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TO THE INVERSION OF GARDING THEOREM 

MIROSLAV SOVA, Praha 

(Received June 15, 1987) 

Summary. The subject under consideration is the inversion of the known Garding theorem 
concerning algebraic conditions (sufficient and) necessary for the so called ellipticity of some 
linear differential operators with very mild requirements (local integrability) on coefficients. 

Keywords: Linear partial differential operators. 

AMS Classification: 46E10. 

The purpose of this paper is to extend the known inversion of Garding theorem 
for partial differential equations, concerning the relation between the corresponding 
differential quadratic form and the quadratic form of coefficients, as given e.g. 
in Necas, Chap. 3, Sect. 4.3, Theoreme 4.7. Instead of the topological continuity 
of the coefficients including the boundary, we suppose only their local integrability. 
On the other hand, we restrict ourselves to the pure second order equations for the 
sake of simplicity, even if the method seems to work also in the general case. 

The proof of our result (Theorem 13) is based, as usual, on the use of some form 
of Fourier transform. But the form used below is considerably different and essentially 
more complicated since we must work with the continuity in the absolute mean almost 
everywhere of our locally integrable coefficients (i.e. with their Lebesgue points) 
instead of the above mentioned topological continuity including the boundary. 
The auxiliary results are collected in a series of lemams. 

1. We denote by R the real number field. 

2. For arbitrary d e {1, 2,...}, Rrf is the c/-dimensional coordinate space in which 
we use the following abbreviations: 

r = l 

KA(£) = {rj: rj e Rd, max \nr - £r| g h) for h > 0 and f e Rd . 
re{l,2,.. . ,d} 

Further, /* is the usual Lebesgue measure in Rd and JRd the corresponding Lebesgue 

integral. 
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3. Co°(Rd) is the set of all infinitely differentiate complex functions cp on Rd with 
compact support. The support of cp e Co°(Rd) is denoted supp (cp) and the partial 
derivative with respect to the r-th variable d(p\d.r or d\d.r cp for r e ( l , 2 , . . . , d}. 

4. In the sequel, Q will be an arbitrary fixed open subset of Rd. 

5. Lemma. Letf be a complex function on Q. If the function f is locally integrable 
in Q, then there exists a measurable set N __\ Q such that 

(a) »(N) = 0, 

V ; hd (/-/(€))->o(fc-o+) 
Kh(i) 

for every c e Q\N. 

Proof. Saks, Chap. IV, Theorem 6.3. 

6. Let us define: 

, _ 1 

for every \\i e Q ( R d ) , Q > 0, -. e Rd, h > 0 and £, e R*. 

чK*-(JЛ)-«> ф {__— Л 

7. Lemma. yjjenhi e C$(Rd) for every xji e C?(Rd), Q > 0, r\ e R-, /i > 0 and Z e Rd. 
Moreover, 

;H-+G!)J 
fOr every if* e Co°(Rd), O > 0, r\ e Rd, /i > 0, £ 6 Rd and r e {1, 2, ..., d}. 

д i 

д.r 

8. Lemma. JRd j i / ^ j 2 = IR* M 2 / o r ^ r y ^ e C^R*), O > 0, r\ e Rd, /? > 0 and 
£ e Rd. 

9. Lemma. 

-_ — Kh. — ^ - T_ iflj M 2 te -> °°) 
O JRdd.i d.j hz J R d 

for every i/t e Co°(Rd), r\ e Rd, fe > 0, £ e Rd and ij e {1, 2, ..., d}. 

Proof. By Lemma 7, we can write 
1 f 3 / 5 T 

2 — V O T « — V O T * « -
£? j R d ( 7 # i ^'j 

- ?kUr*~+(*)J[~ie,*,K+©J 
for every ij/ e C^R*), o > 0, /j e Rd, /i > 0, £ e Rd and i, j e {1, 2 , . . . , d}. 
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The statement follows immediately by making use of Lemmas 7 and 8 and of the 
Schwarz inequality. 

10. Lemma. 

? JR* І<Ч
 n

 JR* Q 

for every i/> e Co°(Rd), rj e Rd, h > 0 and £ e Rd. 

Proof. Immediate consequence of Lemma 9. 

11. Sublemma. For every \j/ e Co°(Rd), there exists a Q0 > 0 such that 

(Tj*|!)[<>maxM + £max|^rj!S 

L JR* r=lJRd\d.r\ \JRd / V = 1 J R < I 5 T I / J 

for every Q ̂  Q0. 

Proof. The case i/> = 0 is evident. 
Suppose now \j/ 4= 0. 
Then we get immediately that 

*\w+i\$1-M\wT{im)"' \w 
JR<* ^Utfl^r VJ / V=-l J l^rl 7 _ J R * / _> ^ -v 

Г i /1 _!_ v I W [max И ľ 
Є max ^ + X, max — L ł u 

L '=- lôт|j This implies that the left hand side of the preceding relation is 

2 [max |i/>|]2 

for sufficiently large Q > 0. 

The just proved inequality immediately gives the desired result. 

12. Lemma. For every xj/ e Co°(Rd), there exists a Q0 > 0 such that 

d \ X H 2 

< 

ž2d[max|^]2Í f U ^ 
r = l J R d | G . r 

2 

d 

for every Q > o0, f/ e Rd, £ rjr = 1, h > 0 and £ e Rd. 
r = l 

Proof. It is clear that 
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(1) max \ipmH\ = — max \ij/\ 

for every ij/ e C£(Rd), Q > 0, r\ e Rd, h > 0 and <.; G Rd. 
By Lemma 8, we have 

(2) j R d | ^ 2 = JRdH
2 

for every i/> G C£(Rd), ,2 > 0, rj e Rd, h > 0 and £ e Rd, 

(hjA2 

Rd\ d.r\ 

for every \p G Q ( R d ) , O > 0, Y\ E Rd, h > 0, £ e Rd and r e {1,2 , . . . , a1}. 
On the other hand, we have by Lemma 7 that 

3 

3., 

for every i/> e Co°(Rd), Q > 0, r\ E Rd, h > 0, £ e Rd and r e {1, 2 , . . . , d}. 
It follows from (1) and (4) that 

d 

(3) 

(4) 

f i(-) r - f 
), Y\ E Rd, h > 0, { G 1 
ve by Lemma 7 that 

£*«-;[•"*-«+(DJ 

(5) max "A, er//;^ = ^ ^ W m a x H + m a x |^J] 
for every \jt e C^(Rd), 0 > 0, ^ e Rd, h > 0, { e Rd and r G {V 2, -..., d}. 

Now by (5), we obtain 
d d 

(6) £>ax —'A, г = l 

d 

Ô.r 
QЧH 

< Q У lи.l max \ф\ + У max — = 

-л-/-+ iLк

řt
,i | M m

 r=i Ы J 
^ Г e ( І Ы 2 ) 1 / 2 m a x H + І m a x й l 

L r = 1 г = l | ö-гLJ 

^ 1 / 2 

hä/2 

for every i> G C£(Rd), Q > 0, /? e Rd, h > 0 and { G Rd. 
As an immediate consequence of (6) we have 

[ d I --j | - i 2 A V d 

2>ax ^ " ^ J = ^771 e maX M +
 r?,m a X 

for every i/r e C£(Rd), Q > 0, ,/ e Rd, X t/r = 1, ft > 0 and £ e R' 

õф 

д.. 

r = l 

By (7), we can write 

D max |i/>| + £ max 
r = l 

l-̂ -lï klJ 
for every ij/ e C?(Rd), e > 0, ,; e Rd, £ >/r

2 = 1, ft > 0 and { e Rd. 
r = l 
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On the other hand, we obtain from (2), (3) and (4) under use of the Schwarz 
inequality that 

(9) í T-^wJ = 7 - f W * + (—) 

Hi^-mj--
- i [AJ f !*,..<!' + f V*) f - %M f |*„K| («) II a 

" L JRd J*d\\Ó*r/Qrihl\ jRd \£?T/ffi|AdJ 

».-[«ÍJ^UE (?ijh$l 

-*,(]jMf!(L|0JT]= 
-i-[«Lw+LKr-*(f-w)XB3)1 

for every i> e C£(Rd), Q > 0, t] e Rd, /i > 0, £ e Rd and r e {1, 2,.. . , d}. 
Let us recall that clearly 

oo) £i,.i(f m)'"Mi*Hi[ my 
'=i VJE-I^TI / »•=- V - O B - I ^ V I / 

for every i/f e Co°(Rd) and r\ e Rd. 
It follows from (9) and (10) that 

(ii) i j |f +«* >= 

*i-[4^^&-^(f^r(fL.Kni* 
for every ^ e C*(Rd), o > 0, r\ e Rd, h > 0 and £ e Rd. 

As a special case of (11) we have 
d C \ d I 2 

(12) I J | - ^ | >= 

H[^4m:-(ij<(iim'} 
d 

for every \j/ e C?(Rd), 0 > 0, >j e R", £ •£ =- 1, ft > 0 and £ 6 Ra. 
r = l 
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Using Sublemma 11, we get from (8) and (12) that for every \\t e Co°(Rd), there 
exists a o0 > 0 such that 

tff M*[£ii_«|AfJT_-
JR" Lf = 1 \°-r |J 

-^(jww)[-w*.s-|tgj. 

J 

for every Q > Q0, r\ e Rd, £ ^ = 1, h > 0 and £ 6 Rd, and this is in fact the desired 
result. r = 1 

13. Theorem. Lei1 au, i,j e (1 , 2 , . . . , d}, be complex functions on Q, and 8 a real 
function on the system of open bounded sets G _= Q such that G _= Q. If 
(a) the functions atj, i, j e {1, 2 , . . . , d}, are locally integrable in Q, 
(P) for every open bounded set G _= Q such that G _= Q, there exists a constant 

Xe R so that 

»i f««**+*fw-wtf Iff 
for every cp e C^(Rd) such that supp (<p) _= G, then for every open bounded 
set G _= Q such that G _= Q,we have 

£ Rea.,j{t;)ni1j^S{G)in? _r2 

i , / = l " " r = l 

for almost every Q e G and every tju r\2,..., J |deR. 

Proof. Let us first recall that we can apply Lemma 5 as seen from the assumption 
(a), and thus we can fix a measurable set N £ Q such that 

(1) fi(N) - 0, 

(2)if K-«.A«)l-o (*-°+) 
" .'Kh(J) 

for every £ eQ\N and i, j e {1, 2 , . . . , d}. 
Let us fix a function x e R* -+ R such that 

(3) X eC»(R") , 

(4) X * 0, 

(5) supp(x) c {(TicreR", max |<-r| ^ 1}. 
r6{l ,2, . . . , i ) 
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It is easy to see from (5) that 

(6) supp (ZOT„) c K,(c;) for every g > 0, fj e Rd, h > 0 and { e Rd. 

Moreover, let us fix a constant a constant h0(c|), {e(2, such that 

(7) h0({) > 0 for every {efl, 

(8) K*({) s Q for every c e Q and 0 < fc g h0(£). 

It follows from (6), (7) and (8) that 

(9) supp (ZOTIJC) C Q for every 0. > 0, rj e Rd, 0 < h £ hc(£) and f e fi. 

Now we get from (a), (6) and (9) that 
d /• /? /} 

(1°) R e S ( - i y -« iX0)T-Zr t«^Zn« = 

= Re £ (ay - fl,X«))— Z„w — Xe 
' J -UKHU) "M "V 

fcOT/l£ 

= Z í K - fliXOI 

= £ K " fl.Xč)l m a x r- Z, 

4 max [ K-««X«)lir Ž 
L««.-.- ->J-*«> JL«..»-1 

= max I K-fliXí)| Z 
L'~«-.- ->J*»K> JL' = l 

Õ.J 
XQtihz 

max 

ІŐ 
m a x — XQПH |ð., 

d 

XQr\hZ 

max 
3 II 
- XmhA 
•j U 

L 

for every Q > 0, rj e Rd, 0 < h ^ /»G(5) and { e O. 
By Lemma 12, we see from (3) and (4) that we can fix a Q0 > 0 such that 

(u) [ i m a x I H ] 2 -
< 2d (max MY ' f \d_ 2 

~# J-Ma ^Lk, 
d 

for every Q ^ Q0,t]eRd, £ ^ = 1, h > 0 and £ e Rd. 
r = l 

It follows from (10) and (11) that 

(1-) R%?iJ (fl«~fl'^))^".z^«^~ *"*«-* 

* iwm L'^1-- ->Jic»(fl JL'-Oi-I^r I J 
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for every 
d 

Q = Q0 , ^ R d , Z /̂r
2 = 1 , 0 < /i = h0(") and " e O . 

r = l 

Let us now consider a fixed but arbitrary set G such that 

(13) G c Q, 

(14) G _= :Q, 

(15) the set G is open. 

It follows from (2), (4), (7) and (15) that we can fix a constant h(£, e), " e G \ N , 
e > 0, such that 

(16) 0 < /i(", c) = h0({) for every " e G \ N and - > 0, 

(17) KMr.iB) -= G for every " e G \ N and e > 0, 

V ; ^( i ,2 , . . . .d)LK^£)d jKh(^ A ; 1 J " 2J(max|Z | )2 

for every £eG\N and e > 0. 
As an immediate consequence of (6) and (17) we have 

(19) supp (&*,«..)«) S G for every g > 0 , r/ e Rd , £ e G \ N and e > 0. 

Now, in view of (13), (14) and (19), we see from (P) that we can fix a X e R such 
that 

(20) Re ' X a ' J "T ^Wh(«,e)« 7~ XOTh(«.OC + ^ l^h(«,E)«| = 
*../=- J fl "•* ^'j Jfl 

d C \d I2 

= <K G )X — ZcnhW^d 
r = l J R d | O . r I 

for every g > 0, r\ e Rd, £ e G \ AT and e > 0. 
On the other hand, we get from (4), (12), (16) and (18) that 

d /• ^ ps 

(21) Re "T (a l 7 - a , / " ) ) — *OTh(-.«)- 7 " - " M M " . * = 
»'.1=iJ f i 3.£ 3 V 

d f I d 2 

= £ X 7 " ÔTh(«.«)C 
r = l J R d | C . r 

d 

for every g = Go* -1 e R~, ^f j r
2 = U e G \ i V a n d e > 0. 

r = l 
/ 

d /* n *\ /* 

(22) Re *T a , / £ ) | — ZOTh(«fB)«— X^MS.EK + -* |Xe*MS,o«l ~~ 
ij=l jR*V'i °'j JR* 

= R" X ^U 7 " ZOTM«.E)« — -<OTh«.e)« + ** |Xtfi|h(C,e)«| "" 
U ^ U n "•* d-y J « 
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d /• -3 3 

- R e Z (aU - au(Z))— XviMM—inhiMi = 
».1=i J n o-i o.j 

d f I d 
^(S(G)- e ) Z — XOTh(«..)« 

r = l J R d | O . r 

d 

for every Q > Q0, rjeRd, £ ^ = 1, f e G \ N and £ > 0. 
r = l 

In view of (3), we can apply Lemmas 9 and 10 and we get from (22), dividing this 
inequality by Q2 and letting Q -» oo, 

(23) Re i a ^ ) m - ^ - [ \X\2 = (KG) " s) - J — f \x\2 

U = i h(Z>e) J** h(^£) JR* 
d 

for every rj e Rd, £ ^ = 1, £ e G \ N and £ > 0. 
r = l 

Since JRd \x\2 > 0 by (4) and h(£, fi) > 0 by (16), (23) implies 

(24) Re i atffimnj = 6(G) - e 
f , 1 = i 

d 

for every ) | 6R J , £ */r = 1> £ e G \ N and £ > 0. 
r = l 

It is clear that (24) is equivalent with 

(25) Re i aS)riir1j^6(G) 
ij=i 

d 

for every r\ e Rd, £ t]2 = 1 and ^ e G \N . 
r = l 

Let us finally write (25) in the form 

(26) Re ia^wj^switf 
- . 1 = 1 r = l 

for every ^ e R d and £ e G \N . 
Now the desired statement follows from (l) and (26). 
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Souhrn 

K OBRACENI GARDINGOVY VETY 

M lROSLAV SOVA 

Obraceni Gardingovy vSty je dokazano pro koeficienty pouze lokalnS integrovatelne. 
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Резюме • ; 

ОБ ОБРАЩЕНИИ ТЕОРЕМЫ ГОРДИНГА 

МIКОЗ^АV 8оУА 

Доказано обращение теоремы Гординга для коэффициентов, которые интегрируемы лишь 
локально. 

Ашког'з аййгезз: Ма1ета11ску йз(ау С8АV, Й1па 25, 115 67 РгаЬа 1. 
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