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New properties of the concentric circle space

and its applications to cardinal inequalities

Shu-Hao Sun, Koo-Guan Choo

Abstract. It is well-known that the concentric circle space has no Gδ-diagonal nor any
countable point-separating open cover. In this paper, we reveal two new properties of the
concentric circle space, which are the weak versions of Gδ-diagonal and countable point-
separating open cover. Then we introduce two new cardinal functions and sharpen some
known cardinal inequalities.
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1. Concentric circle space and its new properties.

Let us first recall the definition of the concentric circle space or the Alexandroff
double circle space. Let

Ci = {(x, y) | x2 + y2 = i}, (i = 1, 2),

and let P : C1 → C2 be the projection of C1 onto C2 from the origin (0, 0). Let
X = C1 ∪ C2 and we define the neighbourhood system {B(z)} of X as follows: let

{B(z)} =

{

{{z}}, for z ∈ C2,

{Uj(z)}
∞
j=1 for z ∈ C1,

where
Uj(z) = Vj(z) ∪ P (Vj(z)− {z}),

and Vj(z) is the arc of C1 with center at z and length 1/j. Then such X (with the
defined neighbourhood system) is called the concentric circle space or Alexandroff
double circle space. It is well-known that the concentric circle space X is a compact
T2 space (in fact, T5 space) (cf. [2]).
Next, we recall that a topological space Y has a Gδ-diagonal, iff there exists

a sequence of open covers {Un} of Y with

⋂

n

St (y,Un) = {y}

∗The first author gratefully acknowledges the financial support of the Australian Research
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for each y ∈ Y , where

St (y,U) =
⋂

{B ∈ U | y ∈ B}.

A cover U of Y is called point-separating , if for each y ∈ Y ,

⋂

{U ∈ U | y ∈ U} = {y}.

It is also well-known that the concentric circle space X is not metrizable, and so
it has no Gδ-diagonal nor any countable point-separating open cover. Although X
has no Gδ-diagonal, we will show that it has a weak Gδ-diagonal as defined below.
We will also show that X has a countable point-separating ∗-open cover as defined
below.

Definition. Let Y be any topological space. Then a collection U of subsets of Y
is called a ∗-open collection, if for each y ∈ Y, St (y,U) is an open set. Moreover, if
for each y ∈ Y, St (y,U) is a non-empty open set, then U is called a ∗-open cover .

A space Y is said to have a weak Gδ-diagonal, if there is a sequence {Un} of
∗-open covers such that

⋂

n

St (y,Un) = {y},

for each y ∈ Y .

Remark. A collection of open sets is clearly a ∗-open collection. But the converse
is not true. For example

U = {{y}} ∪ {Y }

is a ∗-open cover of Y , but it is not an open cover, if Y is not discrete. On the other
hand, if for each V ⊆ U , V is a ∗-open collection, then it is easy to check that U has
to be an open collection.

Lemma 1. A topological space Y has a weak Gδ-diagonal, if there is a mapping
g : Y × N → τ , where τ is the topology of Y , such that for each y ∈ Y ,

⋂

n∈N

g(y, n) = {y},

and for each n ∈ N, x, y,∈ Y, y ∈ g(x, n) implies x ∈ g(y, n).

Proof: Suppose that Y has a weakGδ-diagonal; i.e., suppose that Y has a sequence
{Un}∞n=1 of

∗-open covers such that
⋂

n St (y,Un) = {y} for each y ∈ Y . Define
g : Y × N → τ by

g(y, n) = St (y,Un).

Then clearly g has the required properties.
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Conversely, suppose that the mapping g with the required property is given. For
each y ∈ Y and n ∈ N, let

Rn(y) = {{y, x} | x ∈ g(y, n)}

and

Un =
⋃

y∈Y

Rn(y).

Then {Un}
∞
n=1 is the required sequence of

∗-open covers such that

⋂

n

St (y,Un) = {y}

for each y ∈ Y . Firstly, for each n ∈ n, Un is a cover of Y . Next, for each y ∈ Y
and n ∈ N, St (y,Un) = g(y, n). Clearly g(y, n) ⊆ St (y,Un). Now, if x ∈ St (y,Un),
then

y ∈
⋃

x∈Y

Rn(x),

i.e., y ∈ g(x, n) so that x ∈ g(y, n). Thus St (y,Un) ⊆ g(y, n). This completes the
proof. �

Proposition 1. The concentric circle space X has a weak Gδ-diagonal.

Proof: Define g : X × N → τ by

g(x, n) =

{

Un(x), if x = z ∈ C1,

(Un(z)− {z}) ∪ {x}, if x = P (z) ∈ C2, z ∈ C1.

Then clearly for each n ∈ N,

⋃

x∈X

g(x, n) = X,

for each x ∈ X ,
⋂

n∈N

g(x, n) = {x},

and for each x ∈ X,n ∈ N, g(x, n) is open.
By Lemma 1, it remains to show that for each n ∈ N, and for any x, y ∈ X ,

x ∈ g(y, n) implies y ∈ g(x, n). We divide this into four cases.

(i) Both x, y ∈ C1. If

y ∈ g(x, n) = Un(x) = Vn(x) ∪ P (Vn(x) − {x}),

then y ∈ Vn(x) so that x ∈ Vn(y) ⊆ Un(y) = g(y, n).
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(ii) x ∈ C1 and y ∈ C2. Let y = P (z), where z ∈ C1. If

y ∈ g(x, n) = Vn(x) ∪ P (Vn(x) − {x}),

then y ∈ P (Vn(x)− {x}) so that z ∈ Vn(x)− {x} and thus

x ∈ Vn(z)− {z} ⊆ (Un(z)− {z}) ∪ {y} = g(y, n).

(iii) x ∈ C2 and y ∈ C1. Let x = P (w), where w ∈ C1. If

y ∈ g(x, n) = (Un(w)− {w}) ∪ {x},

then y ∈ Vn(w) − {w} so that w ∈ Vn(y)− {y} and hence

x = P (w) ∈ P (Vn(y)− {y}) ⊆ Un(y) = g(y, n).

(iv) Both x, y ∈ C2. Let x = P (w) and y = P (z), where w, z ∈ C1. If

y ∈ g(x, n) = (Un(a)− {a}) ∪ {x},

then y ∈ P (Vn(w)) so that z ∈ Vn(w). Thus w ∈ Vn(z) and therefore

x = P (w) ∈ P (Vn(z)) ⊆ g(y, n).

This completes the proof. �

For convenience, we now modify slightly the basic sets in the Alexandroff double
circle space as follows: let

Xi = [0, 1]× {i}

replace Ci for i = 1, 2, and transform the projection P onto a mapping which maps
(a, 1) into (a, 2) for each a ∈ [0, 1]. Since a circle is obtained by identifying the end
points of [0, 1], this is consistent with the previous definition.
The following proposition shows that although the Alexandroff double circle

space X does not have any countable point-separating open cover, it does have
a pointwise countable point-separating ∗-open cover.

Proposition 2. For the Alexandroff double circle space X , there is a cover U such
that

⋂

Ux =
⋂

{B ∈ U | x ∈ B} = {x},

|Ux| ≤ ω0 and Vx = U \Ux is a
∗-open collection, for each x ∈ X , where |Ux| denotes

the cardinality of Ux and ω0 is the least infinite cardinality.

Proof: Let Qi be the family of all non-empty open intervals with rational end
points in Xi, for i = 1, 2. Then let U be the collection

U = {{x}}x∈X ∪ {Q1 ∪Q2 | Q1 ∈ Q1, Q2 ∈ Q2}.
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Then U is the cover having the desired properties.
Clearly, U is a point-separating cover of X and we have

⋂

Ux =
⋂

{B ∈ U | x ∈ B} = {x},

and |Ux| ≤ ω0, for each x ∈ X (i.e., U is a pointwise countable cover).
We now show that for each x ∈ X,Vx = U \ Ux is a ∗-open collection. It suffices

to show that for each B ∈ Vx, if w ∈ B, then there exists a sequence {Bj} ⊆ Vx
such that w ∈ Bj , for each j, and

⋃

j Bj is open. Clearly, we can take

B = Q1 ∪Q2, (Qi ∈ Qi, i = 1, 2).

Let w ∈ B = Q1 ∪Q2 ∈ Vx. Then there are two cases:
(i) w ∈ Q1 and x ∈ P (Q1). Let x = (a, 2), where a ∈ [0, 1]. Let ℓ1 (resp. r1)

denote the left (resp. right) end point of Q1. Then there is an increasing sequence
{ℓn} of rational numbers and a decreasing sequence {rn} such that sup{ℓn} = a
and inf{rn} = a. Now let

Dj = (ℓ1, ℓj)× {2}, Ej = (rj , r1)× {2}, (j = 1, 2, . . . ).

Then Dj ∪Q1 and Ej ∪Q1 are in Vx, for j = 2, 3, . . . , and

∞
⋃

j=2

(Dj ∪ Ej) ∪Q1

is an open set. Hence St (w,Vx) is open.
Similarly, if w ∈ Q2 and x ∈ P−1(Q2), then St (w,Vx) is again open.

(ii) w ∈ Q1 and x /∈ P (Q1). Since B = Q1 ∪ Q2 ∈ Vx (i.e., B ∈ U , x /∈ B),
we see that x /∈ Q1 and so x /∈ Q1 ∪ P (Q1) and Q1 ∪ P (Q1) ∈ Vx. The facts
that Q1 ∪ P (Q1) is open and w ∈ Q1 ∪ P (Q1) ⊆ St (w,Vx) are clear. The same
conclusion remains valid, if w ∈ Q2 and x /∈ P−1(Q2). This completes the proof.

�

2. Two new cardinal inequalities.

Let X be a T1 space. Then we have the following known cardinal inequalities:

|X | ≤ 2e(X) psw(X), (D.K. Burke and R. Hodel [1]),

|X | ≤ 2e(X)∆(X), (J. Ginsburg and G. Wood [3]),

where

psw(X) = min{κ | there is an open cover U of X such that

⋂

Ux = {x}, |Ux| ≤ κ, for each x ∈ X},

∆(X) = min{κ | there is a collection of open covers {Uα}α<κ

of X such that
⋂

St (x,Uα) = {x} for each x ∈ X},

e(X) = sup{κ | A is a closed discrete subspace of X with |A| ≤ κ}.
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Here κ denotes cardinality and |A| denotes the cardinality of A.
We will sharpen these inequalities. For this purpose, we define the following

cardinal functions:

wpsw(X) = min{κ | there is a cover U of X such that
⋂

Ux = {x},

|Ux| ≤ κ and Vx = U \ Ux is
∗-open, for each x ∈ X},

∆(X) = min{κ | there is a collection of ∗-open covers {Uα}α<κ

of X such that
⋂

α<κ

St (x,Uα) = {x}, for each x ∈ X}.

Then we have:

Theorem 1. For any T1 space, |X | ≤ 2e(X)wpsw(X)ψ(X).

Theorem 2. For any T1 space, |X | ≤e(X)∆(X).

To prove our theorems, we need the following results, the first one is easy to
prove and the second is due to D.K. Burke.

Lemma 1. If U is a ∗-open cover of a T1 space, then there exists a maximal
subset D such that x, y ∈ D and x 6= y imply x /∈ St (y,U); and that D is a discrete
closed subspace of X with

⋃

d∈D

St (d,U) = X.

Lemma 2 (D.K. Burke). If {Aα | α ∈ Λ} is an indexed collection of sets in which
every member has cardinality less than or equal to λ, where |Λ| > 2λ, and each
Aα is a disjoint union of two subsets A

′
α, A

′′
α, then there is a set Λ

′ ⊆ Λ such that
|Λ′| > 2λ and A′

α ∩A′′
β = ∅ whenever α, β ∈ Λ′.

Proof of Theorem 1: Let e(X)wpsw(X)ψ(X) = κ. Then there is a ∗-open
cover U of X such that

⋂

Ux = {x} and |Ux| ≤ κ for each x ∈ X , and a collection
of open sets {Uα(x)}α<κ such that {x} =

⋂

α<κ Uα(x).
For each x0 ∈ X , we will construct a set

Ax0 = A
′
x0 ∪A

′′
x0

satisfying the assumption of Lemma 2. Firstly, since |Ux0 | = |{B ∈ U | x0 ∈ B}|
≤ κ, we let

A′
x0 = Ux0 .

Then Vx0 = U \ Ux0 and
⋃

Vx0 = X \ {x0}. For each α < κ, let

Uα = Vx0 ∪ {Uα(x0)}.
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Then Uα is a cover of X such that St (x,Uα) is an open set for each x ∈ X . By
Lemma 1, there exists a closed subset Dα(x0) such that

⋃

{St (d,Uα) | d ∈ Dα(x0)} = X ;

i.e.,
⋃

{St (d,Vx0) | d ∈ Dα(x0)} ∪ Uα(x0) = X.

Since e(X) ≤ κ, it follows that |Dα(x0)| ≤ e(X) ≤ κ. Therefore

⋃

α<κ

⋃

d∈Dα(x0)

St (d,Vx0) ⊃
⋃

α<κ

(X \ Uα(x0)) = X \ {x0}.

On the other hand,

x0 /∈
⋃

α<κ

⋃

d∈Dα(x0)

St (d,Vx0).

Let Dx0 =
⋃

α<κDα(x0). Then we see that

⋃

d∈Dα(x0)

St (d,Vx0) = X \ {x0} and |Dx0 | ≤ κ · κ = κ.

Now let

A′′
x0 =

⋃

d∈Dα(x0)

{B ∈ Vx0 | d ∈ B}.

Then |A′′
x0 | ≤ κ · κ = κ. Clearly A′

x0 ∩A
′′
x0 = ∅.

If |X | > 2κ, then by Lemma 2, there is a set X ′ ⊆ X such that |X ′| > 2κ and
A′
x ∩A

′′
y = ∅ for each pair x, y ∈ X ′. But this is impossible. Since

y ∈ X \ {x} =
⋃

d∈Dx

St (d,Vx),

there is a B ∈ Vx and d′ ∈ Dx such that y, d
′ ∈ B and so B ∈ A′

y ∩ A′′
x; i.e.,

A′
y ∩A

′′
x 6= ∅, for each distinct pair x, y ∈ X ′.

Hence |X | ≤ 2κ and the proof is complete. �

Remark. We use the technique of Burke in the proof of Theorem 1.

Proof of Theorem 2: Let e(X)∆(X) = κ. Let {Wα}α<κ be a collection of ∗-
open covers of X such that

⋂

α<κ St (x,Wα) = {x}. We will construct an increasing

sequence {Bα | 0 ≤ α < κ+} of subsets in X and a sequence {Uα | 0 < α < κ+} of
open collections in X such that

(i) |Bα| ≤ 2κ, 0 ≤ α < κ+;
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(ii) Uα −
⋃

x{{St (x,Wα′) | α′ < κ}}, where x runs over the set
⋃

β<αBβ , for

0 < α < κ+;
(iii) if X \ (

⋃

U) 6= ∅, then Bα \ (
⋃

U) 6= ∅, for each U ∈ [Uα]≤κ, where

[Uα]
≤κ = {V ⊆ Uα | |V| ≤ κ}.

The construction goes by transfinite induction. Let 0 < α < κ+ and assume that
{Bβ | β < α} have already been constructed. Note that Uα is defined by (ii) and

|Uα| ≤ 2κ. For each U ∈ [Uα]≤κ with X \ (
⋃

U) 6= ∅, choose one point in X \ (
⋃

U).
Let Aα be the set of all the points chosen in this way. Since |Uα| ≤ 2κ, it follows
that |Aα| ≤ (2κ)κ = 2κ. Now let

Bα = Aα ∪
⋃

β<α

Bβ .

Clearly, Bβ ⊆ Bα for all β < α, and |Bα| ≤ 2κ. This completes the construction of

the increasing sequence {Bα | 0 ≤ α < κ+}.
Next, let

B =
⋃

α<κ+

Bα .

Then |B| ≤ 2κ. The proof is complete, if X = B. Suppose X 6= B and choose
p ∈ X \B. For each α < κ, let Fα = X \ St (p,Wα). Then Fα is closed and

⋃

α<κ

Fα = X \
⋂

α<κ

St (p,Wα) = X \ {p} ⊇ B.

Let Vα = {W ∈ Wα | W ∩ (Fα ∩ B) 6= ∅}. Then we claim that
⋃

Vα ⊇ Fα ∩B.

In fact, if y ∈ Fα ∩B, then there exists b ∈ St (y,Wα) ∩ (Fα ∩B), and so y ∈
St (b,Wα) ⊆

⋃

Vα.
Since e(X) ≤ κ, we have e(Fα ∩B) ≤ κ, so that there is a set Cα ⊆ Fα ∩B such

that Cα is closed discrete with |Cα| ≤ κ and

⋃

b∈Cα

St (b,Wα) =
⋃

b∈Cα

St (b,Vα) ⊆ Fα ∩B.

It is sufficient to take the maximal Cα ⊆ Fα ∩B such that d1 /∈ St (d2,Vα) for each
distinct pair d1, d2 ∈ X . Let C =

⋃

α<κ Cα ⊆ B. Then |C| ≤ κ and

⋃

α<κ

⋃

d∈Cα

St (d,Wα) ⊆
⋃

α<κ

(Fα ∩B) = B.

Therefore there exists α0 < κ+ such that C ⊆ Bα0 . Finally, let

U =
⋃

α<κ

{St (d,Wα) | d ∈ Cα}.
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Then U ∈ [Uα0 ]
≤κ and hence

Bα0+1 \ (
⋃

U) 6= ∅,

by (iii), which is a contradiction. This completes the proof. �

Remark. The results in Section 1 on the concentric circle space show that the
above extensions are not trivial.
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