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THEORY OF KIRCHHOFF’S NETWORKS

VAcLav DoLEZAL and ZpENEK VOREL, Praha

(Received July 27, 1961)

Equations describing the behaviour of Kirchhoff’s networks (e. g. electri-
cal networks with lumped elements) are examined from the viewpoint of
existence, uniqueness and stability of their solutions and of compatibility
of initial conditions. The common mathematical background of problems in
the frequency and time domains is pointed out. The problem is approached
from two sides: the theory of linear operators and that of ordinary linear
differential equations with constant coefficients whose right hand sides are
distributions.

Introduction. Several papers have appeared recently dealing with the mathematical
problem of Kirchhoff’s networks. As an example of Kirchhoff’s network one can
take an electrical network with lumped parameters, containing resistances, inductances
and capacities as passive elements and voltage generators as the active ones. The
fundamental problem is to decide whether the network has a unique solution for
currents, i. e. whether there exists a unique solution of the equations describing the
behaviour of currents and voltages in the network.

This problem has been solved by D. KoniG [1] for direct curent networks and
by V. KNICHAL [2] for alternating current networks. For instance, in [2] the network
problem can be reduced essentially to the following one: To find assumptions con-
cerning the real constant square matrices R, L, S, under which there exists a unique
solution J(t) = J, exp {iwt}, with J, a complex vector and w > 0, of the system

(0, x [R Ji) + L ggii) + SJ:J(‘L’) d-r:l = X‘E, exp {iot},

a'J(t)=0,
where X', a' are constant matrices, E, is a complex vector.

In the presented paper the approach is more general. For example, instead of (0,1)
we can examine the system

(0,2) X [RJ + L (i—f - Joao) + S(JCY + quo)] = X'E,

a'J =0,
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where E = E(1) is a vector distribution, E(f) = 0 for t < 0, J,, g, constant vectors,
H, is Heaviside’s function and 0, its derivative in the distributional sense, .I(t) = 0 for
t <0.

The main purpose of paragraph 1 is to give some conditions for the existence and
uniqueness of solution of an abstract network. In paragraph 2 the theory of Heavi-
side’s operators is presented in the extent needed in paragraphs 3 and 5. Here theorems
on existence and uniqueness of solutions of Kirchhoff’s networks in the time domain
and in the frequency domain, on stability of solutions and on compatibility of initial
conditions can be found. In paragraph 6 there are some extensions of the results
found in [2].

There are two main physical approaches to the problem of Kirchhoff’s networks:
examination in the time domain on one hand and in the frequency domain on the
other. The former mathematically reduces to the study of systems of type (0,2), the
latter to the study of systems of linear algebraical equations with rational functions (in
complex domain) as coefficients. As shown in paragraph 3, these two approaches are
equivalent. If we study a system with a fixed frequency, we deal with systems of linear
algebraical equations with numerical coefficients, as in paragraph 6.

In paragraph 7, the problem of Kirchhoff’s networks is approached from the basis
of the theory of ordinary differential equations. As a result one obtains a normall)
system of ordinary differential equations with constant coefficients and with Schwartz’s
distributions on the right sides. Compatibility of initial conditions is examined for the
case when the right sides are integrable functions.

1. ABSTRACT NETWORKS

Let us start with some useful considerations. Let P be a linear space, i. e. P is
a nonempty set and

1. there is some rule under which to each pair of elements x, y € P there corres-
ponds a uniquely determined element x + y € P,

2. there is some field T such that for every A € T and every x € P the product
Ax e P is defined,

3. the following conditions are satisfied:

a) x4+ y=y+ x forevery x, yeP,

b) (x+ y)+ z=x+ (y + z) forevery x, y,zeP,

¢) there is an element 0 € P such that x 4+ 0 = x for each x € P,

d) for every x € P an element (—x) € P exists such that x + (—x) = 0,

e) if 1 € T is the unit then 1 . x = x for each x € P,

f) A(Bx) = (4B) x for each x € P and every 4, BeT,

g) (4 + B)x = Ax + Bx, A(x + y) = Ax + Ay foreach x,yeP, 4,BeT.

' 1) A system of differential equations is called normal if it is solved with respect to the deriva-
tives of the highest order.
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It can be readily seen that the following statements are true:

Lemma 1,1. a) In P there exists a unique element 0,

b) for each x € P the element (—x) is determined uniquely,

¢) Ox = 0 for each x€P,

d) A0 = 0 for each AeT,

e) if Ax =0, AeT, x €P, then either A =0 or x = 0.

The expression “matrix A (or vector a) over Q” will mean that the elements of 4
(or a) belong to the set Q.

The following theorem can be easily proved:

Theorem 1,1. Let A be a matrix over T with ¢ rows and g columns, and with rank
h < ¢. Then there exists a matrix X over T with g rows and v columns, v = ¢ — h,
which has the maximal rank, such that the following conditions are fulfilled:

1. If x is a g-dimensional vector over P fulfilling the equation

(1,1) Ax =0

then there is a v-dimensional vector y over P such that
(1,2) x =Xy

holds.

2. If y is any v-dimensional vector over P, then the vector x defined by (1,2) fulfils
equation (1,1).

Moreover, ‘

a) AX = 0 and the columns of X form a complete set of linearly independent
solutions of the equation (1,1) in T; '

b) for each pair of vectors x, y over P satisfying (1,2) the equivalence x =% 0 <
<y £ 0 is true;

c) for X there can be taken any matrix whose columns form a complete set of
linearly independent solutions of equation (1,1) in the field T. .

If A is a matrix over T with ¢ rows and g columns and rank o, then the vector
x = 0 over P is the unique solution of equation (1,1).

Let now H = {h,, ..., h,} be a finite non-empty set, the elements of which will be
called branches; let further U = {uy, ..., u,} be a finite non-empty set, the elements of
which will be called nodes. Let I" be a function on H into U x U such thatif h; € H,
then

L(hy) = (usp usy), wipu, €U, uy *+u,.

In this case the nodes u; , u;, will be called the initial, terminal node of the branch h,,
respectively, and h; will be said to be oriented from u;, to u;,. The branch h; € H and
the node u; e U are said to be incident if u; is either the initial or the terminal node
of h;. Two distinct branches h;, h; € H will be called adjacent if there exists an u, e U
incident with both h;and h;. )
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The triple (H LU, r ) = G will be called an oriented graph, if for each u; € U there
exists an h; € H such that u; and h; are incident. In this case h; and u; will be called
a branch and a node of the graph G, respectively.

Agraph G, = (Hy, U, I'y)is called a subgraph of G,if H; < H,U, < U, I'y(h)) =
= I'(h;) for h, € H,. In this case we write G; = G.

The expression K = Y c¢;h; where ¢; €T, h;e H, will be called a 1-complex. If
i=1

r r
K' =Y cih, is also a 1-complex, o, o € T, let us define K + 'K’ = ¥ (¢; + ¢}) hs.
i=1 i=1
Weput K = 0,ifand only if ¢; = 0,7 = 1, ..., r. Complexes K, ..., K, will be called
9
linearly independent, if from ) o;K; = 0, a; € T, if follows thata;; = 0, i = 1,..., q.

i=1
s

In a similar manner, the expression L= ), ¢;u;, where ¢; € T, u; € U, will be called
i=1
a 0-complex. The notions of «L + 'L/, L= 0 and linear independence are defined
analogously. ’
For the sake of brevity the notation (—1)h; =—h;, (=D uy=— u,, —1€T,
will be used.
On the system of all 1-complexes let us define the operation @ by the relation K =

= Z ¢; Oh;, where Oh; = u;, — uy, if T'(h) = (uy,, u;,). If 0K = 0 for some 1-com-

plex K then K will be called a cycle.
Let us now define the matrix a over T with r rows and s columns as follows (a=
= [ay] will also be called the incidence matrix):

ap= 1€eTif uy, =u;,,
apy=—1eT if up = u;,,
ay = O0eTif u; + uy *+ uy, where I'(h) = (uy,, u;,) -
According to the definition of an oriented graph, itis obviousthatr > 1,5 > 2 and,
therefore, the rank of a is =1. '
Let us further denote i' = [hy, ..., b, h;e H, u* = [uy, ..., u;], u, e U. f K'=
= [K;] is any matrix the elements of which are 1-complexes, let 6K = [0K]. Then
obviously

(13) oh = au.

If K is a 1-complex, one can write K = c'h, where ¢* = [¢y, ..., ¢,].
From the foregoing definitions it follows:

Lemma 1,2. Let K = ¢'h; then K is a cycle if and only if a‘'c = 0.

The proof is evident. '

Let now the rank of the matrix a be smaller than r, and let X be the matrix from
Theorem 1,1 where we put A = a'. It can be readily seen that the following statement
is true: The elements of the vector X 'h form a complete set of linearly independent
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cycles. Indeed, the elements of X 'h are cycles, for 6X'h = X'0h = X‘au = 0. Suppose
further that there is a vector « over T such thata'X'h = 0. By definition of the zero
1-complex, the latter equation means that ' X' = 0, i. e. Xa = 0. As X has maximal
rank, it follows that « = 0 and, consequently, the elements of XA are linearly inde-
pendent. The completeness follows immediately from the maximality of the rank
of X.

Let K = Y c¢;h; be a 1-complex with the ¢; assuming only three values from T, na-
i=1

mely 0, 1, —1. Let G, be a subgraph of G = (H, U, I') with the following property:
h; € H is a branch of G, if and only if ¢; + 0. Let G5 be a graph which is obtained
from G, by changing the orientation of h; whenever ¢; = — 1.

A 1-complex K = Y ¢;h;, ¢;€{0, 1, —1} is called a chain if G; has the following

i=1

property: The branches h; € H for which ¢; # 0 may be ordered to form a sequence
{hi;> ..., by}, the terminal node of h;, being the initial node of h; ., j=1,2,...,
p— 1

Anodeu;of G = (H, U, F) will be said to be of order nif u; is incident with exactly
n branches from H. A chain K is called elementary if each node of the corresponding
graph G is at most of order 2, i. e. if each node of K is incident with at most two
branches of K.

An elementary chain K which is simultaneously a cycle will be called a loop. From
the above definitions it follows that the initial node of the first branch of Gy coincides
with the terminal node of its last branch.

In a similar way as in [2] one can prove the following theorem:

Theorem 1,2. Let K =Y. c;h; be a cycle. Then there exist loops K; =Y e;;h;,
i=1 ji=1

1
i=1,2,...,1 such that K = d,K;, d;eT. Moreover, e;; = 0= ¢; % 0 for i =
i=1

=12,...,Lj=12,..,r

Now let us state the definition of a network.

Let G be an oriented graph and Z a function on H x H into some field T; the orde-
red pair N = (G, Z) will be called an abstract network.

Let further E be a function on H into P, where P is a linear space with respect to T.
For the sake of brevity let us denote by E' the vector E' = [E(h,), E(hy), ..., E(h,)]
and by Z = [Z,] = [Z(h;, h)] the matrix of type r x r.

The statement the network N has a solution for a given function E will mean that
there exists a function J on H into P such that the following conditions are fulfilled:

K1: ¢'E = ¢'ZJ for every cycle c'h,

K2: a'J = 0 (a is the incidence matrix)
where J* = [J(h,), J(h,), ..., J(h)]-

Note 1,1. From Theorem 1,2 it follows easily that N possesses a solution J for
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a given E, if and only if K1 is fulfilled for every loop. Indeed, if K1 holds for every
loop K;, and K is a cycle, it is sufficient to multiply each of the I systems of equations
K1 for K4, ..., K, by the corresponding coefficient d; and sum all the [ systems.

Finally, we state that N is regular if N possesses a unique solution for every E, i. e.
if for every E the corresponding solution J is determined uniquely.

The network N will be called non-trivial if the rank of the matrix a is smaller than r,
trivial if rank (a) = r.

It is obvious that N = (G, Z) is non-trivial if and only if G contains at least one
non-zero cycle. Therefore every trivial network is regular.

Theorem 1,3. Let N be a non-trivial network and X any matrix the columns of
which form a complete set of linearly independent solutions of a'x = 0in T (a is
the incidence matrix); then N is regular if and only if

(1,4) det X'ZX * 0.
Moreover, the solution J corresponding to E is given by
(1,42) J=X(X'ZX)"'X'E.

Proof. According to Theorem 1,1, K2 is equivalent to J = Xy; ¢'his a cycle if and
only if a'c = 0. Censequently, K1 and K2 are equivalent to X'E = X'ZXy. From
this the theorem follows.

A sufficient condition for the regularity of a network is given by

Theorem 1,4. Let N = (G, Z) be an abstract network; if ¢'Zc * 0 for every cycle
¢‘h &= 0 then N is regular.

Proof. If N is trivial, the theorem obviously holds. Let N be non-trivial; according
to Theorem 1,1 for every cycle ¢*h # O there exists an y # 0 over T such that ¢ =
= Xy, X being fixed. By hypothesis y'X'ZXy % 0 for every y % 0, whence
det X'ZX = 0. This together with Theorem 1,3 proves our statement.

Note 1,2. It can be shown easily, that the condition in Theorem 1,4 is not necessary.
Moreover, the condition “c'Zc =% 0 for every cycle ¢'h # 0 cannot be replaced by
the weaker condition “c*Zc¢ # 0 for every cycle
belonging to any set of linearly independent cyc-
les”, as shown in the following example:

us

Example 1,1. Let us consider the network
N = (G, Z), where the graph G is schematically
sketched on Fig. 1 and where Z = diag [0, 1, 0].
It can be readily seen that ¢;h, c3h, where ¢; =
=[1,1,0], ¢; =[0,1, —1], form a complete y
set of linearly independent cycles. Obviously

¢;Zc, = ¢3Zc, = 1; on the other hand, putting Fig. 1.
X' = [(1)’ i’ _(1)] one obtains X'ZX = [i ;] which is a singular matrix.
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Another necessary and sufficient condition for the regularity of a network is repre-
sented by the following theorem:

Theorem 1,5. Let N be a non-trivial abstract network; then N is non-regular if
and only if for E = 0 there exist a solution J and a cycle c*h # Osuchthat J; & 0 <>
< ¢; %0, wherec' = [cy,...,c,), J =Ty, .. I,

Proof. The sufficiency is trivial; let us therefore prove the necessity only. If N is
non-regular, then a vector y = 0 over T exists such that

(1,5) X'ZXy =0.
By Theorem 1,1, Xy = 0; chooosing arbitrary a e P, « % 0, it is evident that J =
= Xya # 0. From (1,5) it follows that X*ZJ = 0; also a'J = a'Xyo = 0. Hence J
represents the solution of N for E = 0. But ¢'h for ¢ = Xy is a non-zero cycle posses-
sing the property stated in Theorem 1,5, q. e. d.

Theorem 1,6. Let A be a matrix over T of type ¢ x o, with rank =1, y a g-dimen-
sional vector over P; then there exists a o-dimensional vector x over P satisfying the
equation

(1,6) Ax =y

if and only if for every g-dimensional vector z over T, which satisfies the equation
(1,7) z'4 =20

the relation

(1,8) z'y=0

is valid.

Proof is obvious.

With the aid of Theorem 1,6 the network problem can be formulated in another,
equivalent manner.

Theorem 1,7. Let N = (G, Z) be an abstract network, E some vector over P. Let us
construct the system
(A) ZJ] +aV=E,
(B) a'J =0,
where a is the incidence matrix, V an s-dimensional vector over P. Then the following
assertions are true:

L. If N has a solution for a given E, then there exists a V such that (A), (B) are
Sulfilled.

~ 2. If the system (A), (B) has a sblutionfor a given E (i. e. if vectors J, V satisfying
(A), (B) exist), then J is the solution of N.

Proof. 1. Let J be a solution of N for a given E, i. e. let ¢'(E — ZJ) = 0, a’J = 0
hold for every cycle ¢'h. It can be readily seen that a Vexists such that aV = E — ZJ
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holds. As a matter of fact, for every cycle ¢*h one has a'c = 0, i. e. ¢'a = 0, so that
the assumptions of Theorem 1,6 are satisfied and V exists.

2. If conversely (A), (B) hold, then multiplying (A) by a ¢* which corresponds to
a cycle ¢'h, one obtains ¢'ZJ = ¢'E and the theorem is proved.

Theorem 1,8. Let N = (G, Z) be an abstract network and let a be the incidence
matrix. Let further d be a matrix the columns of which form a complete set of line-
arly independent columns of a; then N is regular if and only if

(1.9) det [.?..?i] +0.
a0

Proof. Without loss of generality suppose that the first & columns of a from a
complete set of linearly independent columns. (According to the definition of a it is
obvious that h < s — 1.)

1. Let N be regular and let J be its solution for a given E. By Theorem 1,7 a vector V'
exists such that (A), (B) are satisfied; simultaneously J is the unique vector fulfilling
{A), (B). From (A) it follows that for any other vector ¥ fulfilling (A), the equation

(1,10) o(V—7)=0
is valid. Now let V be fixed and consider the equation ax = 0; from the assumption

on the columns of a it follows that choosing the components X, 4 1, X443, - .-, X; Of the
vector x arbitrarily, the components x;, x5, ..., X, are determined uniquely. Let X,

be the unique solution of ax = 0, where x; = —V;fori=h + 1, h + 2, ..., 5. Ad-
ding the equation aX, = 0 to (A), one obtains
(111 . ZJ +aV* = E,

where V* = V + X,; evidently, the last s — h componeﬁts of V* are zero. It is
obvious that there cannot exist any other vector V** with the latter property and
satisfying (1,11). Indeed, in the opposite case we would have a(V* — V*¥) = 0, so
that V* — V** = 0 as above. ; '
Consequently, putting ¥, = [Vi, Vo, ..., V4], the system

(1,12) ZJ+dV =E, a'J=0

has the unique solution J, V. Finally, as the second equation of (1,12) is equivalent to
d'J=0, (1,12) is equivalent to a system with the coefficient-matrix U = [de ; the

uniqueness of J, ¥ proves our statement. _

Conversely, let (1,9) be satisfied; then (1,12) possesses a unique solution, so that
(A), (B) have a unique solution in J; this together with Theorem 1,7 proves the second
assertion. - )

Two different abstract networks N, = (Gy, Z;), N, = (G,, Z,) will be called equi-
valent (wc write N; & N,), if N; can be transformed into N, by a successive applica-
tion of the following operations:
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)

(i} Change of orientation of a branch, say h;. In this case Z;; remains unchanged,
whereas every Z;;, i & j, changes sign;

(ii) Replacing a pair of equally oriented adjacent branches h;, h; whose common
node is of order two, by a single branch &; for which
(1’13) Z?;c =Zy + ij, k*i, k+j, Z’iki =Z;+ Zii + Zji + ij’
the matrix without astric corresponding to the original network and that with an
astric corresponding to the new one;

(iif) Replacing a single branch h; by a pair of equally oriented adjacent branches
h;, h; whose common node is of order two, (1,13) being fulfilled.

Evidently, the equivalence defined above is symmetrical, transitive and reflexive.
Thus each set of networks may be decomposed into classes of equivalent networks.

Note 1,3. Let be given a network N = (G, Z), a vector E* = [E,, ..., E,] over P
and the corresponding solution J* = [Jy, J,, ..., J,]. From egs. K1, K2 there follow
these statements:

a) Operation (i) applied to h; € H implies that the resulting network N has a solu-
tion J' = [Jy,..., =J; ..., J,] if E* is replaced by E* = [Ey, ..., —E;, ..., E.];

b) Operation (ii) applied to h;, h; implies that N hasa solution J* = [J,, ..., J;, ...,
Ji—1s Jjr1s .-, Jo] if E is replaced by

E'=[Ey,...E;+E;,...E;_1,E;4y,...., E,].

c) Operation (iii) applied to h, implies that N has a solution J' = [Jy, ..., J;, ...,
J,, J;], if E® is replaced by E* = [E,, ..., E,, E;].

Further, it is evident that to each cycle of N there corresponds exactly one cycle of
N, and to each node of N which is at least of order three there corresponds exactly
one node of N which is of the same order.

Theorem 1,9. Let N, = (G,, Z,), N, = (G,, Z,) be two equivalent networks. Then
N, isregular if and only if N, is regular.
The proof follows from Theorem 1,5 and Note 1,3.

2. SOME SPECIAL FIELDS

Let E be the field of complex numbers, E, the field of real numbers; let R be the
field of rational functions of variable p the coefficients of which belong to E, and R,
the field of rational functions in p with coefficients from E,.

Let us now construct the field of Heaviside’s operators.

Let D be the set of all Schwartz® distributions vanishing in (— o0, 0) (see [3]). It
can be easily shown that the following statements are true:

1) f,geD=f+geD,

2) feD=f"eD,
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3) f e D = af € D for every function a(t) indefinitely differentiable in (—co, o),
4) if f € D is regular, then f(t) = O almost everywhere in (— o, 0).

Let us now define the notion of a primitive distribution; if f € D, let the functional
1 be given by

21 (<) = (f,—-f o(2) dr+q°° o(%) dzjf' 00(%) dr), pek,

-0 -0 -0

where ¢, € K (K denoting the set of all indefinitely differentiable functions with com-

pact support), the support of ¢, being a subset of (— o0, 0), and [, @o(7) dr = 1.
It can be readily proved that the following assertions hold:

1) f& 1 e D and does not depend on the choice of ¢,

2) if fe D is regular, then f"Y is also regular and equals [o f(t) dt almost
everywhere,

3) (f + 9) 70 = fCV 4 gD,

4 (=Y =1

Let us now define on D the operator D by the relation Dx = x’ and the operators
2,0 by Ax = (Ax), 0x =0 for A,0€E.

If A, B are any operators defined on D, let us define the sum 4 + B and the product
AB in the usual manner.

For any integer n = 2 let D" = DD""!, D' = D.

The operator 4 on D will be called regular if there exists an operator A~! on D
such that the equations A7'4 = 44™! = 1 € E are valid.

By assertion 4) it is obvious that D is regular and D™'x = x‘~*) holds.

Let now R be the set of operators A which are defined on D by the relation
(2,2) A=aD"+a,_ D" '+ ... +a,, n=0, a,eE.

Then the following obvious statements are true:

Lemma 2,1. If A,BeR, then A + BeR, ABeR and AB = BA.

Lemma 2,2. IfAeER', then A = 0 if and only ifa, = a,_, = ... = a,=0.
Lemma 2,3. Every operator D — a€ R, a € E, is regular and
(2,3) (D —a)™ x = (e *x)" 1.
Proof. One has
(D = ) {e"(e™ %)V} = ae™(e™ %)™V + x — ae™(e”x)"V = x;
similarly one obtains (D — &)™ (D — «) = 1, g. e. d.
Lemma 2,4. Each AeR, A % 0, is regular.

The proof follows from Lemma 2,3 and Lemma 2,1.
Let us now define Heaviside’s operators. Let H be the set of all operators defined
on D with the following property: If A e H then there are operators C;, C, € R,
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C; *+ 0, such that 4 = C;'C,. Let A e H. Then obviously A4 = 0 if and only if
C2 = 0. *

Theorem 2,1. a) Each A€ H, A + 0 is reqular and A~ € H. b) If A, Be H, then
A+ BeH, ABeH andA'B = BA.

The proof is evident.
Summarizing the foregoing results,one can state the following important assertion:

Theorem 2,2. a) H is a field, b) D is a linear space with respect to H, c) H is
isomorphic with R.

It is obvious that this isomorphism can be represented by
a,D" + ... + a, - a,p"+ ... + ag
b,D™ + ... + by b,p" + ... + by
Observe also that R contains E as a subfield, so that H contains a subfield which is
isomorphic with E.
An important consequence of this ismorphism is the fact that the partial fraction
expansion theorem remains true, i. e. for each A € H there exist a;, «;, 1 € E such that

(2.3) A=Zaij+E}”ik/(D"“i)k> k=1, j=zO0.
7 e

In addition, for further purposes let us derive some special properties of Heavi-
side’s operators. f Ae H, A # 0,let A™" = (47 ")"forn = 1, 2, ... A number o will
be called a pole of the operator 4 € H if « is a pole of the isomorphic element A(p),
A~ A(p) eR. ‘

Lemma 2,5. Let o, pe E, n an integer; then

24) (D — )" (Hoe™) = Holp — o) " {e" — e“':if"(p — ok}
for « + p, and
(2,5) (D — )" (Hoe™) = Hoe™t"/n!,

where Ho(t) = 1 for t 2 0, Hy(t) = 0 for t <O.
Lemma 2,6. Let k = 1 be an integer, o.€ E; then
(2,6) (D — «)7*8 = Hoe"'t* YJ(k — 1)!

The proofs of Lemmas 2,5 and 2,6 follow immediately from Lemma 2,3 by
induction. ’

Theorem 2,3 Let A€ H; 1) f= 46, is regular, 2) f(0+) exists and f(0+) = c,
if and only if
(2,7) lim p A(p) = ¢
P>

exists, where A < A(p) e R.
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Proof. Suppose that (2,7) holds; then lim A4(p) = 0 and, consequently, 4(p) =

p=oo,

n q
Y Y Aul(p — o), where n, g = 1 are fixed integers. From this it follows lim p.
i=1k=1

p—
-A(P) = -le“ = C.

On the other hand from Lemma 2,6 it follows
n o q
(2.8) f=A8, =Y Y Holye "t (k — 1)!;
i=1k=1

hence fis regular and f (t)is continuous in <0, o). But from (2,8) one obtains f(0+) =
=Y2li=¢ g.ed.
i=1

Conversely, let 1), 2) hold; using the partial fraction expansion (2,3) it is evident
that a; = 0 is necessary for A8, to be regular. Consequently, (2,8) holds, whence our
statement immediately follows.

3. KIRCHHOFF’S NETWORKS

Let us now consider the main problem — the theory of Kirchhoff’s networks. Let G
be an oriented graph. The ordered pair (G, 3), where 3 is a function on H x H into
E x E x E will be called a Kirchhoff network (K-network). A K-network will be
called passive if the following conditions are satisfied: If 3(h;, ) = (Ry L Su)s
then Ry, Ly, Sy €E,, and

1) 3(hy, h) = 3(hy, ;) for each pair i, k,
2) the square matrices R = [R,], L= [Ly], S = [S;] are positive semidefinite.
For the sake of brevity we will write 3 = (R, L, S).

Let N be a K-network and let G be its graph; let further a be the incidence matrix
over E, formed in the same manner as for the abstract network, and let ¢ be any solu-
tion of the equation a¢'x = 0 in E. In agreement with notions of abstract network
theory, c'h will be called a cycle.

The K-network N will be called regular in the time domain (or briefly t-regular), if
for every r-dimensional vector E over D and for any r-dimensional vectors J,, g,
over E (initial condition vectors) a unique r-dimensional vector J over D exists such
that the following conditions are satisfied:

TL: ¢M{RJ + L(J" = Job) + S(JTV + goHo)} = ¢'E
for every cycle c'h,

T2: a'J = 0.
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Note 3,1. The foregoing definition is a generalization of the classical formulation
using the notion of function, where T1 is stated as follows:

Ti*: ¢ {R J0) + LS‘:QE—I) + S(fJ(r) g + qo)} _CEW), 120,

0
J(0) = Jo .
(cfr.[4])
It is readily. seen that with the aid of Heaviside’s operators the conditions T1, T2
can be rewritten as
TL: ¢ {R + LD + SD™ '} J = ¢\(E + LJyd, — SqoH,) ,
T2: a7 =0.
In this manner the problem of t-regularity is reduced to the problem of an abstract
network, if one puts T = H, P = D.

Note 3,2. In T1 the vector ¢ has the meaning of any solution of a'x = 0 in E, but
in K1 ¢ was a solution of a'x = 0in T, i. e. in H in our case. But it is obvious that if
T1 holds for any ¢ over E that it also holds for any ¢ over H, and vice versa. (Recall
statement c) of Theorem 1,1 and the well-known theorem which states that if some
equation Ax = 0 has a solution in a field T and the elements of A belong to some
subfield T’ = T, that then the equation also has a solution in T".)

Let us now state the frequency domain problem. Let N be a K-network; N will be
called regular in the frequency domain (or briefly p-regular), if for every r-dimensional
vector E over R a unique r-dimensional vector J over R exists such that

Fl: ¢(R + pL+ p~'S)J = ¢'E
for every cycle ¢'h (c being a solution of a'x = 0 in R),

F2: a'J =0.

Note 3,3. If we replace the term “cycle” by “loop” in T1, F1, we obtain new defi-

nitions of z-regularity and p-regularity, respectively, which are equivalent to the pre-
sented ones (cfr. Note 1,1).

Theorem 3,1. A K-network N is t-regular, if and only if it is p-regular.

Proof. If N is trivial, the theorem is obviously true; thus let N be non-trivial. By
Theorem 1,3 and T1, T2, N is t-regular if and only if det X'ZX # 0, where Z = R +
+ LD + SD™!, X being taken over H. Likewise, N is p-regular if and only if
det X*'ZX + 0, where Z = R + Lp + Sp~ !, X being taken over R. Choosing X such
that X « X, we have det X'ZX «> det X'ZX which proves the statement. (See also
assertion a) of Theorem 1,3.)

In view of Theorem 3,1, the expression “regular’ only will be used. The following
two theorems concern the relations between the time and frequency domains.

Theorem 3,2. Let N be a regular K-network; let further E be an r-dimensional
vector over E and let I(p) (over R) be the corresponding solution of N in the frequency
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domain. Then for every p € E except of the roots of det X'(R + Lp + Sp™*) X, the
vector J = I(p) Ho exp (pt) (I(p) is over E) is the solution of N in time domain, cor-
responding to E = EHg exp (pt) and to the initial conditions vectors J, = I(p),
40 =I(p)/p.

Proof. By definition, the equations
(3,1) R+ Lp+Sp)I(p)=cE, a'I(p)=0
are true for every solution ¢ of a'x = 0 in E. As I(p) is given by (1,4a), the vector
I(p) over E is defined for every number p € E excluding the roots of det X ‘(R + Lp +
+ Sp~!') X. Therefore, putting such p for p in (3,1), one obtains an identity in E,
i.e. :
(3.2) R+ Lp+Sp"I(p)=cE, a'I(p)=0.
Multiplying (3,2) by H, exp (pt) and adding ¢'(LI(p) 6, — S I(p) Ho/p) to both sides,
one gets -

~_

(3.3) {RI(p) Hoe™ + LI(p) (Hope™ + 65) + SI(p) p~* Ho(e?* — 1)} =
= ¢'(EHoe?* + LI(3) 8o — S I(3) p~*Hy) .

Comparing (3,3) with T1, it is readily seen that I(p) H, exp (pt) is the solution of N
in the time domain and the theorem is proved.

Theorem 3,3. Let N be a regular K-network; let further E, be an r-dimensional
vector over E, Ex = [0,0,...,0, 1,0, ..., 0] (the unit standing in the k-th place) and
I,(p) the corresponding solution of N in the frequency domain. Then the following
statement holds: If e € D, then I,(D) e (where I,(D) <> I,(p)) is the solution of N in the
time domain for zero initial condition vectors and E* = [0,0,...,0,¢,0, ..., 0].

The proof is obvious.

The sufficient and necessary conditions for a general K-network to be regular can be
obtained as a simple consequence of Theorems 1,3; 1,4; 1,8. In order to be able to give
more effective conditions for passive networks, let us first consider some special pro-
perties of matrices over R.

4. FUNCTION-THEORETICAL PROPERTIES OF A CLASS OF MATRICES OVER R

Let Z be a matrix over R; the statement “Z has the pole a of m-th order” will mean
that each element of Z has a pole of at most m-th order in o and at least one element
has in a a pole of exactly m-th order. Let further G be the set of all complex numbers
with positive real parts, G its closure (co belongs to G)

Let &, be the set of all symmetrical matrices Z over R, of type n x n which fulfil the
following condition:

(4.1) Rex'Zx =2 0
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for every real n-dimensional vector x and for any p € G which is not a pole of Z. Let
9P, be the set of all matrices belonging to &, which fulfil the condition

(4,2) » Rex'Zx > 0

for every real n-dimensional non-zero vector x and for every p € G which is not a pole
of Z.

Obviously: a) Z,,Z, €&, = o, Z; + a,Z, € &, provided ay,a, 20, b) Z, €S,
Z,eV,=>Z, +Z, eV,

Observe that in particular every positive (semi-) definite matrix belongs to
(8., 9,

Let us first consider the case n = 1. It can be easily shown that the following state-
ment is true (see [5]):

Lemma 4,1. 2) If Z € &, then either Ze P, or Z = 0.

b) If Ze Y, then Z has no poles in G and every pole on the imaginary axis (if it
exists) is simple with real positive residuum; the same is true for the pole at infi-
nity.?)

c) If Z € ©,, then there are real numbers @y, W,, ..., Wpy Ag; Aqy «vs Ay = 0 Such
that

~ i AD
4,3 Z=Z+lp+ Yy =—F—,
(43) oP k;1p2+w,f

where Z has no pole in G and Z € &,.
For n = 1 the following statement is true:

Theorem 4,1. If Z € &, then there exist real numbers w,, ®,, ..., ®, and constant
matrices H e ©,, k = 0,1, 2, ..., m, such that ‘

2 27

(4,4) Z=7+Hp+Y H,—2L
k=1 p° + wi

where Z € &, has no poles in G.

Proof. Let us first show that Z has no poles in G and that the poles occurring on the
imaginary axis or at infinity are simple with real residues. By definition, x'Zx € &, for
every real vector x. From this it follows in particular that Z;;€ &, fori = 1,2, ..., n.
Choosing indices r, g, 1 < r, ¢ < n and putting x, = x, = 1, x; = 0 for i *r,qas
components of x, one obtains & = x'Zx = Z,, + Z,, + 2Z,, € €,. Consequently, by
Lemma 4,1, the elementes Z,,, Z,,, Z,, have the mentioned property, which proves
our statement. Expanding each element of Z into partial fractions, one can write

(4,5) Z=2+H0p+sz%,
k=1  p° + w;

2) By “residuum at c0” the coefficient ¢, in the expansion Z = ¢;p + ¢ + c_lp_1 + ...
will be meant.
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where H,, H, are real matrices and Z has no poles in G. (Note that to each pole p, of Z
there corresponds the conjugate pole p,, as the elements of Z belong to R,; therefore
the expansion of Z necessarily has the form (4,5).) Let now x be any real vector; by

(4.9)

xe-—xe+prox+Z
k=1 p? +a)k

But by Lemma 4,1c), xZxe @, x"Hyx = 0for k =0,1,2, ..., m, which proves the
Theorem.

kaxE@1

Theorem 4,2. Let Ze€ &,; then Z €D, if and only if det Z & 0 for every peG.

Proof. Let Ze &, and let det Z % O for every p € G; suppose that there exist a
number p, € G and a non-zero real vector x such that

(4,6) Re X' Z(po) x = 0. -
As X' Z(p) x € &, it follows by Lemma 4,1a) that x* Z(p) x = 0. Therefore
(4,7) x'ReZ(p)x =0

for every p € G. From the well-known theorem on quadratic forms and from (4,7) it
follows that det [Re Z;(p)] = O for every p € G; but det [Re Zy(p)] = det [Z,(p)]
for every real p belonging to G. However, det [Z;(p)] is a regular function in G; con-
sequently, det [Z,(p)] = 0, which is a contradiction. Hence Z € .

~ Conversely, let Ze®, and suppose that there is a number p, € G such that
det Z(po) = 0. Then a non-zero vector z = x + iy exists such that Z(po) z = 0; con-
sequently, ¢ = 7' Z(p,) z = 0. But

(4.8) Q= x* Z(po) x + ' Z(po) y + i(x Z(po) y — ¥ Z(po) x) = 0.
As the last term of the right hand side of (4,8) vanishes, one obtains Re {x* Z(p,) x +

+ y' Z(po) y} = 0, which is in contradiction with the assumption Z € P, Therefore
det Z(p) =+ 0 for every p € G and the Theorem is proved.

Using the proof of Theorem 4,2 again, one can state:

Theorem 4,3. Let Z € &,; then Z €Y, if and only if det Z # 0 in R (i. e. if it does
not vanish identically).

Actually, by Theorem 4,2 we have: ZeP, =>detZ == 0 for pe G = det Z £ 0.
Conversely, if Z e &, and det Z = 0, suppose that there exist a number p, € G and
a non-zero real vector x such that (4,6) holds; from this it follows in the same way as
before that det [Z,,] = 0, which is a contradiction.

Moreover, one can state:
Theorem 4,4. If Z € P, then Z~* existsand Z™* € YP,,.

Proof. The existence of Z™* is a simple consequence of Theorem 4,3. It is obvious
that Z~! is symmetrical and by Theorem 4,2 det Z(p) # O for every p € G. Choosing
arbitrarily a real non-zero vector z and a number p, € G, let us find the vector o satis-
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fying the equation z = Z(p,) w. Evidently, w is determined uniquely and w # 0.
Putting @ = x + iy, one can write

Rez*Z7(po)z = Rez' Z7Y(py) z =
= Re @' Z(po) Z™(po) Z(po) @ = Re &" Z(py) » =
= Re {x' Z(po) x + ' Z(po) y + i(x" Z(po) ¥ — ¥' Z(po) )} =
= x' Re Z(p,) x + y* Re Z(po) y > 0.
Hence Z"'e®,, q. e. d.

Lemma 4,2. Let Z € &,; then for every imaginary iw, different from all poles of Z,
the constant matrix Re Z(iw,) belongs to &,.

The proof follows immediately from the continuity of elements of Z at the point
iwyg.

Lemma 4,3. a) If Ze &, and C is any real constant n x k matrix, then C'ZCe
€ &,.b)If Ze P, and Cis any real constant n x k matrix with rank k, then C*ZCe
€ Dy .

Proof. If x is any real k-dimensional vector, then x'(C'ZC) x = (Cx)* Z(Cx), from
which a) follows. Moreover, if C has rank k, then from x # 0 it follows that Cx == 0
and therefore b) holds.

Theorem 4,5. Let R be a real constant matrix and let Re ,, Z € &,; then (R +
+ Z)™* has no poles in G.

Proof. Evidently W = R + Z €, so that by Theorem 4,4, W ™! exists and belongs
to ,; moreover, by Theorem 4,1, W ™! has no poles in G and the poles on the imagi-
nary axis and at infinity are simple. Suppose that iw, is a pole of W ~1. From Theorem
4,1 it follows that

(49) W=

p — iwg

+ B(p),

where A4 is a real constant matrix belonging to &, and the elements of B(p) are regular
at iw,. Similarly one can write

(4,10) W=H

— + 9(p),
P — g
where by Theorem 4,1

(4,11) o(p)=R+Z*+H

i?

p + i, i=1 p* + w;

Cl)i=|=0)0, i=1,2,...,m,
H, H,, H; being real constant matrices belonging to &,, Z* ¢ €, having no poles in
G. (H may be the zero matrix.) Let further Qo = Q(iwo), By = (ia)o). From the
assumption R €9, and from Lemma 4,2 it follows immediately that Re Qp = R +
+ Re Z*(iw,) € P,
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The identity W~'W = I (I is the unit matrix) then yields

1
(412) AH — + [4 O(p) + B(p) H]
(p — iwo) ‘

From this it follows that AH = 0. Substituting this into (4,12), multiplying by
p — iwy and letting p — iw,, one obtains
(4,13) AQ, + BoH = 0.

As HA = AH = 0 (the matrices 4, H are symmetrical), then multiplying (4,13) by
A one obtains the equation AQyA4 = 0. Therefore
(4,14) AfRe Q) A =0.

If now some column & of 4 were different from the zero vector, then according to
the inequality ' Re Qo& > 0 there would be A(Re Qo) A # 0; therefore 4 = 0.

The same is true for the pole of W™ at infinity, which proves our statement.

1
p — i

+ B(p) 0(p) = I

5. PASSIVE K-NETWORKS

Let us now consider the passive K-networks in greater detail.

Theorem 5,1. Let N be a passive K-network; let C be the set of all real solutions
of a'x = 0, a being the incidence matrix; let I g, I1;, I be the sets of all real vectors
x such that x*Rx = 0, x*Lx = 0, x'Sx = 0 respectively. Then N is regular if and
only if the intersectionIl = C nIIx nII; N Ig contains only the zero vector.

Proof. Suppose that there exist an x # 0, x € II. Then x = Xy, y % 0, and simul-
taneously x'Rx = 0, x'Lx = 0, x'Sx = 0. Consequently, for any p e G it holds:
Re {x'Rx + px'Lx + p~'x'Sx} = Re x'{R + pL + p~!S} x = 0. Therefore
Rey'X'ZXy =0, where Z=R + pL+ p~'Se®,, so that X'ZX ¢, Then
det X'ZX = 0 in R by Theorem 4,2 and N is not regular.

Conversely, suppose that N is not regular, i. e. that det X'ZX = 0in R;as Ze &,,
then X'ZX e ©,, X'ZX ¢ P, by Theorem 4,2. Consequently, there exist a real vector
u #+ 0and a number pe Gsuchthat Re u'X'ZXu = 0, i. e.

Reu'X'RXu + Reu'pX'LXu + Reu'p™*X'SXu =0.

Putting y = Xu, one obtains y # 0 and y € C. Then the latter equation can be re-
written as

Re y'Ry + Re py'Ly + Rep~'y'Sy =0;
since for p e G we have
Rep>0, Rep ' >0
and simultaneously y'Ry = 0, ..., it follows that 'Ry = 0, ...; hence y €IT and the

Theorem is proved.
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A simple consequence of Theorem 5,1 is the following:

Theorem 5,2. A passive K-network is regular if and only if
(5,1 ¢R+L+S)c>0
for every real non-zero cycle c*h (i. e. for every real non-zero solution of a‘x = 0).

Proof. Let (5,1) be satisfied for every ce C, ¢ = 0; then for every ce C, ¢ + 0
either ¢'Rc > 0 or ¢'Lc > 0 or ¢'Sc > 0; consequently ¢ ¢ [Tg N II;, NI, so that
II = {0}, and by Theorem 5,1 the network is regular.

Conversely, let the network be regular; then by Theorem 5,1 IT = {0}, i. e. for
ceC, c &+ 0 there is c¢ ITx N II, n II5; hence at least one of the numbers ¢'Re,
¢'Le, c¢'Sc is positive and (5,1) holds, q. e. d.

Lemma 5,1. Let T = diag (T, Ty, ..., T,), T; 2 0 for i = 1,2, ..., r. If
(5.2) c\Tec>0
for every loop c*h, then (5,2) holds for every real non-zero cycle.

Proof. Let c'h be a real non-zero cycle. By Theorem 1,2, where we put T = E,,

1 r r
we have ¢'h =Y d; ) e;h;, Y e;:h; being loops and
Jj=1 i=1 i=1
(5:3) e;; £0 forsome j=¢; £0,i=12..r.

By hypothesis Y Tie}; > 0 for each j = 1,2, ..., ], and, consequently, Tie}; > O for
i=1

at least one pair (j*, i*). Hence and from (5,3) it follows that Tiuc% > 0 which implies
(5,2) for ¢ = c.

Note 5,1. Let R, L, S be diagonal; from Lemma 5,1 and from Theorem 5,2 it fol-
lows that a passive K-network is regular if and only if for every loop c*h any one of the
following conditions is satisfied: (i) ¢'Re > 0, (ii) ¢'Le > 0, (iii) ¢'Sc > 0. The condi-
tion that R, L, S be diagonal cannot be omitted, since the assertion of Lemma 5,1
need not hold if the condition that T'is diagonal with non-negative elements is replaced
by the condition that T'is positive semidefinite. This is shown in the following example:

Example 5,1. Let the graph G, be defined as follows:
H ={h1, h2, h3} Py U = {ul, uZ} ’ F(hl) = F(hz) = F(h3) = (ul, u2) .

Let
1, -1, 0
M=|-1, 1,0/;
0, 0,0

M is obviously positive semidefinite. Evidently, for every loop c¢'h of G; we have
¢‘Mc > 0. However, d'Md = 0 for the cycle d‘h = hy + h, — 2h,.

Let M be a constant n X n matrix, M € &,. Let IT,, be the set of all real vectors x
fulfilling x'Mx = 0.
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Lemma 5,2. Let x €1, y an n-dimensional vector over E,. Then y*Mx = 0.
Proof. For every real number ¢ there holds

(y + ex)' M(y + ex) = y'My + 2ey'Mx = 0.
If y'Mx =% 0, & could be chosen so that y'My + 2ey'Mx < 0, which is impossible.

Lemma 5,3. Let M be the system of all real solutions of Mx = 0. Then M = .

Proof. Evidently M < IT,,. On the other hand, let x e IT,;. As by Lemma 5,2
¥'Mx = 0 for every vector y over E,, one has Mx = 0. Thus x e M g. e. d.

Theorem 5,3. Let N be a passive K-network. N is regular if and only if the rank of
the matrix Y= [a |R|{L S]isr.

Proof. Y'x = 0 has a solution ¢ = 0 if and only if the rank of Y is smaller than r.
By Lemma 5,3, Y'c = 0 if and only if ce C nII; nII; NIl From this and from
Theorem 35,1 the proof follows.

Let us now examine some properties of passive K-networks in the time-domain. An
r-dimensional vector x over D will be called a C-vector if

k
(5.4) x=YadP +x, k=20,
i=0
where a;, i =0,1,...,k are constant vectors, X is a vector the elements X, of which
are regular distributions, the corresponding functions Xk(t) being continuous in
<0, oo)‘ The vector x will be called a regular C-vector if x is a C-vector and if the ele-
ments of x are regular distributions, i. e. if in the expansion (5,4) all the a; vanish.
If x is a C-vector, let || x|, = max [Ix {()[] for t = 0. Likewise, if ¢ is a constant vector,

let |c| —-lmax Lledds e bemg 1ts components.

Let now N be a regular passive K-network and let J be its solution in the time-
domain corresponding to the vector E over D and to the initial conditions J,, go. The
solution J will be called stable with respect to the initial conditions, if the following
conditions are satisfied: For every e > 0a & > 0 exists such that for every solution J*
of N corresponding to the vector E and to initial conditions J§, g5 which satisfy
IJo — Jall <6, g0 — qall < 8, the vector J — J*isa C-vector and || J — J*|, < ¢
for every t = 0. If in addition to this ||J — J*||; = 0 for t =00, then the solution J
will be called asymptotically stable.

Let N be a passive K-network; if ¢'Re > 0 for every non-zero real cycle ¢'h, then N
will be called a dissipative network.

Theorem 5,4. Every solution of a regular passive K-network N is stable with res-
pect to the initial conditions.

Theorem S,5. Every dissipative network is regular and every its solution is
asymptotically stable. ®

Proof of Theorem 5,4. Choose arbitrarily an E over D and initial condition vectors
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Jos qo- Let further X be a constant matrix over H, which will be fixed in the subsequent
considerations. From (1,4a) and Ty, T it follows that

(5,5) J = X(X'ZX)~* X\(E + LJy8, — SqoH,) »

where Z = R + LD + SD™*. By Theorems 4,3 and 4,4, (X" Z(p) X)™' €9, so that,
by Lemma 4,3, A(p) = X(X' Z(p) X)™' X' € &,. Consequently, by Theorem 4,1,

(5.6) A(p) = Aip + Ay + B(p),

where 4,, 4, are constant matrices and B(p) vanishes at infinity. Moreover, B(p) can
be expanded as follows (see Theorem 4,1):

(5’7) B(P) ;-21 kZ::lAik(p - “i)_k +~§1Fj(}7 - ﬁj)_l + Fop—1 s

where Ay, I';, I'y are constant matrices and where Reo; < 0 for i =1,2,..., m;
Ref;=0,p;+0forj=1,2,...,s.

Let us now choose any constant vectors Jg, gg. For the solution J* of N corres-
ponding to E, Jg, gg one obtains by (5,5)

(5.8) J — J* = A[L(J, — J3) 8o — S(q0 — g8) Ho] -

From (5,6) and (5,8) it follows that v

(5’9) J—Jr=f- AOS(‘]o - ‘I:)Ho + BL(-Io - J:) 9o — BS(‘]o - qg) Ho ,
where

(5,10) f=A4,L(J, — J’;) 6o — AIS(qo - q:) do + AOL(JO — J:) do -

By (5,7) and Lemma 2,6 one has

m q
(5,11) BL(Jo — J3) 6o = (Y, 3 Aue™ Y(k — D)) L(Jo — J§) Hy +
i=1 k=1
+ Y TPy L(Jo — J§) Ho + To\L(Jo — J3) Hy -
j=1

Similarly, by Lemma 2,5

Y

k-1
lAik(—ai)_k[l — et ;Otv(_di)v/v!]} .

-S(g0 — 95) Ho + {_;Fj(_ﬂf)_l[l — ¢} S(g0 — g0) Ho +

+ I'yS(qo — q0) Hot .

k

]

1

(512)  BS(q0 — g5) Ho = {

. i3

Consider now the obvious identity
(5.13) A(P)Z(p) X = X ;

it is readily seen that p A(p) — Iy, p Z(p) — S for p — 0. Consequently, multiplying
(5,13) by p* and letting p — 0 it follows that I',S = 0.
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From egs. (5,9), (5,10), (5,11), (5,12) it follows that J — J* is a C-vector; moreover,
it is obvious that there exist positive numbers p, v depending on N only, such that
(5,14) W= J*), £ plldo = I3l + vigo — g3l
for every t = 0. But (5,14) proves the Theorem.

Proof of Theorem 5,5: The regularity of a dissipative network follows immediately
from Theorem 5,2. From the assumption ¢'Rc > 0 for every non-zero cycle ¢'h it
follows that X'RX e ¥,; simultaneously, by Lemma 4,3 X'(Lp + Sp™') X e &,.
Consequently, by Theorem 4,5, [X*(R + Lp + Sp~') X]™! has no poles in G, from
which it follows that the matrix A(p) also has no poles in G. Using the results of the
proof of Theorem 5,4, it follows that in (5,6) A; = 0 and in (5,11) (5,12) I', = 0,
I'y=0forj=1,2,..,s.

m g
From (5,6) and (5,7) it follows that A(p) — Ao + 3. Y. Au(—o;)* for p — 0; con-
i=1 k=1

sequently, multiplying the identity (5,13) by p and letting p — 0 it follows that

(5.15) (4o +§"j1 ki A=) S = 0.

On the other hand, from (5,9), (5,11), (5,12) it follows that
m q
J=JF = fo— AoS(‘IO - qﬁ) - (Z,l kZIAik(—ai)_k) S(Qo - 4:)

for t —o0; consequently, by (5,15) |J — J*||, > 0 for t —»oco, which proves the
Theorem.

Let us now solve the compatibility problem. Let N be a regular passive K-network;
the ordered triple of vectors (E, J,, go) (E over D, J,, g, over E) will be called com-
patible, if the corresponding solution J on N is a regular C-vector and if J(0+) =
= Jo. Then the following statement holds:

Theorem 5,6. Let N be a regular passive K-network; let further E be a regular
C-vector, E’ be a C-vector; denote Ey = E(0+), E; = F(0+), where F = E' — E,5,.
Then the triple (E, J,, qo) is compatible if and only if
(5,16) llm A(p) {EO + Exp—l + LJop - Sqo} = Jo N

p—
where A(p) = X(X' Z(p) X)"* X".

Moreover, if A(p) has no pole at infinity, then the assumption “E’ is a C-vector”
as well as the term E,p~" in (5,16) may be omitted.

Proof. Let us define the vector E* by the relation E* = E — E;H, — E;Ht. It
is obvious that E* is a regular C-vector for which E*(0+) = E*(0—) = 0; simul-
taneously, E*' = E' — Ey6, — E;H, = F — E{H,; consequently, E*' is a regular
C-vector and E*'(0+) = E*(0—) = 0.

By the foregoing, for the solution J corresponding to E, J,, g, one can write

(5.17) J = X(X*ZX)™" X'(E + LJs6 ~ SqoH,)-

461 -



According to Lemma 4,3 A(p) = X(X'ZX)™* X' € &,; consequently, A(p) has a pole
of at most first order at . Therefore A = A_;D + A, + B, where the matrix
B( p) <> B vanishes at infinity. Rewriting (5,17), one obtains

(5,18) J = A(EoHo + E{Hot + LJo8y — SqoHo) + (A-,D + Ao + B) E*.

It is obvigus that J = (A_(D + A, + B) E* is a regular C-vector satisfying the
equation J(0+) = 0. Consequently, the first term on the right hand side of (5,18)
will decide whether (E, J,, qo) is compatible or not. But A(EoH + ...) = A(E,D™" +
+ E;D7? + LJ, — SqoD™*) §,. According to Theorem 2,3, the necessary and
sufficient condition for J(0+) = J, is that lim p A(p) (Eep™! + E;p~2 + LJ, —

P~ f

- Sqop_l) = Jo, q e. d
The proof of the second statement is obvious.
The assertion of the preceding Theorem can be completed by the following.

Theorem 5,7. Let N be a passive K-network and let C, 1, I, , Il have the meaning
mentioned above (see Theorem 5,1). Let A(p) = X(X' Z(p) X)* X" (provided that
it exists), where Z(p) = R + Lp + Sp~'. Then the following statements are true:

1. If Cn1I, = {0}, then N is regular and every element of the matrix A(p) has
a zero at infinity; simultaneously lim p A(p) LX = X.

p—
2. If Cn Iy n Iy = {0}, then N is regular and A(p) has no pole at infinity.
Conversely, if N is regular and

1*. each element of A(p) has a zero at infinity, then C nIT, = {0} and lim p.

p—
.A(p) LX = X;
2*. if A(p) has no pole at infinity, then C nI1, "Iz = {0}.
For the proof the following obvious Lemma will be necessary:

Lemma 5,4. Let Y be a real constant r x n matrix with rank n; then there is a real
constant n X r matrix q such that qY = I, wherel is the n X n unit matrix.

Proof of Theorem 5,7. Let L= X'LX, R= X'RX, § = X'SX, Z(p) = Lp +
+ R + Sp~*; if N is regular, then Z~*(p) €Y, exists. By Theorem (4,1), one can
write
(5.19) Z7'(p) = Hp + Q(p),
where H is a symmetrical real constant matrix belonging to &, and where Q(p) € &,
has no pole at infinity. The identity Z~*Z = I yields
(5,20) HLp* + O(p)Lp + HRp + Q(p)) R + HS + Q(p) Sp™* =1I.

Let now the assumption 1 be satisfied. Then obviously Le ¥, and N is regular.
(In particular, det L = 0.) From the identity (5,20) it follows that HL = 0, therefore
H = 0. Substituting in (5,20) one gets

(521) o) Ip + Q) R + 0(p) Sp™* = 1.
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Dividing by p and letting p —00, one obtains lim @(p) . L= 0, so that Q) = 0.
po® —
From (5,21) it follows that lim 0(p) Lp = I. Therefore, the elements of Z~*(p) have

P~ —=_ \
a zero at infinity and, consequently, the same is true for A(p) = X Z~*(p) X". From
the foregoing equation it follows that

X = X(lim Q(p) p) L= X(lim Z~*(p) p) X'LX =

P oo p=r®
= lim p(X Z"*(p) X") LX = lim p A(p) LX ,
p—® . pr

g.e.d.

Let now the assumption 2 be satisfied. Then evidently L+ R € 9, and N is regular
by Theorem 5,1. The identity (5,20) yields the equation HL= 0. Putting Q, =
= lim Q(p), and dividing (5,20) by p, one can write

po @

Qp)L+ HR+p ' Q(p))R+p *HS + p™2Q(p) S=p7'I.
Hence QL+ HR = 0. Adding this to the equation HL = 0, one gets
(5,22) HL+R)+ Q,L=0.

As H, Lare symmetrical, it follows that 0 =(HL)’ = LH. Multiplying (5,22) by H, one
can write

(5,23) HL+R)H=0.

From (5,23) it follows immediately that H = 0. Therefore Z~*(p) has no pole at infi-
nity and, consequently, the same is true for A(p), g. e. d.

Let us now prove 1*. By the assumption 4(p) = X Z™*(p) X" exists and each of its
elements has a zero at infinity. According to Lemma 5,4, Z~* (p) = q 4(p) ¢, so that
each element of Z~'(p) has a zero at infinity. Using the previous notation, one can
write H = 0, lim Q(p) = 0; also (5,21) holds. From (5,21) it follows that

e
(5,24) (impQ(p)) L=1.
p— o
But (5,24) shows that Lis a regular matrix; consequently Le 9,. Therefore C n T, =
= {0}. Moreover, (5,24) yields lim pZ~'X'LX = I, so that limp A(p) LX = X,
p— o p— oo
q.e.d.

Proof of 2*. In the same way as before it follows that Z~*(p) has no pole at infi-
nity. Suppose that a non-zero vector ce C nII, N II, exists, i. e. that ¢'Le = 0,
¢'Re = 0. Let us choose the matrix X such that its first column equals ¢. Then the
elements standing in the first column and row of the matrices L= X'LX and R =
= X'RX are zero; as L, R € &, it follows that the first column and the first row of L
and R are zero vectors. Consequently, the elements of the first column and row of Z(p)
have the form p~!§,,, where S, are the elements of S.

If now M(p) is a rational function, then there is an integer k such that a finite non-
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zero lim p™* M(p) exists; let us denote r(M) = k. (It is obvious that for k > 0 the
p~®
order of pole of M(p) at infinity is k.) Evidently r(M + N) < max [r(M), r(N)],
t(MN) = (M) + ©(N), (M™") = — x(M), M £ 0.
Let now A, (p) be the cofactors of the matrix Z(p); let A;(p) be the cofactor such
that 1(Aj) = h = max [r(Ax)]- By the assumption on regularity of N, we have

det Z(p) £ 0; expandlng this determinant by the first column it is readily seen that

(5,25) det Z(p) = p-lkgls,‘1 Au(p) -

Therefore r(det Z(p)) < h — 1, so that r(A;/det Z) = 1. Hence Z™'(p) has a pole at
infinity, which is a contradiction.
The following statement is a simple consequence of Theorem 5,6 and 5,7.

Theorem 5,8. Let N be a passive K-network satisfying the condition C NIl =
= {0} and let E be any regular C-vector; then the triple (E, J,, q,) is compatible
for any J, fulfilling the condition a*J, =

For proof it suffices to note that there exists a vector y such J, = Xy.

Finally let us state some results for the admittance matrix of some special classes
of passive K-networks. Let N be a passive K-network, R, L, S beng the correspon-
ding matrices; the matrix X(X"' Z(p) X)~* X" (if it exists), where Z(p) = R + Lp +
+ Sp~!, will be called the admittance matrix of N. Further, N will be called of type

a) LC,if R=0,

b) RC,if L =0,

¢) RL, if S =0.

Then the following assertion is true:

Theorem 5,9. Let N be a regular K-network, A(p) the corresponding admittance
matrix; then

(5,26) a2) A()—PH0+Z;’—E—;HU 0,20, He®,, i=012,..,m
=1

if N is of type LC,

(527) b) A(p)=pHo+ Y, —2—H,, k20, H®,,
i=1p+ k; r ,

i=01,2..,m

if N is of type RC,

(528) ) A(P)=Ho+Y ——Hi, k20, Hee
i=1p+k ' r

i

i=01,2..,m

if N is of type RL. (H; are constant matrices.)
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Proof. Let N be of type LC; then
(5,29) A(p) = X[X'(Lp + Sp~") X]"* x°,
where Z(p) = X(Lp + Sp™') X €,; by Lemma 4,3 we have A(p) € &,, so that by
Theorem 4,1

- P

5,30 A = H + Hi + s
(5:30) (p) = pHo + 3, =~ Hle+ 0(p)
where H,, H; € &, are constant matrices and Q(p) € &, has no poles in G. If now
p = io, » + 0, w, then Re Z(iw) = 0; consequently, by (5,29), Re A(iw) = 0. From
(5,30) it follows that Re Q(iw) = 0 and therefore Q(p) = 0. The statement a) is pro-
ved.

Let now N be of type RC; then A(p) = X[X'(R + Sp~!) X]~! X"; putting p = z?
and multiplying both sides of the latter equation by 1/z, one obtains

A(zY))z = X[X'(R+ Sz™?) X]™* X'z = X[X(Rz + Sz™}) X]™* X".

Evidently X'(Rz + Sz™') X €9,, and it corresponds to a network of type LC. There-
fore, by a) one can write

2 VA = 2Hy + Y —2—H,, k20, H,eS,,
(=) ° i§122+ki -

i=012,....,m,

whence the statement b) follows. The assertion c) can be proved in a similar manner.

6. SINUSOIDAL SOLUTIONS

In this paragraph periodic solutions of a passive K-network with the diagonal
matrix R of the form J, exp (iwt), J, a vector over E, will be examined. The following
considerations are closely connected with those of [4]. In [4] the existence of a unique
solution of the form J, exp (iwt) was proved under the assumption that all of the
diagonal elements of the diagonal matrix R are different from zero. In the following
theorem this assumption will be weakened.

Theorem 6,1. Let N be a passive K-network, R a diagonal matrix, and let for
every loop d*h of N
(6,1) d'Rd > 0.

Then to every r-dimensional vector E over E and to every w > 0 there exists a uni-
que vector J (r-dimensional over E) such that J = JH, exp (iwt) is the solution of N
in the time-domain corresponding to E = EH, exp (iwt) and to initial condition
vectors Jo = J, qo = (iw)™"' J. Moreover, J is asymptotically stable with respect to
the initial conditions.

Proof. By Lemma 5,1, N is a dissipative network, i. e. (6,1) is fulfilled for every
non-zero real cycle ¢*h. Hence X'RX € 9,, the meaning of X, 9, being the same as in
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paragraph 4. By definition of &, (paragraph 4), Lp + Sp~' € &, and by Lemma 4,3,
X\(Lp + Sp™') X € &,. By Theorem 4,5, [X'(R + Lp + Sp~') X] ™" has no poles in
G, G being the set of all complex numbers with positive real parts, G its closure. Thus
(6,2) det X'[R + Lio + S(io) *]X %0

for every positive . ard by Theorem 3,2 where we put p = ic, there exists a unique
solution J with the desired properties. The asymptotical stability follows from Theo-
rem 5,5.

Let w > 0. A passive K-network N will be called w-regular if for every r-dimensio-
nal complex vector E and for every non-zero real cycle ¢'h there exists a unique solu-
tion J (over E) of the system

(Q,) (R + iwL — in~'S)J =c'E,

(Q,) a'J =0,

a" being the transposed incidence matrix of G (graph of N).

Note 6,1. From Theorem 1,8, where we put P = E = T, it follows that N is w-
regular if and only if (1,9) holds with Z = R + iwL — iw™'S.

Note 6,2. Evidently, if N is w-regular, then to every r-dimensional vector E over E
there exists a unique vector J, which is r-dimensional over E, such that J = JH,.
. exp (iwt) is the solution of N in the time-domain corresponding to E = EH,.
. exp (iwt) and to initial condition vectors J, = J, g, = (iw)™! J, and vice versa. By
Theorem 6,1, condition (6,1) is sufficient for N to be ai-regular for every w > 0. The
folllowing theorem shows that this condition cannot be substantially weakened.

Theorem 6,2. Let be given an oriented graph G, which contains at least one
loop, a matrix R = diag (R4, Ryy, ..., R,,) with non-negative elements and a positi-
ve number w,. If d'Rd = 0 for some non-zero loop d'h, then there exist non-zero
r x r positive semidefinite diagonal matrices L, S such that N = {G, [R, L, S}is
not wy-regular, L;; > 0, S;; > 0 for d; & 0.

Proof. By hypothesis there exists a non-zero loop d‘h such that R;;d; = O for i =
=1,2,...,r.If d, + 0, let us choose w?L;; = S;;, if d; = 0, let L;;, S;; be arbitrary.
As by Theorem 1,1 and Lemma 1,2 d = Xy, where the columns of X form a complete
set of linearly independent solutions of a'x = 0 where a is the incidence matrix of G
and y is a non-zero complex vector, we have

‘ X'(R + ioL + (iw)™* S) Xy = 0.
From this, Note 6,1, Theorems 1,3 and 1,8 the proof follows immediately.

A graph G is called connected if each pair of nodes u;, u; € U can be connected by
achain K, i. e. if there exists a chain K such that u; is the initial node of the first branch
of K and u; is the terminal node of its last branch. A subgraph G of G is called a com-
ponent of G if G is connected and if for every connected subgraph G of G with G > G
there holds G = G. .

A connected subgraph G of G is called a tree if for every loop ) ¢;h; there is at least

i=1

13
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oneindex o, = 1,2,...,7,¢, + 0, for which h, is not a branch of G. A maximal tree
G, is a tree of G with the following property: If G is a tree of G, G,, = G, then G,, =
= G. A subgraph of G whose all components are (maximal) trees, is called a (maximal)
forest.

Theorent 6,3. Let be given a non-trivial passive K-network N = (G, 3), G =
= (H,U,T),3 = (R, L, S), R diagonal. Then (6,1) holds for each non-zero loop d*h
if and only if the following condition (A) is fulfilled:

(A): There exists a forest G* of G such that R;; = 0 implies that h; is a branch
of G* fori=1,2,...,r. ,

Proof. If (A) is fulfilled, let us choose a loop d‘h. From the definition of a forest it
follows that there exists at least one branch h; € H such that h; is not a branch of G*,
d; + 0. Hence R;d? > 0.

Conversely, let (6,1) be fulfilled for every non-zero loop d‘h. In each loop d‘h of G
choose a branch h; for which d; + 0, R;; > 0 and denote this set of branches by Hj.
Evidently, the subgraph F; of G which results by deleting all branches of H, from G is
a forest. '

In what follows we shall give a necessary and sufficient condition for N to be
o-regular. This condition will be derived from the determinant in (1,9), where we put
Z =R + ioL— in™*S.

We shall make use of the following

Note 6,3. If h is the number of all linearly independent columns of the incidence
matrix a, then G has s — h components. This follows easily from the fact that in the
equation ax = 0, x' = [xy, ..., x,], thereis x; = x; whenever the nodes u; and u; are
incident with the same branch. '

Let there be given a passive K-network N = (G, 3), 6 = (H, U, I),3 = (R, L, S,)
R, S diagonal. Let a be the incidence matrix of G. Moreover, we shall assume that if
N* with the incidence matrix a* is a network equivalent to N, then the number of
rows of a is not larger than that of a*. In other words, from a class of equivalent net-
works we choose that which has the smallest possible number of branches. From
Theorem 1,9 it follows that this assumption is no limitation of generality.

Let G, be a subgraph of G with the following property: h;€e H, i = 1,2,...,r, is
abranch of G, ifand onlyif R;; > O, L;; = Oforj # i. Let Gy;,j = 1, 2, ..., r, bethe
components of G,. Foreachj = 1, 2, ..., r; let us sum all columns of a for which the
corresponding nodes are contained in G, ;. Denocte these sums by b;, j = 1,2,...,r;.
Letb = [by,.... by, by s 15 -oes byyr,]s Where b, 41, j = 1,2, ..., 15, are the columns
of a corresponding to the nodes of G not belonging to G,.

Further, in each component G ; of G choose a node, say u;, j = 1,2, ..., r;. If we
delete in b all columns corresponding to u,, j = 1,2, ..., 73, we obtain a matrix
b=1[by,....b,]

- Let a be the matrix obtained from a by omitting the columns corresponding to
the nodes u,, j = 1,2, ..., 3.
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Finally, let us delete in

(]
alo

where Z = R + iwL — in™'S, the i-th row and column, i = 1, 2, ..., r, whenever
Ry >0, L;; = 0 for j # i, and the i-th column, whenever R, > 0. The n, x n,
matrix thus obtained will be denoted by B.

Theorem 6,4. Let Z = R + iwL — iw™ 'S, @ > 0. Then N is w-regular if and
only if the columns of B are linearly independent.

Lemma 6,1. Let J be a solution of (Q,), (Q;), where E = 0. Then R;, > 0 implies
J;=0fori=12,...r

Proof. As the incidence matrix a is real, @'J = 0 implies a'J* = 0 where J* is
complex conjugate to J. From (Q,), where we put E = 0, ¢ = J*, it follows that
J(R + i(wL— ©7'S)) J = 0. As by symmetry of matrices L, S the number
J¥(wL — »~'S) J is real and as J*'RJ is non-negative, we have J*'RJ = 0, From
this and from the fact that that R is diagonal with non-negative clements the assertion
of the lemma follows immediately.

Proof of Theorem 6,4. From Theorem 1,8 it follows easily that N is w-regular if
and only if (1,9) holds, where the matrix d is obtained from a by deleting the columns
corresponding to the nodes u,, j = 1, 2, ..., ry. Consequently, N is w-regular if and
only if the system (1,12), where we put £ = 0, Z = R + iwL — i»~'S, has no non-
trivial solution. In the next part of the proof we are going to show that the system

(6.3) [azig] [‘; ] =0

may be written as
(6’4) By =0,

where y is a complex n,-dimensional vector. -

By Lemma 6,1, J; = 0 whenever R;; >- 0, = [, 2, ..., r and, consequently, in the
system (6,3), ¥, = V; whenever for some [ = 1,2,...,r there is a; = — a;; # 0,
Ry >0, Lj; = 0for j & . Thus the components of V form r, groups, cach of these
groups corresponding to some of the components Gy, j = 1,2, ..., r, of G, all ¥}
from one group being equal. Obviously (6,3) remains unchanged if the columns of the
incidence matrix a and the corresponding components of Vare rearrangend so that the
components V; corresponding to the nodes u,, j = 1,2, ...,r, stand in the first places
(from each Gy, j = 1,2, ..., r, one node u,, had been chosen).

Further, as the difference ¥V — V, where [':/] s [";7] are two solutions of (6,3), satis-
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fies the equation
(6.5) az =0

and as by Note 6,3 the number of linearly independent solutions of (6,5) is equal to rs,
ry being the number of components of G, we may choose V; = 0 whenever V; cor-
responds 1o @ node w,,, j = 1,2, ..., ry. By Theorem 1,8, N is w-regular if and only if

[‘;] = 0 is the unique solution of (6,3) satisfying the condition ¥; = 0 for j = 1,
201y,

!
If R, > 0, then the i-th column of the matrix [Z‘g ] in (6,3) is multiplied by zero in

view of Lemma 6,1,

Ifforsome i = 1,2,...,r. R, > 0, L = Oforj = i, then all terms are zero in the
i-th equation of {6,3). ,

Finally, the equations of system (6,3) corresponding to the nodes u, ,j = 1,2, ..., 73
are linear combinations of the rest of equation (6,3) and, therefore, may be deleted.

Hence we obtain that if (6,3) has no non-trivial solution in J, then the system (6,4)
has the unique solution y = 0, and vice versa.

7. NORMAL SYSTEMS OF DIFFERENTIAL EQUATIONS

In this paragraph the problem of passive K-networks is examined from the point
of view of the theory of ordinary differential equations.

Let D be the system of all Schwarz's distributions on (— co, c0). Let €' =
=[e, e5....e] ;e Dfori=1,2,..,r Let N bea passive K-network, a its inci-
dence matrix. Let ¢* = [¢,,45....,4,}, ;€D fori = 1,2,..., r be a solution of the _
system of ordinary differential equations '

(1.1 MLg" + R +8¢g~¢e)=0, ag=0
for every real cycle ¢'h of G, ¢ being the derivative of ¢ in the distributional sense. If X

is 2 matrix formed of a complete system of linearly independent solutions of the equa-
tion

(1.2) a'x =0

in the field of real numbers, then the system (7,1) is equivalent to the system
(1,3) X'LXw" 4+ X'RXw" + X'SXw = X'e,

where ‘ '

whe [wyowaaw,], weD, g=Xw.

Let € be the set of all real vectors x satisfying (7,2). Further, let P be the set of all
xe C satisfying

(74) x'Lx =0 /
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and Py the set of all x e C which fulfil

(7,5) x'Rx =0.
Finally, denote the set of all x € C satisfying
(7,6) x'Sx = 0
by Ps.

Evidently, C, P;, Py, Ps are linear subspaces of E,, E, being the r-dimensional
Euclidean space.

In what follows it will be shown that X may be chosen so that (7,3) is solved with
respect to the derivatives of the highest order of some components of w.

Lemma 7,1. Let T be a symmetrical real r x r matrix. Let P be a linear subspace
of E,, dim P = p. Then there exists a basis X = [X{, X,,...,X,] of P, X;€E,
i=1,2,...,p, such that X’TX = diag (T, T5, ..., T))- ‘

Proof. Let ¥ = [17’1, Yaroons T’p] be a basis of P in E,. Thematrix Y'T'Y is a sym-
metrical p x p matrix with the corresponding quadratic form y'Y' T ¥y, y € E,. There
exists a regular matrix A such that

~ o~

T;y; -

M’u

YAY'TYAy =

i

]

1

Hence we obtain that X = Y 4 is the basis with the desired property.
Let T be a symmetrical positive semidefinite » x r matrix. By IT; denote the set of
all x € E, which fulfil the equation

(7,7) x'Tx =0.

Lemma 7,2. Let C, be a linear subspace of E, and let C, be the direct sum of the
subspaces C; NIl and Kr, i. e. C; = C; nII; + K. Let X = [X,,X,,...,X,],
X;€E, fori=1,2,...,n — p be a basis in Ky such that X'TX = diag(Ty, T,, ...,
T,). Let Y=Yy, Y,,..., Y,] be a basis in C; nIIy. Then T, > 0 for i = 1,2,...,p
and Y'TY = 0.

Proof. Suppose T; =0 for some i* =1,2,...,p. Choose Xe E, such that
%, = 1,X; = 0for j # i*. Then X; X'TXx,;, = X; TX,; = 0, which contradicts the
fact that X; e Kr. Thus T; > Ofori = 1,2,..., p.

Further, if y, ze C; nII;, then Tz = 0 by Lemma 5,2. Hence Y'TY = 0, as the
columns Y; of Y form a basis in C; N II5.

Lemma 7,3. Let T = [t;;] be a symmetrical positive semidefinite r x r matrix.
Then a) t; = 0; b) if t;; = 0 for some i =1,2,...,r, then t;; = t;; = O for each
j=12,...,r.

The proof is obvious.

Ay

Lemma 7,4. Let B be anr x r matrix; let A be amatrix withr columns, A= | - |, F

A,
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a matrix with r rows, F = [Fy, ..., F,]. Then
A,BF,|...| A,BF,
P
ABF, |...|ABF,

The proof is obvious.

Let C be a direct sum of the subspaces P, and K;, i. e. C = P, 4+ K. Similarly,
let P, = H; + P, n Py. Let the dimension of C be n, i. e. dim C = n, further let
dim K; = k,,dim H; = k,, dim P, n Pg = ks, k; = 0; evidently, k; + k, + k; =
= n.

Theorem 7,1. Let N = (G, 3) be a regular passive K-network, 3 = (L, R, S).
Then there exist a basisU = [uy, Uy, ..., uy,] in Ky, u; € E,, a basis V.= [vy, vy, ...,
0, in Hy, v;€E,, and a basis Y= [y, ¥s, ..., )p,] in Py 0 Py such that X =
= Uy, Ugy ooy Ugs Vg, Vg vy Vpgs Vis Vs oo0s Vs | = [U, V, Y] is a basis in C with the
following properties: ’

a) X'LX = [1;;] = diag (I3, L225 > lyys 0,0, ..., 0), 1;; > 0 for i = 1,2, ..., k,,

b) X'RX = [ry), rij =0 for i > ky + ky, j > ky + ky; 75; > 0 for k; <i
Skyry=0for ky <iSky ky <j=ky, i%j,

¢) X'SX = [s;;], 5;i > Ofor i > ky + ks 5,5 =0fori>ky + ks, j > ky + ky,
i%j.

Proof. From Lemma 7,2, where we put Cy = C, T = L, we obtain that there exists
a basis U in K such that U'LU is a diagonal k; x k, matrix with positive elements in
the diagonal, In Lemma 7,2 put T= R, Cy = P, K; = H;. We obtain that there
exists a basis Vin H; such that V'RV is diagonal with positive elements in the diagonal.

As N is regular, P, n P n Pg = {0} by Theorem 5,1. If we put T= S, C; =
= P, n Py in Lemma 7,2, it follows that C; "Iy = P, " PxnIlg = P, NP
N Pg = {0} and, consequently, Y is a zero vector. Thus there exists a basis Y in
P, n Py such that Y'SY is diagonal with positive diagonal elements. As C = K, +
+H, 4+ PLnPr, X=[UV,Y]is a basis in C.

Now putting ¥ = [V, Y] in Lemma 7,2 one obtains that [V, Y]'L[V,Y]=0.
Using Lemma 7,3 and 7,4, where we put B= L, F = [U,V, Y], A = F', we prove
assertion a).

To prove assertion b), put B=R, F=[U,¥, Y], A= F' in Lemma 7,4. By
Lemma 7,2 Y'RY = 0 and from Lemma 7,3 b) follows immediately.

Assertion c) is an obvious consequence of Lemma 7,4.

Theorem 7,2. Let N = (G, 3) be a regular passive K-network. Then a complete
system X of linearly independent cycles may be chosen so that (7,3) is a normal
system, i. e. it may be written as

(1.9) g =5+,
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Where 6‘ = [51’ 623 ooy 62k1+k2]7 éies, E is a constant (2k1 + k2) X (2k1 + kz)
real matrix, ’1‘ = [_rlls oy eees Nagy +kz], n; € D.

Pr_oof. Let w' = [u', 0", y'], u' = [uy, up, ..., uy,], u;€ D; 0° = [y, 03, ..., O,
vi€D; y' = [y1, Y2, -» is)» ¥i€D. For X in (7,3) choose X = [U, ¥, Y] from
Theorem 7,1. Then one can easily verify that (7,3) may be written as

(7,10) U'LUu" 4+ U'RUu’ + U'RVY' + U'SXw = U'e,
(7,11) V'RUu’ + V'RVV + V'SXw = Ve,
(7.12) Y'SUu + Y'SVo + Y'SYy = Y'e.

If dim P, n P = ki = 0, equation (7,12) vanishes and y does not occur in (7,10)
and (7,11). If k5 = 1, y can be expressed from (7,12) and substituted into (7,10) and
(7, 11) since Y'SYis a regular diagonal matrix. If k, = 0, equation (7,11) vahishes and
v, v’ do not occur in (7,10). If k, = 1, v’ can be expressed from (7, 11) and substituted
into (7,10) since V'RV is a regular diagonal matrix.

If we now put u =z, & =[u',(ULUz), (V'RVv)'], the proof is completed
readily.

Note 7,1. A distribution f e D is said to be of order k, k a positive integer, if there
exists a function F(t) locally integrable in (— oo, o) such that F*» = fand F* is not
a function (F® denotes the derivative of F in the distributional sense). The order of
a vector over D is the maximal order of its components.

It is evident that if ein (7,3) is a distribution of order k = 3, then y isa d1str1but1011
of at most the same order, whereas the order of v cannot exceed k — 1 and that
k — 2 of u. Analogous assertions hold for k = 2 and k = 1. If e is a regular distri-
bution, then v is differentiable almost everywhere and u has a derivative which is
absolutely continuous in every closed interval.

Note 7,2. In (7,1) put e = e* + LJ8o — SqoH,, (¢¥)' = [ef, €%, ..., e¥], ef e D,
Jo a real r-dimensional vector, H, the Heaviside function, J, its derivative in the
distributional sense. Then it is readily seen that if g € D is a solution of (7,1) (vanishing
in (— oo, 0)), then its derivative ¢’ is a solution of Ty, T, and conversely, if i € D is
a solution of Tj, T,, then its primitive distribution ¢ = i™* which vanishes on
(— o0, 0) is a solution of (7,1) where we put e = e* + LJ6, — SqoH,.

Lemma 7,5. Let N = (G, 3) be a regular passive K-network. Let ¢ in (7,1) be
a locally integrable r-dimensional vector function defined in <0, ) such that

d" e(t) is continuous in <0, ) for every d € Hy and acl(c‘ e(t)) exists and is conti-
t

nuous in {0, ) for every ¢ € P, n Pg. Then there exists a unique vector function
g(t) with these properties: q(t) is a solution of (7,1), g(0) = 0, q'(t) is continuous in
<0, o), q'(0) = Jo, if and only if the following conditions are fulfilled: 1) a‘J, = 0,
2) (Y'e)(0) =0, 3) Y'SJ, =(Y'¢)(0), 4) V'R(UJ, + VJ,) = (V'e).(0), where
U, V, Y are matrices from Theorem 7,1, J, = UJ, + VJ, + YJ,.
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Proof. The existence of g(f) with the properties stated above is equivalent to the
existence of functions u(t), v(t), y(f) from (7,10), (7,11), (7,12) which have contmuous
derivatives in <0, o) and fulfil the conditions u(0) = v(0) = y(0) = 0, u'(0) =
v(0) = J,, y(0) = J,.

Sufficiency. From Theorem 7,1 it follows that there exist functions u(), v(f) with
continuous derivatives in <0, co) satisfying the initial conditions u(0) = v(0) = 0,
u'(0) = J,. From 2) and (7,12) one obtains that there exists a y(f) which together with
u(?) and v(r) satisfies the system (7,10), (7,11), (7,12), and such that y'(¢) is continuous
in €0, ) and y(0) = 0. From the conditions 3) and 4) it follows that one can choose
U(O) = J, y(O) = J

Necessity follows immediately from (7,10), (7,11), (7, 12)

Lemma 7,6. Let N be a regular passive K-network. Let J,, q, be r-dimensional
vectors over E,, e* over D. Then thetriple(e*, Jo, 4,) is compatible (cfr. paragraph 5),
if and only if there exists a solution q over D of (7, 1) where we put e = e* + LJ,0, —
~ SqoHo, such that its distributional derivative q' is a regular C-vector (cfr. p. 5)

(0) = Jo.

- The proofis an obvious consequence of Note 7,2.

Theorem 7,3. Let N = (G, 3), 3 = (L, R, S) be a regular passive K-network.
Let X = [U, V, Y] be the matrix from Th. 7,1. Let E in T1 have the following pro-
perty: E is locally integrable, E(t) = 0 for t <0, V'E and Y'E are regular C-
vectors. Then the triple (E, Jo, qo) is compatible, if and only if the conditions
1), 2), 3), 4) of Lemma 7,5 are fulfilled, where e = E — SqoH,.

Proof. a) Let the conditions 1), 2), 3), 4) of Lemma 7,5 be satisfied. Then there exists
a function ¢(f) defined and continuous on (—oo, c0) which for t = 0 fulfils (7,1)
with e = E — Sq,H, and such that g(r) = Ofor ¢ < 0, g’(f) is continuous in (— o0, 00)
except at the origin where there only exists the derivative from the right g’(0+) =
As (7,1) is equivalent to the system (7,10), (7,11), (7,12), by Lemma 7,6 it is sufficient
to show that in (— oo, 00) ¢(f) fulfils (7,10), (7,11), (7,12) with e = E + LJ,5, —
— SqoH,. (7,10) is fulfilled, as

\y S \ d2 g t
ULy =U L<———d‘i§) + Jo5o>

where g” denotes derivative in the distributional sense, while d?g(f)/dr* denotes a
function defined everywhere in (— oo, 00) except the origin:-<Evidently, equations
(7,11) and (7,12) are also fulfilled, as U'LX = Y'LX = 0 and J, fulfils condition 1).

b) The converse assertion follows immediately from Lemmas 7,6 and 7,5.

Note 7,3. From Theorem 7,3 it follows thatif (E, J,, 4,)is to be compatible, g, must
be chosen so as to fulfil condition 2), J, may be chosen arbitrarily, J, is to be calculated
from condition 4) and J, from condition 3) (this is possible, as the matrices V'RV and
Y'SY are regular). Specially, if the subspace P, n Py contains only the zero vector,

473



equation (7,12) vanishes and g, may be chosen arbitrarily. If P, contains only the zero
vector, (7,1) is equivalent to (7,10). In this case g, may be chosen arbitrarily and for
Jo one can take any solution of a'x = 0.

The fact that the derivatives of y do not occur in the equations (7,10), (7,11), (7,12)
suggests a new definition of compatibility.

Let N = (G, 3), 3 = (L, R, S) be a regular K-network, J,, g, r-dimensional con-
stant vectors,E over D, Jo = UJ, + VJ, + YJ, where X = [U, ¥, Y] is the matrix
from the Theorem 7,1. The triple (E, J,, go) will be called weakly compatible, if the
solution J of T1, T2 fulfils the following condition: J = Uu’ + Vv’ + Yy', v/, v’ are
regular C-vectors, u’(0) = J,, v'(0) = J,,.

Theorem 7,4. Let N be a regular K-network, E a regular C-vector. Then (E, Jo, q,)
is weakly compatible if and only if there exists an r-dimensional constant vector &
such that a*& = 0 and for every cycle ¢*h of G there holds

(7,13) ¢ (LE + RJ, + Sqo — E(0)) =0.
The proof is analogous to that of Theorem 7,3.

We wish to acknowledge the suggestions and advices given by J. KurzweiL D. Sc.,
which substantially improved the presented paper.
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Vytah

TEORIE KIRCHHOFFOVYCH SITI

VAcLAV DOLEZAL a ZDENEK VOREL, Praha

V praci je zaveden pojem abstraktni sité, ktery je jistym zobecnénim pojmu elek-
trické sit€ se soustfedénymi parametry. Abstraktni sit je definovdna pomoci grafu,
ktery charakterisuje topologickou strukturu sit€, a zobecnéné impedancni matice Z,
jejiz prvky jsou z néjakého télesa T. Bud E vektor s prvky z né€jakého modulu P.
Rekneme, ¥e vektor J nad modulem P je feSenim sit&, kdyZ jsou spln&ny rovnice

Kl: ¢(2J - E)=0
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pro kazdy vektor ¢, odpovidajici néjakému cyklu grafu,
K2: a'J =0,

kde a je incidenéni matice grafu, jejiZ prvky nabyvaji pouze hodnot 0, 1, —1 € T. Rov-
nice K1, K2 vyjadfuji zobecnéné Kirchhoffovy zakony.

Jsou uvedeny né&které podminky pro to, aby abstraktni sit méla jediné feSeni J pro
kazdé E. Bereme-li za.P modul vSech Schwartzovych distribuci, které jsou rovny nule
na(—o0,0)aza T téleso Heavisideovych operatort, popisuji rovnice K1, K2 chovéani
proudd v siti pfi libovolnych po&atednich podminkéach, kdyZ elektromotorické sily
jsou distribuce. Tak je popsano chovani sit€ v Casové oblasti. Dosadime-li za Pi T
téleso vSech racionalnich funkci s komplexnimi koeficienty, vedou rovnice K1, K2
na vySetfovani sit€ ve frekvenéni oblasti. Je ukdzano spoletné matematické pozadi
obou metod. Zvolime-li specialnim zplisobem impedanéni matici

1) Z=Lp+ R+ Sp™*,

kde L, R, S jsou symetrické positivaé semidefinitni matice, p komplexni proménna,
dostaneme pasivni Kirchhoffovu sif. Jsou uvedeny podminky pro to, aby existovalo
jediné feSeni pasivni Kirchhoffovy sit&, aby bylo stabilni a dale aby dané pocateéni
podminky byly kompatibilni. .

PoloZime-li v rovnici (1) p = i, o = konst, a bereme-li vektory E, J nad t&lesem
komplexnich &isel, dostaneme problém sité se sinusové proménnymi elektromotoric-
kymi silami a proudy. Pro tento specidlni p¥ipad jsou opét uvedeny nékteré podminky
pro existenci jediného feseni sitg.

Kone¢né je ukdzana transformace proménnych, kterd pfevede vlohu TeSeni sité
v Casové oblasti na soustavu obdejnych diferencialnich rovnic vyfe§enych vzhledem
k nejvy$§im derivacim. Odtud jsou odvozeny nékteré vysledky tykajici se. kompatibi-
lity po&4te&nich podminek. '

Pe3romMe
TEOPUS CETEN KUPXI'ODDA

BAIJIAB JOJIEXAJI (Vaclav Dolezal), 3IEHEK BOPEJI (Zdengk Vorel), Ilpara

B macrosmelt pabore BBODUTCS IMOHATHE aOCTPAaKTHOM CETH, ABISIOWEHCS 00-
obIIeHNEM D3JIEKTPUYECKOH CETH CO COCPeNOTOYEHHBIMH IlapaMeTpaMu. AOGCTpakT-
Has CeTh ONpENeNseTCs ¢ MOMONIBIO Irpada, XapaKTepU3UPYOIEro TOMOJIOrmyec-
Ky¥O CTPYKTYpY CETH, U IMIIEMaHCHOM MaTpuei Z, 3ieMeHTaMU KOTOPOH SIBIISFOTCH
3MeMEHTHI HEKOTOPOro moJs T.

Ilycts E — BEXTOp, SNEMEHTEHI KOTOPOro NPUHAIIEKAT HEKOTOPOMY JIMHEHHOMY
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npoctpaHcTy P. TIo ompeneneHuro, CeTh UMeeT PellieHue, eCIM CYLIeCTBYeT BEKTOP
J ¢ aneMeHTaMu u3 P Tak, YTO yIOBIETBOPEHH! YPABHEHUS

K1. ¢(ZJ—E)=0
JIUISL KaXJJOT'0 BEKTOpa ¢, COOTBETCTBYIOIIETO HEKOTOPOMY IMKIY rpada,
K2. ~ aJ =0,

K¢ a — MaTpulla HHUMICHTHOCTU I'pada, 3MEMEHTaAMH KOTOPOH SABJISIOTCS TOJIBKO
1, —1, 0eT. Vpasuenus K1, K2 npencrasisror o606uieHnsle 3akonsl Kupxrogda.

B cTraThe NpHBENEHBI HEKOTOPBIE YCJIOBHS MAJA TOrO, 4TOOBI abCTpakTHas CeTh
¥MMella eIUHCTBEHHOE peluenne J s kaxgoro E. Ecnu noacraButs BMecTo P MHO-
JKECTBO BCEX 0OOOLIEHHBIX (PYHKUHH, MCUE3AIOLIMX HA (—-oo, 0), u B MecTo T moue
onepaTopoB Xepwucaiifa, ypasHerus K1, K2 OmHCHIBAIOT TOBEJEHHE TOKOB B CETH
npd JOOBIX HAYyaJbHBIX YCIOBHUSX, KOIAa 3JEKTPOABHXKYLIME CHJIBI SBJSFOTCS
06061eHHbIME QYHKIHSIMU (paccMaTpUBaHHE CeTH B 06nacTH BpeMmeHH). Eciu
nojacTaBuTh BMecTo P m T mosie BCceX palMOHANBHBIX (DYHKIHM C KOMIUIEKCHBIMHE
x03(GUIHEHTAMH, TOIYYHTCS 3a]Ja4a PEIICHHS CETH B 4aCTOTHOH o6nacTi. B craTse
NoKa3aHo o0liee MaTeMaTHYeCKOe OCHOBaHHE OOOMX METOIOB.

Ecnu BBHIOpaTh, B YACTHOCTH, M3TPHILY
(1) . Z=Lp+R+Spt,

rae L, R, S — CUMMETpPHYECKHE HEOTPHIATENIbHO-ONpEJETICHHbIE MaTpPULbL, p —
KOMILJIEKCHOE IIepeMEHHOe, NOJIyYHTCS maccuBHas cetb Kupxrodda. ITpuseneHs!
YCJIOBUS AJIS TOrO, YTOOBI CYIIECTBOBANO E€IWHCTBEHHOE pELICHWE HACCHBHON CETH
Kupxrodda, ycioBus ero yCTOHYMBOCTH B COBMECTHOCTH €I0 Ha4aJIbHBIX YCIOBUH.

Ecma monoxuts B (1) p = iw, @ — NOCTOSHHAS, M ECIIH 3JIEMEHThI BEKTOPOB
J, E — KOMIUIEKCHbIE YHCJa, MOJNYYHTCA NpobjeMa CeTH CO CHHYCOMIA/IbHBIME
3NEKTPOIHCTBYIOIIMMM  CHJIAMH ¥4 TOKaMH. [IJI1 3TOro 4YacTHOTO ciydas OmsTh
NOKa3aHbl HEKOTOpbIE YCTIOBUS Uil CYIECTBOBAHMS M E€IMHCTBEHHOCTH PEILEHHUS.

B 3axirroueHye IOKa3aHo DpeoOpa3oBaHHE MEPEMEHHBIX, C IOMOILIBI KOTOPOTO
npobyiiema peuieHdss B 06JACTH BPEMEHH CBOIMTCA K CHCTEME OOGBIKHOBEHHBIX
JubdepeHIHANPHEIX YPaBHEHMIA, KOTOPHIE DEIUEHBl MO OTHOLIEHHIO K CTapIUUM
NMpoM3BOIHBIM. Ha OCHOBaHMH 3TOrO IIOJIy4YeHBI HEKOTOPBIE DPE3YNBLTATHI, KACAIO-
IIMECS COBMECTHOCTH HAYalbHBIX YCJIOBHIA.
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