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Gasopis pro péétovéni matematiky a fysiky, rot. 74 (1949)

NOTE ON SUCCESSIVE CUMULATIVE SUMS OF INDEPEN-
DENT RANDOM VARIABLES.

ANTONIN SPACEK, Praha.
(Received April 4, 1949.)

Let 2 be a random variable and z, z,, 23, ... a sequence of indepen-
dent random variables, each with the same distribution as z. We shall
always suppose, that the distribution of z has positive variance D(z},
which excludes trivial cases. Define Z,, = 2, + 2, + ... + 2z, for m =
=1,2,3,... and choose three constants 6 <0 < a, d> 0. Then

Uy =2, + d for m=1,2,3,... also- are independent and identically
distributed random variables according to the distribution of v = z 4- d.
Let Vyp = v, + 05+ ... +vpform =1,2,3,.... Then V,, = Z,, + md
form =1,2,3, ... . Define the random variable n as the smallest posi-
tive integer, for which V,<b, or Z,<b, V,,>a, or Z,>a, i. e.

Zy<b—nd,ora—nd< Z,<bora< Z,

" " This generalization of | WaLDs’ theory is of particular interest in the

" following sampling inspection scheme: Let z;, #,, %5, ... be a sequence of
independent observations on the random variable x, which admits
a discrete distribution or probability density function f(z, #) depending
upon the single unknown parameter &. For particular values ¢, > 9y >
= 9y >, of §, define the random variables z = log[f(x )/ f(:c, ﬂo)j
v = log[f(=, 19 )/f z,9, )], each of which, evidently, is a function of the
other. For a speclal class of discrete dlstnbutlons and densities, this
function is linear, for example the three most important distributions, the
binomial, the Poisson and the normal distributions belong to this class.
In the case of Poisson and normal distributions, if 4 is the mean, we
have the special linear function » =z + 4 for 29 — By =18 mﬁ,, and

if f(x, p) is a binomial distribution and 1 > p; > p, = 1, > py’ > 0,

" then v = z + d holds for p," = 1 — p, and p," = 1 — p,. The inspection
procedure is defined as follows: We take observations z;, &, 23, ... and
compute the corresponding values 2, %, 23, ... as long as b < Z,; < @ or
b< Z, + md < ais satisfied. The first time that neither Z, nor

Zm + md lies in the open interval (b, @), inspection is terminated. At the
termination of this procedure the lot is accepted, if a —md < Zm = <,
and rejected otherwise.
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The purpose of this note is to show that all theorems of WaLp's
theory [1] remain true for our more general case. In particular, we shall
show, that the following theorems hold:

(i) The random variable n has fim’te moments of all orders.
(i) The fundamental identity (15) in [1] holds.

(iii) The differentiability of the fundamental identity, as expressed by
theorem 2,1 in [2] holds.

,The proof will result from the following two lemmas:

(iv) There exists a positive number ¢ and a positive number p << 1,
such that P(n > k) < ¢p* for £ =1,2,3, ....

(v) The conditional expectation E(eZnt | n = m) is bounded indepen-
dently of m for each fixed real t.

Proof of lemma (iv): Let us denote by I, the open mterval
(b —a+xd, a—b+ xd) for x=0,+ 1, & 2, ... and define Z, = 0;

ZP) = 2pis1+ Zmjsz+ oo+ Zmjom for m= 1,2, 3,..., j=0,1,2,
3, ....Then , )
o Zj = Zni—1y + Zim " (1)
for §7=.1,2,3,... and we shall prove the following .proposition (7):
If n >k = m,then . : .
Zin e Ipmj+ Im 4 Iy + Ingi-, )

for each positive integer j, which satisfies the condition 1< § < k/m.
Suppose that this is not so and denote by j, the least subscript which

 satisfies the condition 1< 7o < %/m and for which (2) does not hold.

If j,=1, then by (2) Z(O) = Zmynonel_, + I, and hence Z,, does
not lie in the sum of the open intervals (b —md a — md) and (b, a),
ie.nm<k contrary to hypothesis. Let j, > 1. Then either n <
< m(jy — 1) < mj, < m(k/m) = k, which is by hypothesis 1mp0881b1e ‘
- or n > m(j,— 1). If the last lnequahty holds, then Z,,;,—1) lies in the
- sum of the open intervals (b — m(j, — 1)d, a — m(j, — 1)d) and (b, a),
by (2) and by the definition of j,, we have Z9*~ non ¢ I —mjs + L—m +
"+ Iy+ I,—1)and therefore by (1), Z,;, does not lie in the sum of the
open intervals (b — mjd, a — mjyd) and (b, a),i. e. n < mjy < m(k/m) =
= k contrary to hypothesis. The proposition (w) is thus proved. Since
23, 29, 23, ... Are 1ndependent and identically distributed, the same holds

also for Zﬁ,?), zZ® 72 .. such that for & =>m
P(" > k) §_ H P(Zm € I—m =+ I-—my‘ -+ Io + I'm(:i—l)), (3)

j=

where fy, is the greatest positive mteger < k/m. We shall now establish '
the following proposition (p): There exists a pair of positive integers r and 8
and a positive number ¢<< 1, suchthat P(Zy e I _p; +1_,+ Io+ L)) < ¢ -
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Jor each subscript j > s. If (g) is true, then by (3) for k >rs41)

i . kE  s+1
Pin>k) S M P(Zyel i+ I, + I+ Ly < gr—s< q7  *

j=s+1
s+l -
and if we substitute cfor¢ * and p for ¢, lemma (iv) is proved under

the assumption that (o) holds. We shall show firstly, that there exists
a positive integer m, such that

PZpel_ptI)<1 @)
for each subscript m > m,. We distinguish three cases:
0% Bz +—d, Biz)=0, Blz) = —d.

Let 0 + E(2) 3 — d and suppose, that to each positive integer m there
exists a subscript k,, > m such that

P(Zy, el 4, + I)=1, (5)

for m=1,2,3,..., i. e. there exists an infinite sequence of positive
integers by < k, << kg < .o ,such that (5)holdsform = 1,2,3,....Then

Pl —b) — dkmla —b) < Zg,2 + dkmZz, < (@ —Db)* +
~+ dkpla—b)]=1
‘form=1, 2,3, ..., and since

B(Zy,? + dknZy,) = knD?@) + knBREE) + d),
we have o

—d(a—8) < DX2) + knE()[E(2) + d] < (a—b)2 + d(a—b)

for m= 1,2, 3, ..., which is impossible. Let now E(z) = 0. For a prop-
perly choosen § > 0, we have P(z > §) > 0. Suppose that P(z>d)=0
for each 6 >0, hence P(z >0)=0, i. e. P(z< 0)= 1. Then either
P(z=0) = 1, which is impossible, because D*(z) > 0, or P(z< —w) >0
for a' propperly choosen w > 0, because otherwise, P< 0)=0<1,
hence E(z) < — wP(z[z < — w) < 0 contrary to hypothesis. Since the
random variables z,z,,2,, ... are independent, each with the same
distribution as z, and z; > 6 for k= 1,2, 3, ..., m implies Z,, >a—2bd
for m > my > (@ —b)/8, hence 0 < [P(z> )" < P(Zp >a—0b)<
< P(Zp = a—0), i. e. P(Zy <a—>b)<1 and the last inequality
implies (4) for each subscript m > m,. Similarly, if E(z) = —d, then
E(w)= 0 and we have P(V,, >b—a)< 1 for a sufficiently large m,
i. e. P(Zy >b—a—mdy< 1, hence (4) holds for each subscript
m > my. If by is a positive integer > 2(a — b)/d and r = max(m, + 1, k,),
we have

PZyel_,+I)<]1, )
., Iff'Ilrn':O: j*k’ j=0:i1}.'.122:--':"6:0::{:1::*:2"‘" (7)
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We shall further show that o each 1 > 0 there exists a positive integer v,
such that :

Pz, € I+ Lj—1)<m ' (8)

_ for each subscript § > vy Suppose that a particular n = 7, >0 has the

property that, to each positive integer j, there exists a subscrlpt m; > g
such that

P(Zr € I——rmj + Ir(m]-——l)) _Z o> (9)
i. e. there exists an infinite sequence of positive integers my < my <
< mg<< ..., such that (9) holds for j=1,2,3,. But this is not

possible, because, for a positive mteger Jo > 1 /170 we have by (9) and (7)
P(Z, e Z(I—rm + Ir(m )= ZP (Zy e I—rm + Ir(m —1) = > Joflo > 1,

and therefore (8) holds for each subscrlpt j >, Let now

= §[1 —P(Z, e I_, + I,)].
By (6), 7 > 0 and by (8), there exists a.positive integer s, such that

P(Zy eI i+ Inj—1)) < 31 —P(Zr e I_, + Iy)] =
= §[1+ P(ZreI—r+ Io)] _"P(Zfel—r“‘ I,),
i. e., by (7)

P(Z, e I—ry + I+ I, + Lr(y——-l)) < %[1 + P(Z,el_,+ I)] <1,
for each subscript j > s. If we substitute ¢ for 1;[1 + P(Z,eI_,+ I,)],
then (p) is proved and the proof of lemma (iv) is complete
Proof of lemma (v): Smce
E’(e‘n‘ | n=m) =
=PZy,Zb—nd|n=m)E€t|Z, < b—nd,n=m)+

+ Pa—nd< Z, < b}n-—m)E(eZntla—nd<Z <b,n=m)+

' .+ P(Z, >a[n—m)E(eZnt|Z >a, n_m)

we have fort > 0
Ee?nt|n =m)< 2% + P(Zy, > a|n=m) Bt | Z, > da,n =m) =

— bt + ette—"t P(z > ) E(e®t | 2 > @) = 2ebt 4 eate—3t fez‘ dF@E) <
< 2ebt L et (2),
where (1) is the moment generating function; sinlilarly for t_'< 0
E(eZnt | n = m) < 2e% + et ()

and fmally E(e%nt| n = m) = 1 for ¢ = 0, which completes the proof.
Proof of theorem (i): For each positive integer  the moment of

r-th order is E(n") = E k* P(n = k). Since clearly P(n = k) < P(n >
. k=1 - .
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. .
>k—1) and by lemma (iv) E(n") < ¢ X k'p*1 for k= 1,2,8, ...,
k=1
hence theorem (i) follows at once from the p’ArLEMBERTS criterion.
The proof of theorem (ii) is the same as in [1] and it is enough to
note only, that |E(eZmt-| n > m)| < e2ll and by lemma (iv) imP(n >
> m) = 0. M—>c0

To prove theorem (iii), it is sufficient to show that the expectation
2,16 in [2] is finite and this follows at once from lemma (v) and theorem (i)

By differentiating the fundamental identity at ¢ = 0, we obtain the
well known formulae

En) = li,(,(z')b) for E(z) == 0, (ld)
2
E(n) = EE'((Z“) for E(z) = 0. . (11)

It is easy to show, that the above mentioned theorems remain true
ford < 0 and therefore it is not necessary to use the formula (11), because
if E(z) = 0, then E(v) = d and we have E(n) = E(V,)/E(v). Under the
assumption that the coditions of lemma 2 in[1]hold (respectively without
the.condition E(z) == 0), a formula may be obtained from the fundamen-
tal identity for P(a —nd < Z, < b), which is analogous to the formula
(18) in [1].

Tesla National Corporation, Praha.
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. i N
O postupnych kumulativnich soultech nezdvislych ndhodnych
‘ proménnych.

. (Obsah piedeilého ¢lanku.)
Jedn4 se o jisté zobecnéni Warpovy theorie postupnjrch‘ kumulativ-
nich souéth nezédvislych ndhodnych proménnych, kterého lze pousit pti

testovani hypotéz postupnymi vybéry. Dokazuje se, Ze pii takovém
zobecnéni ziistdvaji v platnosti véechny véty Warpovy theorie.
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