Archivum Mathematicum

Ján Jakubík

Direct product decompositions of pseudo $M V$-algebras

Archivum Mathematicum, Vol. 37 (2001), No. 2, 131--142

Persistent URL: http://dml.cz/dmlcz/116920

Terms of use:

© Masaryk University, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DIRECT PRODUCT DECOMPOSITIONS OF PSEUDO $M V$-ALGEBRAS

JÁN JAKUBÍK
Dedicated to Professor František Šik on the occasion of his 80 . anniversary

Abstract

In this paper we deal with the relations between the direct product decompositions of a pseudo $M V$-algebra and the direct product decomposicitons of its underlying lattice.

I. Introduction

Direct product decompositions of $M V$-algebras have been investigated in [8]. It is well-known that for each $M V$-algebra \mathcal{A} there exists an abelian lattice ordered group G with a strong unit u such that \mathcal{A} can be obtained by a well-defined construction from G; in accordance with the notation from the monograph by Cignoli, D'Ottaviano and Mundici [2] we write $\mathcal{A}=\Gamma(G, u)$. One of the items dealt with in [8] was the relation between direct product decompositions of \mathcal{A} and direct product decompositions of G.

The $M V$-algebra is an algebraic structure of type ($2,1,0,0$) (cf. [2]); the binary operation is denoted by the symbol \oplus and it is assumed to be commutative.

The notion of $M V$-algebra can be generalized in such a way that the assumption of the commutativity of the operation \oplus is omitted (cf. Georgescu and Iorgulescu [5], [6], and Rachůnek [11]).

The results of [6] were used by Dvurečenskij and Pulmannová [3]; further, the results of [11] were applied by Chajda, Halaš and Rachůnek [1].

For further results on pseudo $M V$-algebras cf. Dvurečenskij [4], Leustean [10], Rachůnek [12] and the author [9].

In the present paper we apply the terminology and the notation from [6]. Thus we deal with an algebra of type $(2,1,1,0,0)$ which is called a pseudo $M V$-algebra; for the definition, cf. Section 2 below. (I remark that the substantial part of this paper has been finished before I was acquainted with [11] and [1].)

[^0]If G is a lattice ordered group (which need not be abelian) and if $0 \leqq u \in G$, then by similar construction as in the abelian case we can construct the algebraic structure $\mathcal{A}=\Gamma(G, u)$. It turns out that \mathcal{A} is a pseudo $M V$-algebra.

In [3] it was proposed the problem whether for each pseudo $M V$-algebra \mathcal{A}_{1} there exists a lattice ordered group G_{1} with a strong unit u_{1} such that $\mathcal{A}_{1}=$ $\Gamma\left(G_{1}, u_{1}\right)$. Dvurečenskij [4] proved that the answer is positive.

Let A be the underlying set of the pseudo $M V$-algebra \mathcal{A}. By applying the basic pseudo $M V$-operations we can define a partial order \leqq on the set A such that $L(\mathcal{A})=(A ; \leqq)$ is a bounded distributive lattice. (Cf. [6].)

Let \mathcal{A} a pseudo $M V$-algebra. In the present paper we describe a construction showing that to each element e of A which has a complement in the lattice $L(\mathcal{A})$ there corresponds a direct product decomposition of \mathcal{A} with two direct factors.

Conversely, we prove that each two-factor direct product decomposition of \mathcal{A} can be obtained, up to isomorphism, by the mentioned construction.

Further, we show that each direct product decompostion of the lattice $L(\mathcal{A})$ induces a direct product decomposition of \mathcal{A}, and conversely.

This implies that any two direct product decompositions of \mathcal{A} have isomorphic refinements.

Let us also remark that if there exists a lattice ordered group G with an element $0 \leqq u \in G$ such that $\mathcal{A}=\Gamma(G, u)$, then the assertion of Theorem 2.5 from [8] concerning internal direct product decompositions of an $M V$-algebra holds also in the case of pseudo $M V$-algebras; it suffices to use the same proof which has been applied in [8].

2. Preliminaries

We start by recalling the definition of pseudo $M V$-algebra (cf. [6], [3]).
Let $\mathcal{A}=\left(A ; \oplus,^{-}, \sim, 0,1\right)$ be an algebraic structure, where A is a nonempty set, \oplus is a binary operation, ${ }^{-}$and ${ }^{\sim}$ are unary operations, 0 and 1 are nulary operations on A. For each $x, y \in A$ we put

$$
y \odot x=\left(x^{-} \oplus y^{-}\right)^{\sim}
$$

The algebraic structure \mathcal{A} is called a pseudo $M V$-algebra if the following conditions are satisfied for each $x, y, z \in A$:
(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $1^{\sim}=0 ; 1^{-}=0$;
(A5) $\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}$;
(A6) $x \oplus\left(x^{\sim} \odot y\right)=y \oplus\left(y^{\sim} \odot x\right)=\left(x \odot y^{-}\right) \oplus y=\left(y \odot x^{-}\right) \oplus x$;
(A7) $x \odot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \odot y$;
(A8) $\left(x^{-}\right)^{\sim}=x$.
We define $x \leqq y$ iff $x^{-} \oplus y=1$. Then \leqq is a partial order on A. Put $L(\mathcal{A})=$ $(A ; \leqq)$.

Proposition 2.1. (Cf. [6].) $L(\mathcal{A})$ is a lattice with the least element 0 and with the greatest element 1. Moreover, for each $x, y \in A$ we have

$$
x \vee y=x \oplus\left(x^{\sim} \odot y\right), \quad x \wedge y=x \odot\left(x^{-} \oplus y\right)
$$

Lemma 2.2 (Cf. [6]). If $\left\{y_{i}\right\}_{i \in I} \subseteq A$ and if $\bigvee_{i \in I} y_{i}$ exists in $L(\mathcal{A})$, then the the lattice $L(\mathcal{A})$ satisfies the condition

$$
x \wedge \bigvee_{i \in I} y_{i}=\bigvee_{i \in I}\left(x \wedge y_{i}\right)
$$

Hence, in particular, $L(\mathcal{A})$ is a distributive lattice.
Let G be a lattice ordered group and let $0 \leqq u \in G$. The group operation in G is denoted by + , though we do not assume that this operation is commutative. Further, let A be the inverval $[0, u]$ of G. For $x, y \in A$ we put

$$
\begin{aligned}
x \oplus y & =(x+y) \wedge u, \\
x^{-} & =u-x, \\
x^{\sim} & =-x+u .
\end{aligned}
$$

Proposition 2.3 (Cf. [6]). The algebraic structure $\mathcal{A}=\left(A ; \oplus,{ }^{-}, \sim, 0, u\right)$ is a pseudo $M V$-algebra.

If \mathcal{A} is as in 2.3, then we denote $\mathcal{A}=\Gamma(G, u)$.

3. Auxiliary results

Again, let \mathcal{A} be a pseudo $M V$-algebra and $L=L(\mathcal{A})$. Assume that e is an element of A which has a complement e^{\prime} in the lattice $L(\mathcal{A})$. In view of $2.2, e^{\prime}$ is uniquely determined.

Consider the intervals

$$
X_{1}=[0, e], \quad X_{2}=\left[0, e^{\prime}\right]
$$

of the lattice L. For $a \in A$ we put

$$
a_{1}=e \wedge a, \quad a_{2}=e^{\prime} \wedge a
$$

Lemma 3.1 (Cf. [6]). Let $p, q \in A, p \wedge q=0$. Then

$$
p \oplus q=p \vee q=q \oplus p
$$

Corollary 3.2. Let $x^{1} \in X_{1}, x^{2} \in X_{2}$. Then $x^{1} \oplus x^{2}=x^{2} \oplus x^{1}$.
Lemma 3.3. $a=a_{1} \oplus a_{2}=a_{1} \vee a_{2}$ for each $a \in A$.

Proof. The distributivity of L yields

$$
a=a \wedge 1=a \wedge\left(e \vee e^{\prime}\right)=(a \wedge e) \vee\left(a \wedge e^{\prime}\right)=a_{1} \vee a_{2}
$$

Hence in view of 3.1, $a=a_{1} \oplus a_{2}$.
Lemma 3.4. Let $a \in A, x^{1} \in X_{1}, x^{2} \in X_{2}, a=x^{1} \oplus x^{2}$. Then $x^{1}=a_{1}$ and $x^{2}=a_{2}$.
Proof. By applying 3.1, 3.2 and the distributivity of L we obtain

$$
x^{1}=x^{1} \wedge\left(x^{1} \vee x^{2}\right)=x^{1} \wedge\left(x^{1} \oplus x^{2}\right)=x^{1} \wedge a=x^{1} \wedge\left(a_{1} \vee a_{2}\right)=\left(x^{1} \wedge a_{1}\right) \vee\left(x^{1} \wedge a_{2}\right) .
$$

We have $x^{1} \wedge a_{2}=0$, whence $x^{1}=x^{1} \wedge a_{1}$ and thus $x^{1} \leqq a_{1}$. Similarly we verify that $a_{1} \leqq x^{1}$, thus $a_{1}=x^{1}$. Analogously, $a_{2}=x^{2}$.
Lemma 3.5 (Cf. [6], Propos. 1.20). If $x \wedge y=0$, then $x \wedge(y \oplus z)=x \wedge z$.
Lemma 3.6. The set X_{1} is closed with respect to the operation \oplus.
Proof. Let $a, b \in X_{1}$. Then we have $a \wedge e^{\prime}=0$. Hence according to 3.5 we obtain

$$
e^{\prime} \wedge(a \oplus b)=e^{\prime} \wedge b=0
$$

whence $(a \oplus b)_{2}=0$. Thus 3.3 yields $(a \oplus b)_{1}=a \oplus b$. Therefore $a \oplus b \in X_{1}$.
Lemma 3.7. Let $a, b \in A$. Then

$$
(a \oplus b)_{1}=a_{1} \oplus b_{1}, \quad(a \oplus b)_{2}=a_{2} \oplus b_{2}
$$

Proof. In view of 3.2 and 3.3 we have

$$
\begin{aligned}
a \oplus b & =\left(a_{1} \oplus a_{2}\right) \oplus\left(b_{1} \oplus b_{2}\right)=a_{1} \oplus\left(a_{2} \oplus b_{1}\right) \oplus b_{2}= \\
& =a_{1} \oplus\left(b_{1} \oplus a_{2}\right) \oplus b_{2}=\left(a_{1} \oplus b_{1}\right) \oplus\left(a_{2} \oplus b_{2}\right) .
\end{aligned}
$$

According to 3.6, $a_{1} \oplus b_{1} \in X_{1}$. Similarly, $a_{2} \oplus b_{2} \in X_{2}$. Thus 3.4 yields

$$
(a \oplus b)_{1}=a_{1} \oplus b_{1}, \quad\left(a \oplus b_{2}\right)_{2}=a_{2} \oplus b_{2}
$$

Proposition 3.8 (Cf. [3], 4.4.3, Exercise 7.6.4.5). Let \mathcal{A} be a pseudo MV-algebra, $A \neq\{0\}$. Then there exists a lattice ordered group G with an element $0<u \in G$ such that \mathcal{A} can be embedded (as a pseudo MV-algebra) into the pseudo MV-algebra $\Gamma(G, u)$.

Let $x \in A$. Denote

$$
\begin{aligned}
& P_{x}=\{p \in A: p \oplus x=1\} \\
& Q_{x}=\{q \in A: x \oplus q=1\}
\end{aligned}
$$

Lemma 3.9. Let $x \in A$. Then

$$
x^{-}=\min P_{x}, \quad x^{\sim}=\min Q_{x} .
$$

Proof. In view of 1.5 in [6] we have $x^{-} \oplus x=1$, whence $x^{-} \in P_{x}$. Let G and u be as in 3.8. Thus $u=1$ and $x^{-}+x=u$. Let $p \in P_{x}$. Hence

$$
u=1=p \oplus x=(p+x) \wedge u
$$

which yields

$$
p+x \geqq u=x^{-}+x .
$$

Therefore $p \geqq x^{-}$. Hence $x^{-}=\min P_{x}$. Analogously we verify that $x^{\sim}=$ $\min Q_{x}$.

Remark 3.9.1. From 3.9 we conclude that unary operations ${ }^{-}$and \sim are uniquely determined by the operation \oplus and by the partial order \leqq on A.

For $x \in X_{1}$ we denote

$$
\begin{aligned}
& P_{x}^{1}=\left\{p \in X_{1}: p \oplus x=e\right\}, \\
& Q_{x}^{1}=\left\{q \in X_{1}: x \oplus q=e\right\} .
\end{aligned}
$$

Lemma 3.10. Let $x \in X_{1}$. Then

$$
\begin{gathered}
\left(x^{-}\right)_{2}=\left(x^{\sim}\right)_{2}=e^{\prime} \\
\left(x^{-}\right)_{1}=\min P_{x}^{1}, \quad\left(x^{\sim}\right)_{1}=\min Q_{x}^{1}
\end{gathered}
$$

Proof. Clearly $\left(x^{-}\right)_{2} \leqq e^{\prime}$. By way of contradiction, suppose that $\left(x^{-}\right)_{2}<e^{\prime}$. Then

$$
1=x^{-} \oplus x=\left(x^{-}\right)_{1} \oplus\left(x^{-}\right)_{2} \oplus x
$$

Since $\left(x^{-}\right)_{2} \in X_{2}$ and $x \in X_{1}$, in view of 3.2 we have

$$
\left(x^{-}\right)_{2} \oplus x=x \oplus\left(x^{-}\right)_{2}
$$

Therefore

$$
1=\left(x^{-}\right)_{1} \oplus x \oplus\left(x^{-}\right)_{2}
$$

In view of $3.6,\left(x^{-}\right)_{1} \oplus x \in X_{1}$. Thus $\left(x^{-}\right)_{1} \oplus x \leqq e$, whence

$$
1 \leqq e \oplus\left(x^{-}\right)_{2}=e \vee\left(x^{-}\right)_{2}
$$

In view of the distributivity and according to the relation $\left(x^{-}\right)_{2}<e^{\prime}$ we get $e \vee\left(x^{-}\right)_{2}<1$, which is a contradiction. Thus $\left(x^{-}\right)_{2}=e^{\prime}$.

Further, by way of contradiction, assume that the relation

$$
\left(x^{-}\right)_{1}=\min P_{x}^{1}
$$

fails to hold.
According to 3.7 we have

$$
\left(x^{-}\right)_{1} \oplus x_{1}=\left(x^{-} \oplus x\right)_{1}=1_{1}=1 \wedge e=e,
$$

whence $\left(x^{-}\right)_{1} \in P_{x}^{1}$. Thus in view of the assumption there is $z \in P_{x}^{1}$ such that $\left(x^{-}\right)_{1} \not \equiv z$. Denote

$$
t=\left(x^{-}\right)_{1} \wedge z
$$

Then $t<\left(x^{-}\right)_{1} \wedge z$. Then $t<\left(x^{-}\right)_{1}$ and hence $t \in X_{1}$, yielding $t_{1}=t$. We have

$$
t \oplus x=\left(\left(x^{-}\right)_{1} \wedge z\right) \oplus x=\left(\left(x^{-}\right)_{1} \oplus x\right) \wedge(z \oplus x)
$$

(in view of $1.16,[5])$. Since $z \oplus x=e$, we get $t \oplus x=e$, whence $t \in P_{x}^{1}$.
In view of the distributivity of L we obtain

$$
t \oplus e^{\prime}=t \vee e^{\prime}<\left(x^{-}\right)_{1} \vee e^{\prime}=\left(x^{-}\right)_{1} \vee\left(x^{-}\right)_{2}=x^{-}
$$

Further,

$$
\begin{aligned}
\left(t \oplus e^{\prime}\right) \oplus x & =t \oplus\left(e^{\prime} \oplus x\right)=t \oplus\left(x \oplus e^{\prime}\right)=(t \oplus x) \oplus e^{\prime}= \\
& =e \oplus e^{\prime}=e \vee e^{\prime}=1
\end{aligned}
$$

Since $t \oplus e^{\prime}<x^{-}$, in view of 3.9 we arrived at a contradiction. Therefore $\left(x^{-}\right)_{1}=$ $\min P_{x}^{1}$.

The remaining relations concerning x^{\sim} can be proved analogously.
Lemma 3.11. Let $x \in X_{1}$ and let G be as in 3.8. Let $b^{1} \in G, b^{1}+x=e$. Then $b^{1}=\min P_{x}^{1}$.
Proof. It suffices to apply analogous steps as in the proof of 3.9.
Analogously we have
Lemma 3.11.1. Let $y \in X_{2}$ and let $b^{2} \in G, y+b^{2}=e^{\prime}$. Then $b^{2}=\min Q_{y}^{1}$.
It is obvious that if b^{1} and b^{2} are as in 3.11 and 3.11.1, then $b^{1} \in X_{1}$ and $b^{2} \in X_{2}$.

Put $b=b^{1} \oplus b^{2}$. In view of 3.4 we have

$$
b_{1}=b^{1}, \quad b_{2}=b^{2}
$$

Lemma 3.12. Let $a \in A$. Denote $a_{1}=x, a_{2}=y$ and let b^{1}, b^{2} be as above. Then

$$
\left(a^{-}\right)_{1}=b^{1} .
$$

Proof. We have $b^{1} \wedge b^{2}=0$. Hence $b=b_{1}+b_{2}$; similarly, $a=a_{1}+a_{2}$. Thus

$$
\begin{aligned}
b+a & =\left(b_{1}+b_{2}\right)+\left(a_{1}+a_{2}\right)=b_{1}+\left(b_{2}+a_{1}\right)+a_{2}=b_{1}+\left(a_{1}+b_{2}\right)+a_{2}= \\
& =\left(b_{1}+a_{1}\right)+\left(b_{2}+a_{2}\right)=e+e^{\prime}=e \vee e^{\prime}=1 .
\end{aligned}
$$

Therefore $b=a^{-}$. Hence

$$
\left(a^{-}\right)_{1}=b_{1}=b^{1}
$$

4. The pseudo $M V$-algebra \mathcal{X}_{1}

Assume that \mathcal{A} is an $M V$-algebra and let e, e^{\prime}, X_{1} and X_{2} be as in the previous section.

We have already observed (cf. 3.6) that X_{1} is closed with respect to the operation \oplus. Further, it is obvious that X_{1} is also closed with respect to the operations \wedge and \vee.

In view of 3.9 and 3.10 we define the unary operations ${ }^{-(e)}$ and $\sim(e)$ on X_{1} by putting

$$
x^{-(e)}=\min P_{x}^{1}, \quad x^{\sim(e)}=\min Q_{x}^{1}
$$

for each $x \in X_{1}$.
Now, we define a binary operation \odot_{e} on X_{1} by

$$
y \odot_{e} x=\left(x^{-(e)} \oplus y^{-(e)}\right)^{\sim(e)} .
$$

Let us consider the algebraic structure

$$
\mathcal{X}_{1}=\left(X_{1} ; \oplus,^{-(e)}, \sim(e), 0, e\right) .
$$

For $a \in A$ let a_{1} be as in Section 3; let us now apply the notation

$$
a_{1}=\varphi_{1}(a)
$$

Then the mapping $\varphi_{1}: A \rightarrow X_{1}$ is surjective. We have clearly $\varphi_{1}(0)=0, \varphi_{1}(1)=$ e. Moreover, in view of $3.7, \varphi_{1}$ is a homomorphism with respect to the operation \oplus.

For proving that φ_{1} is a homomorphism with respect to the operation - we have to verify that the relation

$$
\varphi_{1}\left(a^{-}\right)=\varphi_{1}(a)^{-(e)}
$$

is valid for each $a \in A$.
Let $a \in A$. Denote $x=a_{1}$. Under the notation as in 3.12 we have

$$
\varphi_{1}\left(a^{-}\right)=\left(a^{-}\right)_{1}=b^{1}
$$

In view of $3.11, b^{1}=\min P_{x}^{1}$. Thus

$$
b_{1}=x^{-(e)}=a_{1}^{-(e)}=\varphi_{1}(a)^{-(e)}
$$

Analogously we verify that φ_{1} is a homomorphism with respect to the operation \sim.

Summarizing, we have
Lemma 4.1. φ_{1} is a homomorphism of the pseudo $M V$-algebra \mathcal{A} onto the algebraic structure \mathcal{X}.

In view of 4.1 we conclude that \mathcal{X}_{1} satisfies all the identities (A1) - (A8) (under the notation modified in the obvious way). Hence we obtain

Corollary 4.2. \mathcal{X}_{1} is a pseudo $M V$-algebra.
Analogous consideration can be performed for X_{2}; we apply the symbols φ_{2} and \mathcal{X}_{2}.

For each $a \in A$ we put

$$
\varphi(a)=\left(\varphi_{1}(a), \varphi_{2}(a)\right)
$$

The direct product of pseudo $M V$-algebras is defined in the usual way; cf. e.g., [5].
Proposition 4.3. φ is an isomorphism of the pseudo $M V$-algebra \mathcal{A} onto the direct product $\mathcal{A}_{1} \times \mathcal{A}_{2}$.

Proof. Under the notation as in Section 3 we have

$$
\varphi(a)=\left(a_{1}, a_{2}\right)=\left(a \wedge e, a \wedge e^{\prime}\right)
$$

Since L is a distributive lattice φ is a bijection. Then 4.1 yields that φ is an isomorphism.

Let $B(\mathcal{A})$ be the set of all elements of L which have a complement. Then $B(\mathcal{A})$ is a Boolean algebra; it was dealt with in [5], Section 4.

By a direct product decomposition of \mathcal{A} we understand an isomorphism of \mathcal{A} onto a direct product of pseudo $M V$-algebras.

In view of 4.3 , to each element e of $B(\mathcal{A})$ there corresponds a uniquely determined two-factor direct product decomposition of \mathcal{A}.

5. Two-factor direct product decompositions of \mathcal{A}

In this section we show that each two-factor direct product decomposition of the pseudo $M V$-algebra \mathcal{A} is constructed, up to isomorphism, by the method described in Section 4.

Assume that we have a two-factor direct product decomposition of \mathcal{A}, i.e., an isomorphism

$$
\begin{equation*}
\psi: \mathcal{A} \rightarrow \mathcal{A}_{1} \times \mathcal{A}_{2} \tag{1}
\end{equation*}
$$

such that ψ is a bijection.
Let L_{1} and L_{2} be the lattices corresponding to \mathcal{A}_{1} or to \mathcal{A}_{2}, respectively. Since the lattice operations in $L=L(\mathcal{A})$ are defined by means of the operations \oplus, ${ }^{-}$ and \sim, we conclude that the mapping

$$
\begin{equation*}
\psi: L \rightarrow L_{1} \times L_{2} \tag{2}
\end{equation*}
$$

determines a direct product decomposition of the lattice L.
The lattices L_{1} and L_{2} must be bounded; let 0^{i} and 1^{i} be the least or the greatest element of L_{i}, respectively $(i=1,2)$.

Put $\mathcal{A}_{1} \times \mathcal{A}_{2}=\mathcal{A}_{0}$ and let A_{0} be the underlying set of \mathcal{A}_{0}. Further, let A_{i} be the underlying set of $\mathcal{A}_{i}(i=1,2)$. Denote

$$
\begin{aligned}
A_{1}^{*} & =\left\{\left(a^{1}, 0^{2}\right): a^{1} \in A_{1}\right\}, & A_{2}^{*} & =\left\{\left(0^{1}, a^{2}\right): a^{2} \in A_{2}\right\}, \\
X_{1} & =\psi^{-1}\left(A_{1}^{*}\right), & X_{2} & =\psi^{-1}\left(A_{2}^{*}\right), \\
e & =\psi^{-1}\left(\left(1^{1}, 0^{2}\right)\right), & e^{\prime} & =\psi^{-1}\left(\left(0^{1}, 1^{2}\right)\right) .
\end{aligned}
$$

Then we clearly have
Lemma 5.1. (i) $e \vee e^{\prime}=1, e \wedge e^{\prime}=0$; (ii) $X_{1}=[0, e], X_{2}=\left[0, e^{\prime}\right]$.
Thus in view of 4.3 we have a direct product decomposition

$$
\begin{equation*}
\varphi: \mathcal{A} \rightarrow \mathcal{X}_{1} \times \mathcal{X}_{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(a)=\left(e \wedge a, e^{\prime} \wedge a\right) \tag{4}
\end{equation*}
$$

for each $a \in A$.
Further, for each $a^{1} \in A_{1}$ and each $a^{2} \in A_{2}$ we put

$$
\varphi_{1}\left(a^{1}\right)=\left(a^{1}, 0^{2}\right), \quad \varphi_{2}\left(a^{2}\right)=\left(0^{1}, a^{2}\right) .
$$

Both the mappings $\varphi_{1}: A_{1} \rightarrow A_{1}^{*}$ and $\varphi_{2}: A_{2} \rightarrow A_{2}^{*}$ are bijections. Therefore there exist pseudo $M V$-algebras \mathcal{A}_{1}^{*} and \mathcal{A}_{2}^{*} such that for $i \in\{1,2\}$ we have
(i) A_{i}^{*} is the underlying set of \mathcal{A}_{i}^{*};
(ii) φ_{i} is an isomorphism of \mathcal{A}_{i} onto \mathcal{A}_{i}^{*}.

For $i \in\{1,2\}$ we denote by ψ_{i} the mapping ψ reduced to the set X_{i}.
In view of 3.6 , the set X_{1} is closed with respect to the operation \oplus; the same is valid for the set X_{2}. Further, according to 5.1 , both X_{1} and X_{2} are closed with respect to the lattice operations \vee and \wedge. From this we obtain
Lemma 5.2. Let $i \in\{1,2\}$. Then ψ_{i} is an isomorphism with respect to the operation \oplus and with respect to the lattice operations \vee, \wedge.

Let \mathcal{X}_{1} and \mathcal{X}_{2} be as in (3). From 5.2 and 3.9.1 we conclude
Lemma 5.3. Let $i \in\{1,2\}$. Then ψ_{i} is an isomorphism of the pseudo $M V$ algebra \mathcal{X}_{i} onto the pseudo MV-algebra \mathcal{A}_{i}^{*}.

For $i \in\{1,2\}$ and $x^{i} \in X_{i}$ put

$$
\psi_{i}^{0}\left(x^{i}\right)=\varphi_{i}^{-1}\left(\psi_{i}\left(x^{i}\right)\right) .
$$

From the properties of φ_{i} and from 5.3 we get
Proposition 5.4. Let $i \in\{1,2\}$. Then ψ_{i}^{0} is an isomorphism of the pseudo $M V$-algebra \mathcal{X}_{i} onto the pseudo $M V$-algebra \mathcal{A}_{i}.

In other words, the direct factors standing in (1) are, up to isomorphism, the same as the direct factors standing in (3), and the direct product decomposition (3) is constructed by the procedure from Section 4.

Moreover, we show that the mapping ψ is uniquely determined by the mappings φ, ψ_{1} and ψ_{2}. In fact, let $a \in A$ and

$$
\varphi(a)=\left(a_{1}, a_{2}\right), \quad \psi(a)=\left(a^{1}, a^{2}\right) .
$$

Since $a_{1} \in X_{1}$, there is $p \in A_{1}$ with

$$
\psi_{1}\left(a_{1}\right)=\psi\left(a_{1}\right)=\left(p, 0^{2}\right)
$$

Similarly, there is $q \in A_{2}$ such that

$$
\psi_{2}\left(a_{2}\right)=\psi\left(a_{2}\right)=\left(0^{1}, q\right) .
$$

Then we have
Proposition 5.5. Under the notation as above, $a^{1}=p$ and $a^{2}=q$.
Proof. In view of (4) we have $a_{1}=a \wedge e$. Thus according to (2) we get

$$
\begin{gathered}
\psi\left(a_{1}\right)=\psi(a) \wedge \psi(e) \\
\left(p, 0^{2}\right)=\left(a^{1}, a^{2}\right) \wedge\left(1^{1}, 0^{2}\right)=\left(a^{1}, 0^{2}\right)
\end{gathered}
$$

whence $p=a^{1}$. Similarly we obtain $q=a^{2}$.

6. Direct product decompositions of $L(\mathcal{A})$

In the present section we apply the previous results for dealing with the direct product decompositions having an arbitrary number of direct factors.

We investigate the relations between the direct product decompositions of \mathcal{A} and those of $L(\mathcal{A})$.
Theorem 6.1. Suppose that

$$
\varphi: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}
$$

is a direct product decomposition of a pseudo MV-algebra \mathcal{A}. Then, at the same time, we have a direct product decomposition

$$
\varphi: L(\mathcal{A}) \rightarrow \prod_{i \in I} L\left(\mathcal{A}_{i}\right)
$$

Proof. The underlying sets of \mathcal{A} and of $L(\mathcal{A})$ coincide; a similar situation occurs for \mathcal{A}_{i} and $L\left(\mathcal{A}_{i}\right)$. Now it suffices to apply the fact that the operations \vee and \wedge are defined by means of the basic operations of $M V$-algebra \mathcal{A} (cf. 2.1).

Now let us assume that we are given a direct product decomposition of the lattice $L(\mathcal{A})=L$ of the form

$$
\begin{equation*}
\psi_{1}: L \rightarrow \prod_{i \in I} L_{i} \tag{1}
\end{equation*}
$$

If there exists a direct product decomposition

$$
\begin{equation*}
\psi_{2}: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i} \tag{2}
\end{equation*}
$$

such that $\psi_{2}=\psi_{1}$ and $L\left(\mathcal{A}_{i}\right)=L_{i}$ for each $i \in I$, then we say the direct product decomposition (1) induces the direct product decomposition (2).

The following assertion is obvious.

Lemma 6.2. Let \mathcal{A} be a pseudo $M V$-algebra, $L=L(\mathcal{A})$. Further, let L^{\prime} be a lattice and let φ be an isomorphism of L onto L^{\prime}. Then there exists a pseudo $M V$-algebra \mathcal{A}^{\prime} with $L\left(\mathcal{A}^{\prime}\right)=L^{\prime}$ such that φ is an isomorphism of \mathcal{A} onto \mathcal{A}^{\prime}.

Let \mathcal{A} and $L(\mathcal{A})$ be as above. Assume that we have a direct product decomposition

$$
\begin{equation*}
\psi: L \rightarrow \prod_{i \in I} L_{i} \tag{3}
\end{equation*}
$$

For $i \in I$ we denote by 0^{i} and 1^{i} the least and the greatest element of L_{i}, respectively.

There exist elements e_{i} and e_{i}^{\prime} in L such that

$$
\begin{array}{ccc}
\psi\left(e_{i}\right)_{i}=1^{i}, & \psi\left(e_{i}\right)_{j}=0^{j} & \text { for } j \in I \backslash\{i\} \\
\psi\left(e_{i}^{\prime}\right)_{i}=0^{i}, & \psi\left(e_{i}^{\prime}\right)_{j}=1^{j} & \text { for } j \in I \backslash\{i\}
\end{array}
$$

Then we have

$$
e_{i} \wedge e_{i}^{\prime}=0, \quad e_{i} \vee e_{i}^{\prime}=1
$$

Hence in view of 4.3 there exists a direct product decomposition

$$
\varphi_{i}: \mathcal{A} \rightarrow \mathcal{X}_{i 1} \times \mathcal{X}_{i 2}
$$

where (under the usual notation) we have

$$
X_{i 1}=\left[0, e_{i}\right], \quad X_{i 2}=\left[0, e_{i}^{\prime}\right]
$$

and for each $a \in A$,

$$
\varphi_{i}(a)_{1}=a \wedge e_{i}, \quad \varphi_{i}(a)_{2}=a \wedge e_{i}^{\prime}
$$

According to the isomorphism ψ we infer that the mapping

$$
\psi_{i}: X_{i 1} \rightarrow L_{i}
$$

defined by

$$
\psi_{i}(x)=\psi(x)_{i} \quad \text { for each } x \in X_{i 1}
$$

is an isomorphism of $X_{i 1}$ onto L_{i}.
Therefore in view of 6.2 we obtain
Lemma 6.3. There is a pseudo $M V$-algebra \mathcal{B}_{i} such that
(i) $L\left(\mathcal{B}_{i}\right)=L_{i}$;
(ii) ψ_{i} is an isomorphism of \mathcal{X}_{i} onto \mathcal{B}_{i}.

Consider the pseudo $M V$-algebra

$$
\prod_{i \in I} \mathcal{B}_{i}=\mathcal{B}
$$

Then in view of 6.3 we have $L(\mathcal{B})=\prod_{i \in I} L_{i}$.
Since all basic pseudo $M V$-operations in \mathcal{B} are calculated component-wise, from 6.3 and from the direct product decomposition φ_{i} we infer that the mapping ψ is a homomorphism of \mathcal{A} onto \mathcal{B}.

From this and from the fact that ψ is a bijection we conclude that ψ is an isomorphism of \mathcal{A} onto \mathcal{B}. In other words, we obtained a direct product decomposition

$$
\psi: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{B}_{i}
$$

which is induced by the direct product decomposition (3) of the lattice L.
Summarizing, we have
Theorem 6.4. Let \mathcal{A} be a pseudo $M V$-algebra and $L=L(\mathcal{A})$. Then each direct product decomposition of L induces a direct product deomposition of \mathcal{A}.

According to [7], any two direct product decompositions of a lattice have isomorphic refinements. From this and from 6.4 we conclude

Theorem 6.5. Any two direct product decompositions of a pseudo MV-algebra have isomorphic refinements.

References

[1] Chajda, I., Halaš, R. and Rachůnek, J., Ideals and congruences in generalized MV-algebras, Demonstratio Math. (to appear).
[2] Cignoli, R., D'Ottaviano, M.I. and Mundici, D., Algebraic Foundations of many-valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[3] Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht-Boston-London and Ister Science, Bratislava, 2000.
[4] Dvurečenskij, A., Pseudo MV-algebras are intervals in ℓ-groups, J. Austral. Math. Soc. (to appear).
[5] Georgescu, G., Iorgulescu, A., Pseudo MV-algebras: a noncommutative extension of $M V$-algebras, In: The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania, 1999, pp. 961-968.
[6] Georgescu, G., Iorgulescu, A., Pseudo MV-algebras, Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95-135.
[7] Hashimoto, J., On direct product decompositions of partially ordered sets, Annals of Math. 54 (1951), 315-318.
[8] Jakubík, J., Direct products of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[9] Jakubík, J., Convex chains in a pseudo MV-algebra, Czechoslovak Math. J. (to appear).
[10] Leustean, I., Local pseudo MV-algebras, (submitted).
[11] Rachůnek, J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. (to appear).
[12] Rachůnek, J., Prime spectra of non-commutative generalizations of MV-algebras, (submitted).

```
Matematický ústav SAV, Grešákova 6
04001 Košice, SLOVAKIA
E-mail: musavke@saske.sk
```


[^0]: 2000 Mathematics Subject Classification: Primary 06F35.
 Key words and phrases: pseudo $M V$-algebra, direct product decomposition.
 Supported by VEGA grant 2/6087/99.
 Received February 4, 2000.

