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Automorphisms of concrete logics

Mirko Navara, Josef Tkadlec

Abstract. The main result of this paper is Theorem 3.3 : Every concrete logic (i.e., every
set-representable orthomodular poset) can be enlarged to a concrete logic with a given
automorphism group and with a given center. Since every sublogic of a concrete logic
is concrete, too, and since not every state space of a (general) quantum logic is affinely
homeomorphic to the state space of a concrete logic [8], our result seems in a sense the
best possible. Further, we show that every group is an automorphism group of a concrete
lattice logic and, on the other hand, we prove that this is not true for Boolean logics with
a dense center. As a technical tool for pursuing the latter type of problems, we investigate
the correspondence between homomorphisms of concrete logics and pointwise mappings of
their domain. We prove that in a suitable topological representation of concrete logics,
every automorphism is carried by a homeomorphism.

Keywords: orthomodular lattice, quantum logic, concrete logic, set representation, auto-
morphism group of a logic, state space
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1. Basic notions and historical remarks.

By a (quantum) logic we mean an orthomodular poset (see e.g. [5],[2], [12] for
more information). The concrete logics are exactly those logics that are represented
as collections of subsets of a set. They can be explicitly defined as follows.

Definition 1.1. A concrete logic is a pair (X, L), where X is a nonempty set and
L ⊂ expX such that

(1) ∅ ∈ L,
(2) ∀A ∈ L : Ac ∈ L, where Ac = X \ A,
(3) ∀A, B ∈ L : A ∩ B = ∅ ⇒ A ∪ B ∈ L.

For simplicity, we shall denote the concrete logic (X, L) by L, if the character of
the problem we pursue does not involve the domain, X , of L.

Definition 1.2. Let L1, L2 be concrete logics. A mapping h : L1 → L2 is called
a homomorphism if

(1) h(∅) = ∅,
(2) ∀A ∈ L1 : h(A

c) = h(A)c,
(3) ∀A, B ∈ L1 : A ∩ B = ∅ ⇒ h(A ∪ B) = h(A) ∪ h(B).

A homomorphism h is called an isomorphism, if h(L1) = L2 and

(4) ∀A, B ∈ L1 : h(A) ⊂ h(B)⇒ A ⊂ B.

An isomorphism h : L1 → L1 is called an automorphism. Let us denote the group
of all automorphisms of a concrete logic L by A(L).
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Let (X, L) be a concrete logic. Two elements A, B ∈ L are called compatible
(abbr. A ↔ B) if A ∩ B ∈ L. In this case both A and B are contained in
Boolean subalgebra of L. A maximal Boolean subalgebra of a concrete logic is
called a block. Obviously, every concrete logic is the union of all its blocks. The
intersection of all blocks of L is called the center of L (denoted by C(L)). In other
words, C(L) = {A ∈ L : (∀B ∈ L : A ↔ B)}. The center C(L) of L is a Boolean
algebra and it is called trivial, if C(L) = {∅, X}.
Suppose that (X, L) is a concrete logic and K is a subset of L closed under the

formation of complements (in X) and disjoint unions of two elements. Then (X, K)
is a concrete logic. In this case, (X, K) is called a sublogic of (X, L). Dually, every
concrete logic containing a sublogic isomorphic to (X, K) is called an enlargement of
(X, K). Let us call (X, K) a strong sublogic [12] of (X, L), if each A, B ∈ K satisfy
the following condition: A, B are compatible in (X, K), iff A, B are compatible
in (X, L). A concrete logic containing a strong sublogic isomorphic to (X, K) is
called a strong enlargement of (X, K).

Definition 1.3. A state on a concrete logic (X, L) is a mapping s : L → [0, 1] such
that

s(X) = 1,
s(A ∪ B) = s(A) + s(B) whenever A ∩ B = ∅.

A two-valued state is a state attaining only the values 0 and 1.
A nonempty set A ∈ L is called an atom if L contains no nonempty proper

subset of A. If all elements of L can be expressed as joins of atoms, L is said to be
atomistic.
According to [6], every group is the automorphism group of a (not necessarily

concrete) logic. This result was improved by Kallus and Trnková [4] – they proved
that logics with given automorphism groups can be taken from the class of enlarge-
ments of a given atomistic logic (it should be observed that in [10] the authors proved
that the assumption of atomisticity was superfluous). In the quantum axiomatics,
the automorphism group of a general logic was investigated in the connection with
the central properties of the logic (see [7], [11]). Here we study the interplay of
the center and the automorphism group for concrete logics and, in certain lines,
we obtain a considerable improvement of [7]. Obviously, the proof technique then
becomes quite different.

2. Homomorphisms of concrete logics.

In this section we shall study the question of the fact when a homomorphism of
concrete logics is carried by a point mapping. We shall need the following definitions.

Definition 2.1. Let (X1, L1), (X2, L2) be concrete logics. We say that a homomor-
phism h : L1 → L2 is carried by a point mapping f : X2 → X1, if h(A) = f−1(A)
for any A ∈ L1.
Every two-valued state can be viewed as a homomorphism into the two-element

concrete logic {∅, X}. This leads us to the following definition.

Definition 2.2. We say that a two-valued state s on a concrete logic (X, L) is
carried by a point x ∈ X , if s(A) = 1 iff x ∈ A (for all A ∈ L). The state carried
by a point x is denoted by sx.
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Let (X, L) be a concrete logic. Each point x ∈ X carries a two-valued state,
hence the set S = {sx : x ∈ X} of two-valued states is full (i.e., for each A, B ∈ L
such that A 6⊂ B, there is a state s ∈ S such that s(A) 6≤ s(B)). On the other
hand, a logic with a full set of two-valued states has a concrete representation – e.g.
such that its domain is the set of all two-valued states, see [16], [2], [12] – and it is
usually called a concrete logic, too.

Definition 2.3. We say that a set M ⊂ expX is separating on X if for each pair
of points x, y ∈ X there is an A ∈ M such that x ∈ A and y /∈ A.
A concrete logic (X, L) is separating on X , iff there is no pair of points from

X that carry the same two-valued state on L. If (X, L) is non-separating we may
identify the points of X that carry the same two-valued state and, as a result, we

obtain a separating representation (X̃, L̃) of (X, L) (X̃ ⊂ X, L̃ = {A∩X̃ : A ∈ L}).
Let us call a generalized Stone representation (abbr. GSR) of a concrete logic

such a separating representation that each two-valued state is carried by a point (it
is a Stone-like representation by means of all two-valued states). It is (in a sense)
the greatest separating representation.

Lemma 2.4. Suppose that (X1, L1), (X2, L2) are concrete logics and h : L1 → L2
is a homomorphism carried by a point mapping f : X2 → X1. Then sy ◦ h = sf(y)
for all y ∈ X2.

Proof: For all y ∈ X2 and all A ∈ L1 the following statements are equivalent:
(sy ◦ h)(A) = 1, y ∈ h(A), f(y) ∈ A, sf(y)(A) = 1. �

Proposition 2.5. Suppose that (X1, L1), (X2, L2) are concrete logics and suppose
that h : L1 → L2 is a homomorphism. Let us denote by D(f) the set of all y ∈ X2
for which the set {x ∈ X1 : sx = sy ◦ h} is nonempty. For all y ∈ D(f), let us
choose some f(y) from this set. Then the mapping f : D(f) → X1 satisfies the
following conditions:

(1) f−1(A) = h(A) ∩ D(f) for all A ∈ L1; particularly, if D(f) = X2 then h is
carried by the mapping f ,

(2) if h(L1) is separating on X2 then f is one-to-one,
(3) if D(f) = X2 and h is an isomorphism then A =

∧
{B ∈ L1 : B ⊃ f(h(A))}

for all A ∈ L1.

Proof: (1) We have y ∈ f−1(A) iff y ∈ D(f) and f(y) ∈ A. The latter condition
is equivalent to each of the following conditions: sf(y)(A) = 1, (sy ◦h)(A) = 1, y ∈

h(A).
(2) Suppose that y, z ∈ X2 and that f(y) = f(z). Then sy ◦ h = sz ◦ h, i.e.,

sy(h(A)) = sz(h(A)) for all A ∈ L1. Since h(L1) is separating on X2, we obtain
y = z.
(3) According to part (1), h(A) = f−1(A), hence f(h(A)) = A. Suppose that

B ⊃ f(h(A)). According to (1), we then obtain h(B) = f−1(B) ⊃ h(A). Hence,
B ⊃ A. �

Corollary 2.6. Let (X1, L1), (X2, L2) be concrete logics. A homomorphism h :
L1 → L2 is carried by a point mapping iff for each two-valued state sy on L2
(carried by a point y ∈ X2) the two-valued state sy ◦ h on L1 is carried by a point.



18 M.Navara, J. Tkadlec

Proof: It follows from Lemma 2.4 and Proposition 2.5 (1). (It should be noted
that this result can be viewed as a generalization of [14, §11B].) �

Corollary 2.7. (1) Every homomorphism of a GSR into a concrete logic is car-
ried by a point mapping.
(2) If there is an isomorphism of a separating concrete logic (X, L) to its GSR

(X̃, L̃) that is carried by a point mapping f , then f is a one-to-one mapping of L̃
onto L.

Proof: (1) It follows from Proposition 2.5 (1).
(2) According to Proposition 2.5 (2), the mapping f is one-to-one. Suppose

that x ∈ X . Then sx ◦ h−1 is a two-valued state on L̃ and hence it is carried by

a point y ∈ X̃. According to Lemma 2.4, sf(y) = sy ◦ h = sx ◦ h−1 ◦ h = sx. Since

L is separating, we obtain x = f(y). Thus, f(X̃) = X . �

Corollary 2.8. Suppose that (X, L) is a separating concrete logic, (X̃, L̃) is its

GSR and that h : L̃ → L is an isomorphism. Then there is a one-to-one mapping

f : X → X̃ such that

h(A) = f−1(A) for all A ∈ L̃,

h−1(C) =
∧

{B ∈ L̃ : B ⊃ f(C)} for all C ∈ L.

Proof: It follows from Proposition 2.5. �

Let us recall that a closure space (see e.g. [3]) is a pair (X,−− ) such that −− :

expX → expX is a closure operation, i.e., (1) ∅ = ∅, (2) A ⊂ A, (3) A ⊂ B =⇒

A ⊂ B, (4) A = A. A set A ⊂ X is called closed, if A = A and it is called open if
X \ A is closed.
The union of two closed sets ( the intersection of two open sets, resp.) need not

be closed (open, resp.). On the other hand, the intersection of any family of closed
sets (the union of any family of open sets, resp.) has to be closed (open, resp.).
If we replace the condition (3) by the stronger condition (3’) A ∪ B = A ∪ B, we
obtain the definition of a topological space.
Each family B ⊂ expX such that

⋃
B = X is a base of open sets for some

closure space (X,−− ) (we put A = X \
⋃
{B ∈ B : A ∩ B = ∅} for all A ∈ X)

and a subbase of open sets for the associated topological space (X, τ) (we put
A = X \

⋃
{
⋂
B1 : B1 ⊂ B, card: B1 < ∞, A ∩

⋂
B1 = ∅} for each A ⊂ X).

With any concrete logic (X, L), we associate the closure space (X,−− ) such that
L is a base of open sets. This space is 0-dimensional (i.e., clopen sets form a base
of open sets). If L is separating then (X,−− ) is totally disconnected. Moreover, it
can be proved that, if L is a GSR then (X,−− ) is compact (see e.g. [15]).
Also, it can be shown that the closure space (X,−− ) is topological, if and only if

each point of X carries a two-valued Jauch–Piron state [15]. (Recall that a state s
on L is called Jauch–Piron, if for each a, b ∈ L with s(a) = s(b) = 1 there is a c ∈ L
such that c ≤ a, c ≤ b and s(c) = 1.)
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A mapping f : (X1,
−− ) → (X2,

−− ) is called continuous, if for each open set
B ⊂ X2 the set f−1(B) is open. It is called a homeomorphism, if there exists f−1

and both f and f−1 are continuous.
It is well-known that a continuous mapping on a closure space is also continuous

on the associated topological space. The converse does not have to be true. Ac-
cording to Alexander sub-base theorem, a closure space is compact iff the associated
topological space is compact.

Proposition 2.9. Suppose that (X1, L1), (X2, L2) are concrete logics, (X1,
−− ),

(X2,
−− ) are their associated closure spaces and that h : L1 → L2 is a homomor-

phism carried by a point mapping f : X2 → X1. Then the mapping f : (X2,
−− )→

(X1,
−− ) is continuous.

Proof: Suppose that A ⊂ X1 is open. Then A =
⋃

M for some M ⊂ L1 and
therefore the set f−1(A) = f−1(

⋃
M) =

⋃
f−1(M) =

⋃
h(M) is open. �

Theorem 2.10. Every automorphism of a GSR (X, L) is carried by a homeomor-
phism of (X,−− ), where (X,−− ) is the closure space with the base L of open sets.

Proof: According to Corollary 2.7, there is a one-to-one mapping f of X onto X
that carries the given automorphism h of L. It is easy to see that the isomorphism
h−1 is carried by f−1 and, according to Proposition 2.9, both f and f−1 are con-
tinuous.

�

Remark 2.11. (1) The separating property of the GSR is not essential in Corol-
lary 2.7 (1).
(2) The condition of L being separating can be replaced with a weaker condition

in Theorem 2.10, namely with a condition that all sets of all mutually non-separable
points of X (i.e., {x ∈ X : sx = sy}, y ∈ X) have the same cardinality.
(3) The concrete logic (X, L) in Theorem 2.10 need not be a GSR. Theorem 2.10

remains valid also for ”Stone-like” representations by means of a suitable set of two-
valued states (see Corollary 2.6), e.g., for representations by means of all two-valued
Jauch–Piron states.

3. Concrete logics with given centers and automorphism groups.

In this section, we show that every group can be represented as the automorphism
group of a concrete logic with a given center. Moreover, we prove that this logic
may contain a given sublogic. An important role in our proof will be played by
the logics that are rigid, i.e., by the logics that have only one automorphism (the
identity).
An element A of a logic L is called stable, if each automorphism of L maps A

onto A.
We shall need the following two lemmas.

Lemma 3.1. Let (X, L) be a concrete logic such that

(A) ∀h ∈ A(L) ∀A ∈ L : if A 6= h(A) then A ∨ h(A) = X.
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Then L satisfies also the following condition

(B)

∀ g, h ∈ A(L) ∀A, B ∈ L : if A ∩ B = ∅ and g(A) ∩ h(B) = ∅

then there is a k ∈ {g, h} such that g(A) = k(A) and

h(B) = k(B).

Proof: Suppose that (A) is fulfilled and that g, h ∈ A(L). Suppose also that
A, B ∈ L satisfy A ∩ B = ∅ = g(A) ∩ h(B). If A = ∅, then h can be taken for k.
Suppose that A 6= ∅. Applying (A) to the element g(B) and the automorphism
h ◦ g−1, we obtain either g(B) = h(B) or g(B) ∨ h(B) = X . Both g(B) and h(B)
are disjoint with a nonempty set g(A). Thus, they have a common upper bound
g(A)c $ X . So the only possible case is g(B) = h(B) and we can take g for k. �

Lemma 3.2. Suppose that

K is a concrete logic,
G is a group, and
P is a poset.

Then there is a collection of concrete logics {Li : i ∈ P} such that for each i, j ∈ P
the following conditions hold:

(1) Li is a strong enlargement of K,
(2) C(Li) is trivial,
(3) A(Li) ∼= G,
(4) Li satisfies the condition (B) from Lemma 3.1, and
(5) Lj is a (strong) enlargement of Li iff i ≤ j.

If K is a lattice, all Li, i ∈ P , are also lattices.

Proof: We only outline the basic steps of the proof because they have already
appeared in the preceding papers, though not together. If K is atomistic and if we
omit the condition (4), the proof is given by Kallus and Trnková in [4]. In order to
describe our modifications, we need to review the steps of their proof.
Step 1: The basic tool is the construction of a proper class of undirected graphs

with the following properties: the automorphism group of the graph is isomorphic
to G, each vertex is of an order greater than 1, and there are no cycles of a length
less than 5 (see e.g. [13]). Moreover, this graph may contain arbitrarily many stable
vertices (vertices preserved by all automorphisms). To see this, one may add such
a graph representing the trivial group.
Step 2: If we add one vertex to each edge of the graph, we obtain a hypergraph

which is the Greechie diagram of a logic, Mi. The automorphism group of Mi is
again isomorphic to G. Each block of Mi is isomorphic to 2

3 and it contains an
outer point – an atom which belongs to exactly one block. It should be noted that
an atomistic logic with an outer point in each block is necessarily concrete. Indeed,
in order to prove the concreteness of an atomistic logic it suffices to show (see [16],
[2], [12]) that for each two atoms a, b satisfying a � b′ there is a two-valued state s
such that s(a) = s(b) = 1. Such a state s can be defined in the following way: It
attains the value 1 on a and on b and on exactly one outer point from each block
which contains neither a nor b.
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Step 3: In order to embed the logic K, each atom of K is connected by a 23-
block with an appropriate stable atom of Mi (for this, Mi must have a sufficiently
large ”stable part”, see [4] for details). This procedure gives the logic Li. All
automorphisms of Li are uniquely determined by their values on Mi. Hence,
A(Li) ∼= A(Mi) ∼= G.
For our purpose, let us modify some parts of the proof of Kallus and Trnková.
Modification 1: In Step 3, we have to fix the automorphisms not only on all atoms

but also on sufficiently many further elements. This is done (using a generalized
pasting technique for logics) in [10, Theorem 7.1]. Going through the construction,
one can easily see that starting with a concrete logic we obtain again a concrete
logic.
Modification 2: In order to satisfy (4), we have to insert the following procedure

between Step 1 and Step 2:
Step 1.5: Each edge (a, b) of the graph is replaced with a copy of the graph F in

Fig. 1.

Fig. 1

One can easily see that all cycles of the lengths 5 and 6 in the resulted graph
are the cycles of the copies of F . This enables us to check that the automorphism
group did not change in this procedure. The distance of a vertex and its image
in an automorphism is either 0 or it is greater than 2. This ensures that all Li,
(i ∈ P ), satisfy the condition (A) from Lemma 3.1.
With the two modifications described above, the proof of Kallus and Trnková gives

the assertion of Lemma 3.2. �

Theorem 3.3. Suppose that

K is a concrete logic,
B is a Boolean algebra, and
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G is a group.

Then there is a concrete logic L such that

(1) L is a strong enlargement of K,
(2) the center of L is isomorphic to B,
(3) the automorphism group of L is isomorphic to G.

Proof: Applying Lemma 3.2, we obtain a concrete strong enlargementH ofK such
that A(H) ∼= G, C(H) is trivial and H satisfies the condition (B) from Lemma 3.1.

We may assume that B is the Boolean algebra of clopen subsets of its Stone
space, X . We fix a point z ∈ X and we take the filter F = {B ∈ B : z ∈ B}.
We apply Lemma 3.2, where we take H for K, the trivial group for G and the

poset F (partially ordered by inclusion) for P . We obtain a collection of rigid
concrete logics {LB : B ∈ F} such that LB is a strong enlargement of LA iff
A ⊂ B. As LX is a common enlargement of all these logics, we may (and shall)
suppose that H ⊂ LX and LA ⊂ LB for each A, B ∈ F with A ⊂ B.

Let us denote by Y the domain of a representation of LX . Further, let us denote
by T the collection of all subsets of X × Y which are of one of the following forms:

B × A, where B ∈ F and A ∈ H,(F1)

B × A, where B ∈ B \ F and A ∈ LB′ .(F2)

The collection T generates a concrete logic M ⊂ exp(X × Y ); M is the collection
of all unions of finitely many disjoint elements of T .
For each x ∈ X , let us define the ”restriction mapping” Px : exp(X × Y ) →

exp({x} × Y ) by the formula Px(U) = U ∩ ({x} × Y ). The set Px(M) = {Pz(U) :
U ∈ M} forms a concrete logic (with the domain {x} × Y ). The logic Pz(M) is
isomorphic to H , hence it satisfies the condition (B) of Lemma 3.1. For each x ∈ X
and for each mapping h on exp({x} × Y ), we define a mapping hx on exp(X × Y )
by the formula hx(U) = (U \ Px(U)) ∪ h(Px(U)). Now, we put L = {hz(U) : h ∈
A(Pz(M)), U ∈ M}.
First, we have to prove that L is a logic. If {z} ∈ B then L = M . Suppose that

{z} /∈ B. Trivially, L is closed under the formation of complements. Suppose that
V, W ∈ M, g, h ∈ A(Pz(M)) such that gz(V ), hz(W ) ∈ L are disjoint. Then V, W
are disjoint, hence V ∪ W ∈ M . According to condition (B) of Lemma 3.1 (where
we take Pz(M) for L, Pz(V ) for A and Pz(W ) for B), there is a k ∈ {g, h} such
that gz(V ) ∪ hz(W ) = kz(V ∪ W ) ∈ L.

Now we are ready to check the assertions (1)–(3) of the Theorem.

(1) The collection {X × A : A ∈ H} forms a sublogic of L isomorphic to H .

(2) Suppose that B×A ∈ L. where B ∈ B and A /∈ {∅, Y }. If B×A satisfies (F1),
we can find an element C ∈ H which is non-compatible (in H) to A. As L is a strong
enlargement of H , the elements B × A, B × C ∈ L (corresponding to A, C ∈ H)
are non-compatible in L. If B × A satisfies (F2), the element C with the same
properties can be chosen from LB′ . In both cases B × A does not belong to the
center of L. The same arguments are applicable to all elements of L which contain
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B × A and which are disjoint to B × (Y \ A). Thus, all elements of C(L) have to
be of the form B × Y, B ∈ B. On the other hand, all such elements are central, so
C(L) = {B × Y : B ∈ B} ∼= B.
(3) First of all, notice that each automorphism of L maps the center of L onto

itself. For all x ∈ X , take the ideal Ix = {A × Y : A ∈ B, x /∈ A} ⊂ C(L)
(it is a usual maximal ideal in the Boolean algebra C(L)). The factorization of L
over the ideal Ix (see [5]) gives a logic L/Ix isomorphic to Px(L) (= Px(M)). If
B ∈ B, x ∈ B, then the collection {B × C : C ∈ LB′} forms a concrete logic
(with the domain B × Y ) which is mapped by the factorization onto a sublogic of
Px(L) isomorphic to LB′ . Thus, for all B ∈ B such that B × Y /∈ Ix, Px(L) is an
enlargement of LB′ . Our construction ensures that Px(L) is not isomorphic to Py(L)
for x 6= y. Thus each automorphism h of L maps Ix onto Ix and hence coincides
with the identity on C(L). It also induces an automorphism of L/Ix

∼= Px(L).
We have obtained that h induces automorphisms of Px(L)(x ∈ X), and h is fully
described by this collection of automorphisms. For x 6= z, the logic Px(L) is rigid,
so A(L) = {hz : h ∈ A(Pz(L))} ∼= A(Pz(L)) ∼= A(H). �

Remark 3.4. Provided that K is a lattice, the concrete logic M constructed in
the proof of Theorem 3.3 becomes a lattice. If B has an atom, we can choose z ∈ X
so that {z} ∈ B and hence L = M . Theorem 3.3 holds for concrete lattice logics
with the additional assumption that B has at least one atom. We do not know for
the time being whether this assumption can be omitted.

4. Automorphism groups of concrete logics.

In the previous section, we have shown that every group is representable as the
automorphism group of a concrete (lattice) logic (Remark 3.4). On the other hand,
it is well-known (see e.g. [1]) that there are groups that are not representable as
automorphism groups of Boolean algebras. An interesting question arises of how
small class of concrete logics allows to represent arbitrary groups as automorphism
groups of logics of the class. Several classes of concrete logics which are ”near” to
Boolean algebras have been introduced in [9]. We present here a negative result for
the largest class studied there - the class of so-called Boolean logics.

Definition 4.1. A concrete logic (X, L) is called a Boolean logic, if for any pair
A, B ∈ L, the condition A ∧ B = ∅ implies that A ∩ B = ∅.
It should be noted (see e.g. [9]) that every Boolean lattice logic is a Boolean

algebra.

Lemma 4.2. Suppose that (X, L) is a Boolean logic and that h is a nontrivial
automorphism of L. Then there is an element A ∈ L \ {∅} such that A∩ h(A) = ∅.

Proof: Since h is nontrivial, there is a B ∈ L such that h(B) 6= B. Choose
C ∈ {B, Bc} such that h(C) 6⊂ C. Since L is a Boolean logic and Cc ∩ h(C) 6= ∅,
there is a D ∈ L \ {∅} such that D ⊂ h(C) and D ∩ C = ∅. We put A = h−1(D).

�

Definition 4.3. Let (X, L) be a concrete logic. We say that a set K ⊂ L is dense
in L, if for each A ∈ L \ {∅} there is a B ∈ K \ {∅} such that B ⊂ A.
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Proposition 4.4. Every non-rigid Boolean logic with dense center admits a non-
trivial automorphism h such that h2 is the identity.

Proof: Suppose that (X, L) is a Boolean logic with dense center and with a non-
trivial automorphism g. According to Lemma 4.2, there is an A ∈ L \ {∅} such
that A ∩ g(A) = ∅. Since the center of L is dense in L, there is a central element
C ∈ L \ {∅} such that C ⊂ A, hence C ∩ g(C) = ∅. The mapping h : L → L defined
by h(B) = g(B∩C)∪g−1(B∩g(C))∪(B∩(C ∪g(C))c) for all B ∈ L is the required
automorphism. �

Corollary 4.5. There are groups that are not representable as the automorphism
groups of Boolean logics with dense centers.

Since every Boolean algebra is a Boolean logic with dense center, the last two
statements can be viewed as generalizations of the known results for Boolean alge-
bras. Let us note that any atom of a Boolean logic is a central element, hence the
condition of density of the center is fulfilled in atomic Boolean logics.

5. An open question.

The following question has naturally arisen in paragraph 4.

Problem 5.1. Can every group be represented as the automorphism group of
a Boolean logic?
We conjecture that the answer is no but for now we have not been able to prove

it.
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