers some ordinary (linear and non linear) 
differential equations with distributions as coefficients, which can be replaced by 
a system of equations satisfying Caratheodory's conditions. 

Remark 5.5. Let geLp(k)(l0), where I0 c R, reN and p e ( l , oo). Then there 
exists exactly one element g A e LP(l0) such that 

(5.27) |g A | | p = inf {||G||p: Gelf(l0), G" = g] 

(by the uniform convexity of trie space If(I0) for p e ( l , oo)). In [33] an operation A 

is considered which assigns to a distribution g e L2(r)(J0) one of its r-th primitives 
(satisfying the condition (5.27)). If 1 -< p < cc, the operation A is not linear unless 
p = 2. Hence we conclude that 

(5.28) ||0f - 02
A||2 £ K - G2||2 , 

where gt = G[r\ g2 = G(
2\ Gl9 G2eL2(l0) and reN. Taking into account (5.28), 

we obtain a better estimate for the coefficient a in Examples 3.1 — 3.2 and 4.2 (for 
p = 2) using the operation A than for the operation v . 
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Souhrn 

APLIKACE HLADKÉHO INTEGRÁLU V TEORII SLABÝCH ŘEŠENÍ 
OBYČEJNÝCH DIFERENCIÁLNÍCH ROVNIC 

JAN LIG?ZA 

Článek se zabývá existencí a jednoznačností slabých (distributivních) řešení lineárních a neli
neárních okrajových úloh pro obyčejné diferenciální rovnice. Hlavními prostředky jsou pojem 
hladkého integrálu a klasické věty o pevném bodě. 

Резюме 

ПРИЛОЖЕНИЯ ГЛАДКОГО ИНТЕГРАЛА В ТЕОРИИ СЛАБЫХ РЕШЕНИЙ 
ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 

^АN ЕЮ^2А 

В статье изучается существование и однозначность слабых (в смысле обобщенных функций) 
решений линейных и нелинейных краевых задач для обыкновенных дифференциальных 
уравнений. Основными средсвами являются понятие гладкого интеграла и классические теоре
мы о неподвижной точке. 

Аи(Ног'л аййгевз: 1пз1у1и1 Ма1ета1ук1, Шшегзуге! §1а.8к1, Вапко\уа 14, 40007 Каго\У1се. 
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