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Časopis pro pěstování matematiky, roč. 89 (1964), Praha 

THE EXISTENCE OF A CONTINUOUS BASIS OF A CERTAIN LINEAR 
SUBSPACE OF Er WHICH DEPENDS ON A PARAMETER 

VACLAV DOLESAL, Praha 

(Received December 19, 1963) 

In the article a theorem concerning the existence of a continuous basis of 
the space of all solutions x e Er of the equation A(t) x = 0 is given. 

Let A(t) be an r x r matrix which is continuous on <0, oo) and let St a Er be the 
linear space of all solutions x of the equation A(t) x = 0 for a chosen t _• 0; the 
question is whether there is a fixed set of continuous vectors Pf = {^(f), x2(t),..., 
..., xk(t)} such that Pt is a basis of St for any t —• 0. The answer is contained in the 
following theorem: 

Theorem. Let A(t) be an r x r matrix which has a continuous n-th derivative 
everywhere in <0, oo), n _ 0; moreover, let an integer h < r exist such that 
rank A(t) = h for every t e <0, oo). Then there is an r x r matrix M(t) which 
possesses a continuous n-th derivative in <0, oo) such that det M(t) =f= 0 in <0, oo) 
and A(t) M(t) = [B(f) j 0], where B(t) is an r x h matrix with rank B(t) = h for 
every t e <0» oo). 

Obviously, the last r — h columns of the matrix M(t) constitute the sought set Pt. 

Proof. Choose a t > 0 . Since A(t) is continuous, a minor of A(t) with order h 
exists which is different from zero on an interval <0, <5). By the same argument, for 
each t e <<5/2, t> there is an open interval Jt containing t such that a minor of A(r) 
with order h exists which is different from zero on Jt. The system of all intervals 
{Jt}9 t e <<5/2, T>, however, covers <<5/2, f >; consequently, by Borel's theorem, 
there is a finite subsystem {Ji,J2> •••> «4} °f {Jt} wit-1 the same property. From 
this it follows that there is a sequence of closed intervals It = (th tf}y i = 1, 2>... 
which has the properties: 

a) tx = 0, tt < ti+1 <tt < *?+1, i = 1,2,..., tt-* oo, 

b) for every i there is a minor At(t) of the matrix A(t) with order /i such that 
\dtt At(t)\ = c£ > 0 for teIj. 
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Using this fact it can be easily verified that for every i = 1, 2, . . . there is an r x r 
matrix Mt(t) such that 

1) Mi(t) is defined on Ii9 possesses a continuous w-th derivative there and 
det Mx{t) = ct + 0 on It, 

2) Al(r) Mt(t) = [£i(f) j 0], where Bt(i) is an r x h matrix with rank Bt(t) = ft 
onI £ . 

Indeed, for every i there are constant regular r x r matrices Ci9 Dt such that 

C.Mt)D.-[A^Á^] 

where .^(f) is an h x /i matrix fulfilling the inequality |det A^ftty ^ ct > 0 for 
every t elt. Thus putting 

иø-j^ÄiíЩ. 

where I denotes the unit matrix, we can verify that the matrix M^t) has the properties 
stated above. 

Consider now two neighboring intervals I{ and Ii+t. Denoting Kt = (ti+i, t*) cz 
cli n Ii+t9 choose a number TiGK£. Then we have A(r^) Mj(z^) = [ 5 ^ ) j 0], 
Ai(Ti) Mi+1(Ti) = [i?i+1(Ti) j 0]; consequently, there is a constant regular r x r 
matrix Ft such that 

(1) M £ 0 = M l + 1 ( T f ) F , , 

and Fi has the form 

F^l being an h x h matrix. 
Let rf(t) be a function which possesses a continuous w-th derivative on Kt and 

fulfills the inequality 0 g */(*) ^ 1, t e Ki9 and define the matrix H^t) on K£ by 

(2) Hi(r) = M£t) + rj(t) (Mi+ t(t) Fi - Mlt)) . 

Obviously, Hi(t) has a continuous n-th derivative on Kt and due to the form of Ft 

we have A(t) H{t) = [Bit)! 0] on Kf, Bit) being a n r x i i matrix. Moreover,. 
Hi(Ti) = Mi(Ti). 

Next, denoting the elements of Mt(t) by mjk(t)9 j , k = 1, 2,.. . , r, consider the 
expression 

(3) #(t, £) = Idet [m^t) + ^ ] | 

as a function of r2 + 1 variables f e Kt and £,-t e (— a, a), j , k — 1,2,.... r. Then 
we have $(xh 0) = |det M,-(T,)| = |c,| =i= 0. Since $(f, 5) is a continuous function of 
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its variables, there is an open interval Kt <= Kf which contains xt and a number 
8 > 0 such that 

(4) M<*M)<!M 
w 2 2 

for every t e Kt and {# e ( - <5, <5), j , k = 1, 2,..., r. 
On the other hand, since the matrix Qt(t) = Mi+1(t)F£ - M^t) is continuous 

on Ki and Qfa}) =-= 0, there is an open interval Kf c K£ containing tf such that 
for every element q(Jk(t), j , k = 1, 2,..., r of Q,(*) we have |qjfc(0l < ^ whenever 
f e Kf. Consequently, using (2), we have 

(5) l £ i l < | d e t J f i ( I ) | < ^ 
__» JL 

for every t e Kt n Kf. 
Thus, denote Kt n Kf = (fi+1, f£) and choose a function rj(t) which has a conti

nuous n-th derivative and satisfies the conditions rj(t) = 0 for te<jtu fi+1>, 0 < 
< ri(i) < 1 for t e (ti+1, £), rj(t) = 1 for t e <?.,, *f+1>. Putting then 

ffi(0 = (1 - *(*)) M*W + <t) Mi+1(t) Ft, 

where Mk(t) = Mfc(r) on Jfc, M^f) = 0 elsewhere, k = f, i + 1, the matrix Hf(f) is 
defined on the entire interval <*£, ff+1> = J*u Ii+U possesses a continuous n-th 
derivative there and by (5) fulfills the conditions det HJ(t) 4= 0, A(t) Ht(t) = 
= [Bi(t) j 0] on It u J i+1, where Bt(t) is an r x h matrix. 

From the above considerations it follows that there is a sequence of closed intervals 
It = (h **>> i = 1,2,..., where It c Ji? Ft = 0, F£ < ? i+1 < ?£ < Fi+1, j = 1, 2^..., 
fi ->• oo, which has the following property: Defining successively matrices Mt(t) 
on <0, oo) by 

(6) Mt(t) = M±(t) on J , , Mi+1(t) = Mi+1(*) Fe on J i + 1 

= 0 elsewhere, = 0 elsewhere, 

i = 1, 2,.. . , where each matrix Ft can be obtained from matrices M ^ ) , Mi+1(x^ 
xt € li n J i + 1 as indicated above, and functions rj£t), i = 1, 2, . . . with a continuous 
n-th derivative by *h(f) = 1 on <0, f2>, 0 < fjx(t) < 1 on (f2, tt), fj^t) = 0 on 
<Fl3 oo), and 

iji(t) = 1 on <?;_!, fi+1> , 0 < */,•(*) < 1 on (?i+1, ti), 
fjj(t) + ^i-i(t) = 1 on (?r, ti-j.) and fŷ r) = 0 elsewhere, 

then the matrix 

(7) M(t) = ZmMlt) 
i = l 

has all the properties stated in the Theorem. 
The assertion that rank B(t) = h is obvious; hence, the Theorem is proved. 
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Résumé 

EXISTENCE SPOJITÉ BÁZE 
JISTÉHO LINEÁRNÍHO PODPROSTORU £,, 

ZÁVISLÉHO NA PARAMETRU 

VÁCLAV DOLEŽAL, Praha 

V Článkuje dokázána věta o tom, že ke každé čtvercové matici A(t), která je spojitá 
a má pevnou hodnost na intervalu <0, oo), existuje pevná soustava spojitých vektoru 
Pt = {xt(t), x2(t),..., xk(t)} tak, že pro každé t ^ 0 je Pt baží podprostoru všech 
řešení rovnice A(t) x = 0. 

Резюме 

СУЩЕСТВОВАНИЕ НЕПРЕРЫВНОГО БАЗИСА 
НЕКОТОРОГО ЛИНЕЙНОГО ПОДПРОСТРАНСТВА Д., 

ЗАВИСЯЩЕГО ОТ ПАРАМЕТРА 

ВАЦЛАВ ДОЛЕЖАЛ (Václav Doležal), Прага 

В статье доказывается теорема о том, что для каждой квадратной матри
цы A(t), которая непрерывна и имеет фиксированный ранг на интервале <0, оо), 
существует фиксированная система непрерывных векторов Pt = {xt(t), x2(t),..., 
..., xk(t)} так, что для любого t 2> 0 система Pt Является базисом подпростран
ства всех решений уравнения A(t) х =- 0. 
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