Pavel Pudlák; Zdeněk Vavřín Computation of rigidity of order $\frac{n^2}{r}$ for one simple matrix

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 2, 213--218

Persistent URL: http://dml.cz/dmlcz/116958

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://project.dml.cz

Computation of rigidity of order $\frac{n^2}{r}$ for one simple matrix

PAVEL PUDLÁK, ZDENĚK VAVŘÍN

Abstract. We shall compute the exact value of rigidity of the triangular matrix with entries 0 and 1.

Keywords: rigidity of matrices, lower bounds to complexity Classification: 15A03, 68Q15

Let F be an arbitrary field, let M be a square matrix of type n. The rigidity of M is the function depending on $r \in \{0, 1, \ldots, n\}$, defined by

$$R_M^{F}(r) = \min\{|B|, M = A + B, r(A) \le r\},\$$

where |B| denotes the number of nonzero elements in B and r(A) denotes the rank of A. Intuitively, $R_M^F(r)$ is the minimal number of changes in M needed to reduce the rank to a value less or equal to r. The concept of rigidity was introduced J. Valiant [3] in connection with lower bounds to the size of circuits. He showed that a sufficiently large lower bound to the rigidity of a matrix implies that the transformation determined by the matrix cannot be computed by a linear size circuit. It is an open problem to find such matrices. So far only small lower bounds to the rigidity of explicitly given matrices have been proved. Razborov [2] proved an $\Omega(\frac{n^2}{r})$ lower bound to the rigidity of the matrix of the generalized Fourier transform and the inverse matrix of the Vandermonde matrix, Alon [1] proved an $\Omega(\frac{n^2}{r^2})$ for Hadamard matrices. We shall determine the exact value of the rigidity of the triangular matrix

$$T_n = (t_{ij})_{i,j=1}^n, \qquad t_{ij} = \begin{cases} 1, & i \ge j, \\ 0, & i < j. \end{cases}$$

Theorem 1. Let r < n be given and determine k and Δ by

(1)
$$n = k(2r+1) + r + \Delta =$$
$$= r(2k+1) + k + \Delta,$$
$$k \ge 0, 1 \le \Delta \le 2r + 1.$$

Then

$$R_{T_n}^F(r) = \frac{(n-r+\Delta)(n+r-\Delta+1)}{2(2r+1)}.$$

Note that for n, r large but r small in comparison with n,

$$R_{T_n}^F(r) \approx \frac{n^2}{4r}$$

We shall say that

$$M = A + B$$

is a decomposition (of rank r, if r(A) = r), |B| is the number of changes, $|b_i|$ is the number of changes in the *i*-th row, if b_i is the *i*-th row of B.

If $|B| = R_M^F(r)$, we shall say that the decomposition is optimal.

Speaking of linear dependence of rows of a decomposition we mean linear dependence of the rows of A.

The proof of Theorem 1 is based on the following lemma:

Lemma 1. Let r < n and let k be given by (1). Then in any decomposition of T_n of rank at most r there is a row containing at least k + 1 changes.

We shall also determine the optimal decomposition of T_n .

Theorem 2. All optimal decompositions of rank r of the matrix T_n have the form (2), (3) given in the proof of Theorem 1 below.

The proof of Theorem 2 is based on the following lemmas:

Lemma 2. Let n and r < n be given, let k be determined by (1) and let an optimal decomposition of T_n be given. Then k + 1 is the maximum number of changes in a row.

Lemma 3. Let an optimal decomposition of T_n be given. Then deleting a row with the maximal number of changes and the corresponding column with the same index leads to an optimal decomposition of T_{n-1} .

Proofs.

PROOF OF LEMMA 1: Let $T_n = A + B$ be a decomposition of rank r. Let t_j , resp. a_j, b_j be the *j*-th row of T_n , resp. A, B. Suppose for contradiction that the maximal number of changes in a row is k. Let us take r + 1 rows with indices belonging to the set

$$S = \{k+1, k+1+1(2k+1), k+1+2(2k+1), \dots, k+1+r(2k+1)\}.$$

These rows must be linearly dependent, i.e.

$$\sum_{j \in S'} \alpha_j a_j = 0$$

for some $0 \neq S' \subset S, |S'| = s' \leq r+1$, $\alpha_j \neq 0$ for all $j \in S'$. Then

$$\sum_{S'} \alpha_j t_j = \sum_{S'} \alpha_j b_j$$

and, consequently,

$$|\sum_{S'} \alpha_j t_j| \le \sum_{S'} |\alpha_j b_j| \le s'k.$$

Denote $N = |\sum_{S'} \alpha_j t_j|$. The vector $\sum_{S'} \alpha_j t_j$ has the form

$$(c_1,\ldots,c_1,c_2,\ldots,c_2,\ldots,c_{s'},\ldots,c_{s'},0,\ldots,0),$$

where the length of each constant section is at least 2k + 1 except for the first section c_1, \ldots, c_1 which can have the length k + 1. Observe that the last section $c_{s'}, \ldots, c_{s'}$ cannot consist of zeros and that it is not possible that two consecutive sections consist of zeros. It follows that:

1. With exception of the case when the first section c_1, \ldots, c_1 consists of nonzero elements and has length k + 1,

$$N \ge \frac{s'}{2}(2k+1) > s'k,$$

which is a contradiction.

2. In the remaining case,

$$N \ge k + 1 + \frac{s' - 1}{2}(2k + 1) =$$
$$= \frac{2s'k + s' + 1}{2} > s'k$$

and the same contradiction appears again.

PROOF OF THEOREM 1: For m = n, n - 1, ..., r + 1 let us proceed in the following way:

Having any decomposition $T_m = A+B$ of rank at most r, we find a row containing at least k + 1 changes $(m = k(2r + 1) + r + \Delta)$ and reduce the matrices T_m, A, B by deleting this row and the corresponding column with the same index. Thus, we obtain a decomposition of T_{m-1} of rank at most r.

This procedure applied to any decomposition of T_n (of rank at most r) shows that the total number of changes is at least

$$\Delta(k+1) + (2r+1)k + (2r+1)(k-1) + \dots + (2r+1)1 =$$
$$= (2r+1)\frac{k(k+1)}{2} + \Delta(k+1) = \frac{(n-r+\Delta)(n+r-\Delta+1)}{2(2r+1)}$$

(due to (1)).

Now consider the concrete decomposition

(2)
$$T_n = A + B$$

This means, B is a block diagonal and the diagonal blocks are alternatively lower triangular, with all entries in the triangular equal to +1, and "sharp" upper triangular, with zeros on the diagonal and "-1's" in the upper triangle. The number of diagonal blocks is 2r + 1. We shall speak rather of nonzero triangles (the "-1"-triangles considered without zero diagonals) than of the whole diagonal blocks. Any $2r + 1 - \Delta$ of the nonzero triangles have dimension k and the remaining Δ triangles have dimension k + 1.

This form of B ensures that the matrix A has the form of r "steps" and, thus, r(A) = r.

Evidently

$$\begin{split} |B| &= (2r+1-\Delta)\frac{k(k+1)}{2} + \Delta\frac{(k+1)(k+2)}{2} = \\ &= \frac{(n-r+\Delta)(n+r-\Delta+1)}{2(2r+1)}, \end{split}$$

due to (1). Thus the lower and upper bounds for $R_{T_n}^F(r)$ are determined precisely.

Note that the precise lower bound is given without any knowledge of the form of the optimal decomposition.

PROOF OF LEMMA 2: Suppose that there is a row containing at least k+2 changes. Deleting this row and the column with the same index in all the three matrices T_n , A and B, we obtain a decomposition of T_{n-1} (of rank at most r), the number of changes of which is less than the minimum given by Theorem 1.

PROOF OF LEMMA 3: It follows directly from Theorem 1 and Lemmas 1 and 2.

PROOF OF THEOREM 2: We shall proceed by induction on n: 1) n = 1, r = 0:

$$B = (+1).$$

 $n = 0(2r + 1) + r + 1.$

B has $\Delta = 1$ nonzero triangle of dimension k + 1 = 1, $2r + 1 - \Delta = 0$ nonzero triangles of dimension k = 0.

2) $n - 1 \rightarrow n$

Let n fulfil (1) and let the *i*-th row contain k + 1 changes. The induced decomposition of the (n - 1) by (n - 1) matrix which arises by deleting the *i*-th row and column, is an optimal decomposition (Lemma 3) and thus has the form (2), (3). Having this in mind, we can show schematically all the variants of the rows $i_0 - 1$, i_0 and $i_0 + 1$, with the changes in the $(i_0 - 1)$ st and $(i_0 + 1)$ st rows shown by the signs x:

1	1	x	x	x	0	0	0	0	0	0	0	0
(i)(a) 1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	x	x	x	x	x	0	0	0	0	0	0
1	1	1	1	1	x	0	0	0	0	0	0	0
(b) 1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	1	1	1	1	x	0	0	0	0	0	0
1	1	1	1	1	x	x	x	x	x	0	0	0
(c) 1	1	1	1	1	1	0	<u>0</u>	0	<u>0</u>	0	0	0
1	1	1	1	1	1	1	\overline{x}	\overline{x}	\overline{x}	0	0	0
1	1	x	x	x	0	0	0	0	0	0	0	0
$ \begin{array}{c} 1\\(ii)(a) 1 \end{array} $	1 1	$\frac{x}{1}$	$\frac{x}{1}$	$\frac{x}{1}$	0 <u>1</u>	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	0 0	0 0	0 0
$(ii)(a) \begin{array}{c} 1\\ 1\\ 1 \end{array}$	1 1 1	$\frac{x}{1}$	$\frac{x}{1}$	$\frac{x}{1}$	$\begin{array}{c} 0 \\ \underline{1} \\ 1 \end{array}$	$\frac{0}{0}$	$\frac{0}{0}$ x	$\frac{0}{0}$ x	$\frac{0}{\overline{0}}$ x	0 0 0	0 0 0	0 0 0
$(ii)(a) \begin{array}{c} 1\\ 1\\ 1\\ 1\end{array}$	1 1 1	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \end{array}$	$\begin{array}{c} 0\\ \underline{1}\\ 1\\ 0 \end{array}$	$\frac{0}{0}$ 1	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0 \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0 \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0 \end{array} $	0 0 0	0 0 0	0 0 0
$(ii)(a) 1 \\ 1 \\ 1 \\ (b) 1$	1 1 1 1 1	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ 1 \end{array}$	0 <u>1</u> 1 0 1	$\begin{array}{c} 0\\ \overline{0}\\ 1\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} \frac{0}{0} \\ x \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \frac{0}{0} \\ x \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \frac{0}{0} \\ x \\ 0 \\ 0 \end{array}$	0 0 0 0	0 0 0 0	0 0 0 0
$(ii)(a) 1 \\ 1 \\ 1 \\ (b) 1 \\ 1 \\ 1$	1 1 1 1 1 1	$\begin{array}{c} x \\ \frac{1}{1} \\ x \\ \frac{1}{1} \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \end{array}$	$\begin{array}{c} 0\\ \underline{1}\\ 1\\ 0\\ \underline{1}\\ 1\\ 1 \end{array}$	$\begin{array}{c} 0\\ \overline{0}\\ 1\\ 0\\ 0\\ x \end{array}$	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ \end{array} $	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
$(ii)(a) \begin{array}{c} 1\\ 1\\ 1\\ (b) \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array}$	1 1 1 1 1 1 1	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ x \\ \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ \end{array}$	$\begin{array}{c} 0\\ \underline{1}\\ 1\\ 0\\ \underline{1}\\ 1\\ 0\\ \end{array}$	$ \begin{array}{c} 0\\ 0\\ 1\\ 0\\ 0\\ x\\ 0 \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ 0\\ x\\ 0 \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ 0\\ x\\ 0 \end{array} $	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ 0\\ x\\ 0 \end{array} $	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
$ \begin{array}{c} 1 \\ (ii)(a) \\ 1 \\ 1 \\ (b) \\ 1 \\ 1 \\ 1 \\ (c) \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ x \\ 1 \end{array} $	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ x \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ 1 \\ x \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ 1 \\ x \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ \frac{1}{1} \\ 0 \\ \frac{1}{1} \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 0\\ 0\\ 1\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 0\\ 0\\ x\\ 0\\ x\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 0\\ 0\\ x\\ 0\\ x\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 0\\ 0\\ x\\ 0\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0
$ \begin{array}{c} 1\\(ii)(a) \\ 1\\1\\(b) \\ 1\\1\\(c) \\ 1\\(c) \\ 1\end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ x \\ 1 \\ 1 \\ x \\ 1 \\ 1 \\ 1 \\ x \\ x \\ 1 \\ x \\ $	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ 1 \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ 1 \\ 1 \end{array}$	$\begin{array}{c} x \\ \underline{1} \\ 1 \\ x \\ \underline{1} \\ 1 \\ x \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ \frac{1}{1} \\ 0 \\ \frac{1}{1} \\ 0 \\ 1 \\ 1 \end{array} $	$\begin{array}{c} 0\\ \overline{0}\\ 1\\ 0\\ 0\\ x\\ 0\\ \underline{0}\\ 1 \end{array}$	$\begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ 0\\ \underline{0}\\ 0 \end{array}$	$\begin{array}{c} \frac{0}{0} \\ x \\ 0 \\ 0 \\ x \\ 0 \\ \underline{0} \\ 0 \\ \underline{0} \end{array}$	$ \begin{array}{c} 0\\ \overline{0}\\ x\\ 0\\ 0\\ x\\ 0\\ \underline{0}\\ 0\\ \underline{0}\\ \end{array} $	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

It is evident that the changes of the *i*-th row shown by underline (resp. overline) are optimal. The situation (i)(b) cannot occur since there are no changes in the *i*-th row needed. Neither (i)(a), (c) can occur since the *i*-th row would not be a row with the maximal number of changes. Thus only the variants (ii)(a), (b), (c) remain. The situation (ii)(b) means the increase of an "(+1)-triangle", (ii)(c) means the increase of a "(-1)-triangle" and (ii)(a) enables both of them.

In each case, the form (2), (3) of the decomposition of T_n is kept.

P. Pudlák, Z. Vavřín

References

- [1] Alon N., On the rigidity of Hadamard matrices, manuscript.
- [2] Razborov A.A., On rigid matrices (in Russian), preprint.
- [3] Valiant L.G., Graph-theoretic arguments in low-level complexity, Proc. Math. Found. Comp. Sci., Springer (1977) 162–176.

Institute of Mathematics, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Praha 1, Czechoslovakia

(Received November 13, 1990, revised February 13, 1991)