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Revealed automorphisms

Jiř́ı Sgall, Antońın Sochor

Abstract. We study automorphisms in the alternative set theory. We prove that fully
revealed automorphisms are not closed under composition. We also construct some special
automorphisms. We generalize the notion of revealment and Sd-class.
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Classification: Primary 03E70; Secondary 03H15

In the alternative set theory (AST; see [V] for its exposition) the study of auto-
morphisms is one of the very interesting subjects as this aspect differs very much
from the classical case. It is possible to prove inside the theory that a great variety
of nontrivial automorphisms of the universe exists, and their study is a very useful
tool for understanding the structure of the universe.
This subject has many connections with the study of automorphisms of recur-

sively saturated models of Peano arithmetic. It was proved in [P–S 1984] that
countable recursively saturated models of PA are exactly the restrictions of count-
able models of AST to the natural numbers; also the methods used for studying
both kinds of object are very similar.
We thank R. Kaye for many discussions on the automorphisms of recursively

saturated models of PA.
In the first section, we give some preliminaries. The second section is devoted

to the study of the initial segments of fixed points of automorphisms. In the last
section, we prove our main result, namely we prove that the fully revealed auto-
morphisms are not closed under composition.
We use extensively the results on automorphisms and basic equivalences given

in [V, Chapter V, Section 1]; all references to [V] are references to this section. E(C)

denotes the basic equivalence with parameters C, which is denoted by
◦
=
C
in [V].

FSLC denotes the language of finite set-theoretical formulae with parameters from
the class C. We use also the fact that it is possible to define a satisfaction class for
FSLC and that the partial satisfaction relation (for formulae ϕ < n, n ∈ FN ) is
a Sd-class.

1. Revealments.

In this section, we generalize the notion of revealment. We prove that for any class
there exists a fully revealed class satisfying the same formulae from the language
FLC for C countable (not only for C = ∅ as in [S–V 1980]). Our results are
straightforward generalizations of the theorems from [S–V 1979] and [S–V 1980].
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Definition 1.1. Let F be a similarity. Y is an F -revealment of X if Y is fully
revealed and for every normal formula ϕ in the language FL and a0, . . . , ak ∈
dom (F ) there holds

ϕ(X, a0, . . . , ak)⇔ ϕ(Y, F (a0), . . . , F (ak)).

Theorem 1.2. For any countable similarity F there exists an endomorphism

G ⊇ F such that the endomorphic universe G
′′

V has a standard extension.

Proof: Let H be any endomorphism such that H
′′

V has a standard extension.
Let H0 ⊇ F ◦H−1 be an automorphism (it exists, since F ◦H−1 is countable). Let

G = H0 ◦ H . Then G
′′

V = H
′′

0 (H
′′

V ) is an endomorphic universe with a standard

extension; F = F ◦ Id = F ◦ H−1 ◦ H ⊆ H0 ◦ H = G. �

Theorem 1.3. Every class X has an F -revealment for any countable similarity F .

Proof: Let G be an endomorphism from Theorem 1.2. Then Ex (G
′′

X) is an
F -revealment of X (even a G-revealment), since for ϕ ∈ FL we have

ϕ(X, a0, . . . , ak)⇔ ϕG
′′

V (G
′′

X, G(a0), . . . , G(ak))⇔

⇔ ϕ(Ex (G
′′

X), G(a0), . . . , G(ak)).

�

2. Initial segments of automorphisms.

Let us define two natural characteristics of an automorphism.

Definition 2.1. Let F be an automorphism. Let us denote

cut (F ) = {α; (∀ β < α)(F (β) = β)}

Cut (F ) = {α; (∀ β < α)(F (β) = β ⇒ β ∈ cut (F ))}.

It is easy to see that both cut (F ) and Cut (F ) are initial segments of N , both are

proper classes, FN ⊆ cut (F ) ⊆ Cut (F ), F
′′

cut (F ) = cut (F ) and F
′′

Cut (F ) =
Cut (F ). They have also some closure properties, namely for α ∈ cut (F ) and
β ∈ Cut (F ) it holds that 2α ∈ cut (F ) and α · β ∈ Cut (F ). These properties
resemble the properties of the characteristics µ and ν of an ultrafilter (see [S–V
1981]). From the next lemma it follows (by the result of [S–V 1981]) that each pair
cut (F ),Cut (F ) is µ(M), ν(M) of some ultrafilters M, but the converse does not
hold.

Lemma 2.2. Let F be an automorphism.

(i) cut (F ) is no π-class.
(ii) Let Cut (F ) be a π-class. Then cut (F ) = FN .
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Proof: (i) Let us suppose cut (F ) is a π-class. By prolongation there exists a de-
creasing function f with dom(F ) ∈ cut (F ) \ FN such that cut (F ) =

⋂
{f(n);n ∈

FN } and F (f(n)) 6= f(n) for n ∈ FN . Let g = F (f). Then g(n) 6= f(n) for n ∈ FN
and thus also for some α ∈ cut (F ) \ FN there holds F (f(α)) = (F (f))(F (α)) =
g(F (α)) = g(α) 6= f(α). But this is a contradiction, since f(α) ∈ cut (F ).
(ii) Let us suppose that Cut (F ) is a π-class and cut (F ) 6= FN . Then there
exists a decreasing function f with dom (F ) ∈ cut (F ) \ FN such that Cut (F ) =⋂
{f(n);n ∈ FN } and F (f(n)) = f(n) for n ∈ FN . From (i) it follows that
cut (F ) ⊂ Cut (F ) and thus we can suppose that rng (f)∩cut (F ) = ∅. Let g = F (f).
Then g(n) = f(n) for n ∈ FN and thus F (f(α)) = g(α) = f(α) also for some
α /∈ FN . But this is a contradiction, since f(α) ∈ Cut (F ) \ cut (F ). �

It is an interesting problem to characterize all possible values of cut (F ) and
Cut (F ). Next lemma gives another necessary condition on them.

Similarly as in PA, we can define the notion of a strong segment: a segment

I ⊆ N is strong, iff for every f the class f
′′

I \ I is not cofinal in N \ I. If I is strong,
then it satisfies the axioms of PA.

Lemma 2.3. Let F be an automorphism such that cut (F ) 6= Cut (F ). Then
cut (F ) is strong.

Proof: Let F be given, α ∈ Cut (F ) \ cut (F ) and let f be arbitrary. We take
g = F (f) and β as the minimum of the set

{α} ∪ {f(γ); γ < f(γ) & f(γ) 6= g(γ)}.

Note that β /∈ cut (F ) (because γ < f(γ) ∈ cut (F ) implies f(γ) = g(γ)). If for some
δ ∈ cut (F ) there holds f(δ) /∈ cut (F ), then either f(δ) ≥ α or f(δ) 6= F (f(δ)) =

g(δ). In both cases it follows that f(δ) ≥ β. Hence f
′′

cut (F ) \ cut (F ) is contained
in N \ β and thus it is not cofinal in N \ cut (F ). We have proved that cut (F ) is
strong. �

A kind of converse to this lemma was proved by R. Kaye (unpublished) for the
automorphisms of countable recursively saturated models of PA—he proved that
for any strong cut I elementary in a modelM there exists an automorphism F ofM
such that I = cut (F ) = {x;F (x) = x}.
In the rest of this section, we shall construct several different types of automor-

phisms. The first type satisfies FN = cut (F ) = Cut (F ) and the second one satisfies
FN = cut (F ) ⊂ Cut (F ).
Next issue concerns fully revealed automorphisms. We know that an automor-

phism is revealed, if and only if FN ⊂ cut (F ), but we have no similar characteri-
zation of fully revealed automorphisms. If we take the revealments of the automor-
phisms above, we get automorphisms with FN∗ = cut (F ) = Cut (F ) in the first
case and with FN∗ = cut (F ) ⊂ Cut (F ) in the second case.
First, we are going to construct an automorphism with FN = cut (F ) = Cut (F ).

We need two lemmas:
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Lemma 2.4. Let F 4 FN be a similarity. Then

(∀ α /∈ FN ) (∃ β ∈ α−FN ) (F ∪ {〈β, β〉} is a similarity).

Proof: See [S–1985, p. 510]. �

Lemma 2.5. Let F 4 FN be a similarity. Then

(∀ α /∈ FN ) (∃ β ∈ α) (∃ γ 6= β) (F ∪ {〈γ, β〉} is a similarity).

Proof: If the lemma does not hold for some α, then for every β ∈ α, the class
{β} is a monad in the equivalence E(dom (F )), but this is a contradiction, because
E(dom (F )) is a compact equivalence (see [V]). �

Theorem 2.6. Any at most countable similarity can be prolonged into an auto-
morphism F such that FN = cut (F ) = Cut (F ).

Proof: Let I be the system of all similarities. Let

D〈x,0〉 = {F ∈ I; x ∈ dom (F ) ∩ rng (F )}

D〈α,1〉 = {F ∈ I; α /∈ FN ⇒ (∃ β ∈ α)(F (β) 6= β)}

D〈α,2〉 = {F ∈ I; α /∈ FN ⇒ (∃ β ∈ α−FN )(F (β) = β)}.

Let Ac be the subsystem of all countable classes in a system A. By [V], the systems
Dc
〈x,0〉 are dense in Ic (i.e. for every F ∈ Dc

〈x,0〉 there is G ∈ Ic with F ⊆ G), the

systems Dc
〈α,1〉 and D

c
〈α,2〉 are dense in I

c by Lemma 2.5 and Lemma 2.4. By [S–V

1989, Theorem 1], we have a similarity which is an element of every mentioned
system. Thus it is an automorphism (systems D〈x,0〉), FN = cut (F ) (systems

D〈α,1〉) and FN = Cut (F ) (systems D〈α,2〉). �

Now we are going to construct an automorphism with FN = cut (F ) ⊂ Cut (F ),
which is much more difficult.

Lemma 2.7. Let F be a similarity. If dom (F ) is closed under Def , then also
rng (F ) is closed under Def .

Proof: Let y ∈ Def (rng (F )). Then there is ϕ and a1, . . . , ak ∈ dom (F ) such
that y is the unique z for which ϕ(z, F (a1), . . . , F (ak)). Let x be the unique z for
which ϕ(z, a1, . . . , ak); it exists and is unique, since F is a similarity. We have x ∈
Def (dom (F )) = dom(F ), and so ϕ(F (x), F (a1), . . . , F (ak)). But then F (x) = y,
because y was the unique one with the property, thus y ∈ rng (F ). �

Lemma 2.8. Let C 4 FN , let A 6= ∅ be a figure in the equivalence E(C), and
let Hi, i ∈ FN , be SdC -functions. If there are bi, i ∈ FN , such that (∀ x ∈
A)(∃ i)(Hi(x) = bi), then for some i we have bi ∈ Def (C).

Proof: We can assume that A is a monad in the equivalence E(C), since A is
nonempty and the assumption of the lemma follows for each monad included in A.
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Let Ai = {x;Hi(x) = bi}, note that Ai are SdV -classes. Let Bi, i ∈ FN , be an
enumeration of all SdC -classes containing A. We have

⋂
{Bi; i ∈ FN } ⊆ A ⊆

⋃
{Ai; i ∈ FN }.

By prolongation, it holds for some k ∈ FN that
⋂
{Bi; i < k} ⊆

⋃
{Ai; i < k}. Let

B =
⋂
{Bi; i < k}. B is a SdC -class and thus there exists x ∈ B∩Def (C) (see [V]).

For some i we have x ∈ Ai and thus bi = Hi(x) ∈ Def (C). �

Lemma 2.9. Let F 4 FN be a similarity with domain closed under Def , a /∈
dom (F ). Then there is a similarity G 4 FN such that dom (G) is closed under
Def , F ⊆ G, a ∈ dom (G) and G(b) = b implies b ∈ dom (F ).

Proof: We will extend F on the domain Def (dom (F ) ∪ {a}). Let dom (F ) =
{ai; i ∈ FN }, A = {x;F ∪ {〈x, a〉} is a similarity}, C = rng (F ). By [V], the class A
is a nonempty figure in the equivalence E(C).
Let ϕ be a set-theoretical formula such that there is a unique z such that ϕ(z, a,

a0, . . . , ak). We denote this z by bϕ. If there is a unique y such that ϕ(y, x, F (a0),
. . . , F (ak)), we denote it by Hϕ(x). Hϕ is a SdC -function and from the definition
of A it follows that A ⊆ dom(Hϕ). Let Gx = F ∪ {〈Hϕ(x), bϕ〉;ϕ ∈ FSL }, Aϕ =
{x ∈ A;Hϕ(x) = bϕ}.
If x ∈ A, then Gx is a similarity with the domain Def (dom(F ) ∪ {a}). To

finish the proof, we need to show that there exists x ∈ A such that for every ϕ
such that bϕ /∈ dom(F ), there holds x /∈ Aϕ. Suppose that there is no such x.
Let ϕi, i ∈ FN , be an enumeration of all ϕ such that bϕ /∈ dom (F ) and Aϕ is
nonempty. By Lemma 2.8 (with bi = bϕi

, Hi = Hϕi
) we can choose ϕ such that bϕ ∈

Def (C)\dom (F ) and Aϕ is nonempty. Let x ∈ Aϕ. Then Hϕ(x) = bϕ ∈ Def (C) =
Def (rng (F )) = rng (F ). Thus for some j ∈ FN we have ϕ(bϕ, a, a0, . . . , ak)&
ϕ(bϕ, x, F (a0), . . . , F (ak))&F (aj) = bϕ, hence ϕ(F (aj), x, F (a0), . . . , F (ak)). Be-
cause Gx is a similarity, we have bϕ = aj and bϕ ∈ dom (F ), a contradiction.
We proved that there is x ∈ A such that G = Gx has all required properties. �

Theorem 2.10. (i) Any at most countable similarity F with domain closed under
Def can be prolonged into an automorphism G such that G(b) = b implies b ∈
dom (F ).
(ii) Any at most countable similarity F can be prolonged into an automorphism G
such that FN = cut (G) ⊂ Cut (G).

Proof: (i) Let I be the system of all similarities with domain closed under Def ,
for which (∀ b)(G(b) = b ⇒ b ∈ dom (F )). Let

D〈x,0〉 = {G ∈ I;x ∈ dom(G)},

D〈x,1〉 = {G ∈ I;x ∈ rng (G)}.

The systems Dc
〈x,0〉 and Dc

〈x,1〉 are dense in Ic by Lemma 2.9 used in the second

case for inverse functions. By [S–V 1989, Theorem 1], we have a similarity G which
is an element of every mentioned system. Thus it is an automorphism and from the
definition of the system I it follows that it has the required property.
(ii) First, we extend the similarity F on the domain Def (dom(F )) (the extension
is unique) and then we use (i). �
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3. Revealed and fully revealed automorphisms.

In this section, we construct two fully revealed automorphisms such that their
composition is not fully revealed. Consequently, we have also a revealed automor-
phism which is not fully revealed (since revealed automorphisms are closed under
composition); this result was already proved by A. Sochor and C. Marchini (un-
published). The idea of this proof is similar to that of the main result of [S–1985],
where it is proved that the fully revealed classes are not closed under intersection.
We define the notion of an I-Sd class which will be useful in our proof.

Definition 3.1. Let I ⊆ N . A relation R is I-Sd, if there exists a SdV -relation

S ⊇ R and β ∈ I such that (∀ x)(S
′′

{x}
∧
4 β).

Observation. (i) Let S be a SdV -class which is I-Sd. Then for any u the class
S ↾ u is a set.
(i) Let R be an α-Sd relation such that its domain is a semiset. Then (∃ r ⊇

R)(∀ x)(r
′′

{x}
∧
4 α).

The next theorem is not used in the proof of the main theorem of this section,
but it gives us some information about α-Sd automorphisms.

Theorem 3.2. Let F be an automorphism such that cut (F ) ⊂ Cut (F ), let β /∈
cut (F ). Then F ↾ β is not FN -Sd.

Proof: We will prove by induction (w.r.t. n) that F ↾ β cannot be n-Sd if
β /∈ cut (F ). Let us suppose that n is the smallest α such that for some β /∈ cut (F )
the class F ↾ β is α-Sd. Let us fix such β and a corresponding SdV -relation
S ⊇ F ↾ β. By assumption Id ↾ cut (F ) ⊆ S. But then also, for some γ ∈
Cut (F ) \ cut (F ), we have Id ↾ γ ⊆ S, since S is SdV . By assumption γ ∈ Cut (F ),
we have F ∩ (Id ↾ γ) = Id ↾ cut (F ), so for T = (S ↾ (γ \ (γ/2))) \ Id there

holds F ↾ (γ \ (γ/2)) ⊆ T and T
′′

{x}
∧
≺ S

′′

{x}
∧
4 n for every x. But 〈ξ, ζ〉 ∈ F

implies 〈F (γ) − ξ, γ − ζ〉 ∈ F (since F (γ − ζ) = F (γ) − F (ζ) = F (γ) − ξ) and so
F ↾ (γ/2) ⊆ {〈F (γ) − ξ, γ − ζ〉; 〈ξ, ζ〉 ∈ T }; this is an SdV -class which witnesses
that F ↾ (γ/2) is (n − 1)-Sd, a contradiction. �

Now we are going to construct an automorphism with a special property, which
will be useful in our construction.

Lemma 3.3. For every countable similarity F , there exists an automorphism G ⊇
F such that

(∀ α)(∀ β /∈ FN )(G ↾ (α · β) is not G(α) − Sd).

Proof: Let I be the system of all similarities. Let

D〈α,β,r〉 = {G ∈ I; α ∈ dom(G) ∩ rng (G)&

& ((β /∈ FN & (∀ x)(r
′′

{x}
∧
4 G(α)))⇒ ¬(G ↾ (β · α) ⊆ r))}.
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If we prove that the systems Dc
〈α,β,r〉 are dense on I

c, the proof is finished by [S–V

1989, Theorem 1].
Let a countable similarity G and 〈α, β, r〉 be given. By [V], we can prolong the

similarity G so that α ∈ dom (G) ∩ rng (G) and {β, α · β} ⊆ dom (G). Now let

β /∈ FN and (∀ x)(r
′′

{x}
∧
4 G(α)).

Let us take the indiscernibility equivalence E(rng (G)). We claim that there is
a “big” monad under G(α · β), more precisely, there is a monad A ⊆ G(α · β)

such that (∃ a ⊆ A)(G(α)
∧
≺ a). This follows easily from the fact that G(α · β) =

G(α) · G(β) /∈ G(α) · FN and from the compactness of E(rng (G)).
Let us take a monad A with this property and γ such that (∀ δ ∈ A)(G∪{〈δ, γ〉}

is a similarity). From A ⊆ G(α · β) follows γ ∈ α · β. By assumption on r and A,

there is a δ ∈ A such that δ /∈ r
′′

{γ}. The similarity G ∪ {〈δ, γ〉} has the required
property. �

Let 2α0 = 2, 2
α
n+1 = 2

2αn , 2αFN =
⋃
{2αn;n ∈ FN }.

Corollary. For any α /∈ FN there exists a fully revealed automorphism F such
that F (α) = α and (∀ β /∈ 2αFN)(F ↾ β is not 2αFN-Sd).

Proof: Let α /∈ FN . If we use the lemma for the similarity {〈α, α〉}, we get an
automorphism G such that

(∗) (∀ ν)(G ↾ 2αν+1 is not 2
α
ν -Sd)

(actually, the property in Lemma 3.3 is much stronger, but the property (∗) is
expressed by a normal formula). Let us take its {〈α, α〉}-revealment F (by Theo-
rem 1.3 it exists). F is an automorphism and it still has the property (∗), because it
is given by a normal formula with a parameter α, and this guarantees the property
in the corollary. �

Theorem 3.4. There exist two fully revealed automorphisms such that their com-
position is not fully revealed.

Corollary. There exists a revealed automorphism which is not fully revealed.

Proof of Theorem 3.4: Let F be a fully revealed automorphism from the corol-
lary of Lemma 3.3. Let I be the system of all functions G such that G ∪ Id ↾ 2αFN
is a similarity. Let

D〈x,0〉 = {G ∈ I; x ∈ dom (G) ∩ rng (G)},

D〈β,1〉 = {G ∈ I; β /∈ 2αFN ⇒ (∃ γ < β)(G(〈F (γ), γ〉) /∈ F )}.

We will prove in Lemma 3.5 and Lemma 3.6 that the systems Dc
〈x,0〉 and D

c
〈β,1〉 are

dense in Ic. By [S–V 1989, Theorem 1], we have a function G which is an element of
every mentioned system. The systems D〈x,0〉 guarantee that G is an automorphism.

The systems D〈β,1〉 together with the condition that G ∪ Id ↾ 2αFN is a similarity

guarantee that

cut (G) ⊆ 2αFN&(∀ β /∈ 2αFN)(∃ γ < β)(G(〈F (γ), γ〉) /∈ F ).
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Now let us consider the automorphisms F−1 and G
′′

F . They are both fully revealed
(as automorphic image of a fully revealed class is fully revealed), but as we shall

see, their composition is not, since cut (F−1 ◦ (G
′′

F )) = 2αFN.
Let β ∈ 2αFN. From F (α) = α it follows that F (β) ∈ 2αFN, thus 〈F (β), β〉 =

G(〈F (β), β〉) ∈ G
′′

F and β ∈ cut (F−1 ◦ (G
′′

F )). Let β /∈ 2αFN, let γ < G−1(β)
be such that G(〈F (γ), γ〉) /∈ F (its existence is guaranteed by the property of G).

It follows that G
′′

F (G(γ)) 6= F (G(γ)), hence G(γ) /∈ cut (F−1 ◦ (G
′′

F )) and also

β /∈ cut (F−1 ◦ (G
′′

F )), since G(γ) < β; we are done. �

Lemma 3.5. Let G be a countable function such that G∪ Id ↾ 2αFN is a similarity.
Then for every z there exists t such that G ∪ Id ↾ 2αFN ∪ {〈t, z〉} is a similarity.

Proof: Since 2αFN codes all its subsets, we may restrict ourselves to the formulae
with one parameter from 2αFN. Let z be given, let dom (G) = {ai; i ∈ FN }. Let

An = {y; (∀ ϕ ∈ FSL , ϕ < n)(∀ δ ∈ 2αn)

(ϕ(z, δ, a0, . . . , ak)⇔ ϕ(y, δ, G(a0), . . . , G(ak)))}.

By an argument from [Ve–1982] the classes An are nonempty: Consider the formula

Φ(x, z, a0, . . . , ak)⇔ (∀ ϕ ∈ FSL , ϕ < n)(∀ δ ∈ 2αn)(〈ϕ, δ〉 ∈ x ⇔ ϕ(z, δ, a0, . . . , ak)).

There exists x ⊆ n × 2αn satisfying Φ(x, z, a0, . . . , ak), this x is coded in 2αFN. It
follows that there exists y satisfying Φ(x, y, G(a0), . . . , G(ak)) (since Id ↾ 2αFN∪G is
similarity) and this y is an element of An. Hence the classes An form a decreasing
sequence of nonempty SdV -classes. It follows that they have a common element t
which has the required property. �

Lemma 3.6. Let F be as above, let G be a countable function such that G∪ Id ↾

2αFN is a similarity, let β /∈ 2αFN. Then there exist γ < β and b /∈ F such that
G ∪ Id ↾ 2αFN ∪ 〈b, 〈F (γ), γ〉〉 is a similarity.

Proof: Let C = dom (G). Let

An,γ ={y; (∀ ϕ ∈ FSLC , ϕ < n)(∀ δ ∈ 2αn)(ϕ(〈F (γ), γ〉, δ)⇔ ϕ(〈y, γ〉, δ))},

An ={γ < β; 2 4 An,γ}.

An,γ and An are revealed classes, since they are defined by a normal formula from
the only parameter F which is fully revealed.
Suppose that An = ∅. Then for every γ < β there holds An,γ = {F (γ)}. Let for

a ⊆ n × 2αn be Ha(γ) defined as the least y (if it exists) such that

(∀ ϕ ∈ FSLC , ϕ < n)(∀ δ ∈ 2αn)(ϕ(〈y, γ〉, δ)⇔ 〈ϕ, δ〉 ∈ a).

Let r = {〈Ha(γ), γ〉; a ⊆ n × 2αn, γ < β}. We have F ↾ β ⊆ r and (∀ x)(r
′′

{x}
∧
4

n · 2αn), which is a contradiction with the property of F . We have proved that
An 6= ∅.
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Consequently, An is a decreasing sequence of nonempty revealed classes. Let
γ ∈

⋂
{An;n ∈ FN }. Now An,γ is a decreasing sequence of revealed classes each

of which has at least two elements. (one of them is F (γ)). Thus there exists
y 6= F (γ) such that y ∈

⋂
{An,γ ;n ∈ FN }. Let us take by Lemma 3.5 〈z, x〉 such

that G ∪ Id ↾ 2αFN ∪ {〈〈z, x〉, 〈F (γ), γ〉〉} is a similarity. If 〈z, x〉 /∈ F , then we put
b = 〈z, x〉 and we are done. In the other case, G ∪ Id ↾ 2αFN ∪ {〈〈z, x〉, 〈y, γ〉〉} is
a similarity (by the definition of An,γ). By Lemma 3.5, we can take some b such
that G ∪ Id ↾ 2αFN ∪ {〈〈z, x〉, 〈y, γ〉〉, 〈b, 〈F (γ), γ〉〉} is a similarity; it follows that
b = 〈t, x〉 for some t. The assumption F (γ) 6= y implies that t 6= z and hence b /∈ F .

�

We would like to know whether there exists some nontrivial normal subgroup
of the group of all automorphisms besides the subgroup of all revealed automor-
phisms. Fully revealed automorphisms are out of the question, since they are not
closed under composition. However, it is an open problem whether the group gen-
erated by all fully revealed automorphisms is different from the group of revealed
automorphism.
Note that this problem closely corresponds to the problem of finding normal

subgroups of Aut(M), where M is countable recursively saturated model of PA.
This problem is more interesting, if M ≡ N, which corresponds to the axiom of
elementarily equivalence in AST, which is equivalent with the statement Def = FV.
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Mathematical Institute of ČSAV, Žitná 25, 115 67 Praha 1, Czechoslovakia

(Received August 16, 1990)


		webmaster@dml.cz
	2012-10-09T16:32:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




