Časopis pro pěstování matematiky

Václav Doležal

The existence of a continuous basis of a certain linear subspace of E_{r} which depends on a parameter

Časopis pro pěstování matematiky, Vol. 89 (1964), No. 4, 466--469
Persistent URL: http://dml.cz/dmlcz/117522

Terms of use:

© Institute of Mathematics AS CR, 1964

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

THE EXISTENCE OF A CONTINUOUS BASIS OF A CERTAIN LINEAR SUBSPACE OF E_{r} WHICH DEPENDS ON A PARAMETER

Václav Doležal, Praha

(Received December 19, 1963)

Abstract

In the article a theorem concerning the existence of a continuous basis of the space of all solutions $x \in E_{r}$ of the equation $A(t) x=0$ is given.

Let $A(t)$ be an $r \times r$ matrix which is continuous on $\langle 0, \infty)$ and let $S_{t} \subset E_{r}$ be the linear space of all solutions x of the equation $A(t) x=0$ for a chosen $t \geqq 0$; the question is whether there is a fixed set of continuous vectors $P_{t}=\left\{x_{1}(t), x_{2}(t), \ldots\right.$, $\left.\ldots, x_{k}(t)\right\}$ such that P_{t} is a basis of S_{t} for any $t \geqq 0$. The answer is contained in the following theorem:

Theorem. Let $A(t)$ be an $r \times r$ matrix which has a continuous n-th derivative everywhere in $\langle 0, \infty), n \geqq 0$; moreover, let an integer $h<r$ exist such that $\operatorname{rank} A(t)=h$ for every $t \in\langle 0, \infty)$. Then there is an $r \times r$ matrix $M(t)$ which possesses a continuous n-th derivative in $\langle 0, \infty)$ such that $\operatorname{det} M(t) \neq 0$ in $\langle 0, \infty)$ and $A(t) M(t)=[B(t) \mid 0]$, where $B(t)$ is an $r \times h$ matrix with rank $B(t)=h$ for every $t \in\langle 0, \infty)$.

Obviously, the last $r-h$ columns of the matrix $M(t)$ constitute the sought set P_{t}.
Proof. Choose a $\tilde{T}>0$. Since $A(t)$ is continuous, a minor of $A(t)$ with order h exists which is different from zero on an interval $\langle 0, \delta)$. By the same argument, for each $t \in\langle\delta / 2, \tilde{T}\rangle$ there is an open interval J_{t} containing t such that a minor of $A(t)$ with order h exists which is different from zero on $J_{\boldsymbol{t}}$. The system of all intervals $\left\{J_{t}\right\}, t \in\langle\delta / 2, \tilde{T}\rangle$, however, covers $\langle\delta / 2, \tilde{T}\rangle$; consequently, by Borel's theorem, there is a finite subsystem $\left\{\tilde{J}_{1}, \tilde{J}_{2}, \ldots, \tilde{J}_{k}\right\}$ of $\left\{J_{t}\right\}$ with the same property. From this it follows that there is a sequence of closed intervals $I_{i}=\left\langle t_{i}, t_{i}^{*}\right\rangle, i=1,2, \ldots$ which has the properties:
a) $t_{1}=0, t_{i}<t_{i+1}<t_{i}^{*}<t_{i+1}^{*}, i=1,2, \ldots, t_{i} \rightarrow \infty$,
b) for every i there is a minor $A_{i}(t)$ of the matrix $A(t)$ with order h such that $\left|\operatorname{det} A_{i}(t)\right| \geqq c_{i}>0$ for $t \in I_{i}$.

Using this fact it can be easily verified that for every $i=1,2, \ldots$ there is an $r \times r$ matrix $M_{i}(t)$ such that

1) $M_{i}(t)$ is defined on I_{i}, possesses a continuous n-th derivative there and $\operatorname{det} M_{i}(t)=\tilde{c}_{i} \neq 0$ on I_{i},
2) $A(t) M_{i}(t)=\left[B_{i}(t) ; 0\right]$, where $B_{i}(t)$ is an $r \times h$ matrix with rank $B_{i}(t)=h$ on I_{i}.
Indeed, for every i there are constant regular $r \times r$ matrices C_{i}, D_{i} such that

$$
C_{i} A(t) D_{i}=\left[\begin{array}{c:c}
A_{11}^{(i)}(t) & A_{12}^{(i)}(t) \\
\hdashline A_{21}^{(i)}(t) & A_{22}^{(i)}(t)
\end{array}\right],
$$

where $A_{11}^{(i)}(t)$ is an $h \times h$ matrix fulfilling the inequality $\left|\operatorname{det} A_{11}^{(i)}(t)\right| \geqq c_{i}>0$ for every $t \in I_{i}$. Thus putting

$$
M_{i}(t)=D_{i}\left[\begin{array}{c}
I\left(-A_{11}^{(i)}(t)\right)^{-1} A_{12}^{(i)}(t) \\
\hdashline 0!
\end{array}\right],
$$

where I denotes the unit matrix, we can verify that the matrix $M_{i}(t)$ has the properties stated above.

Consider now two neighboring intervals I_{i} and I_{i+1}. Denoting $K_{i}=\left(t_{i+1}, t_{i}^{*}\right) \subset$ $\subset I_{i} \cap I_{i+1}$, choose a number $\tau_{i} \in K_{i}$. Then we have $A\left(\tau_{i}\right) M_{i}\left(\tau_{i}\right)=\left[B_{i}\left(\tau_{i}\right) ; 0\right]$, $A\left(\tau_{i}\right) M_{i+1}\left(\tau_{i}\right)=\left[B_{i+1}\left(\tau_{i}\right) ; 0\right]$; consequently, there is a constant regular $r \times r$ matrix F_{i} such that

$$
\begin{equation*}
M_{i}\left(\tau_{i}\right)=M_{i+1}\left(\tau_{i}\right) F_{i} \tag{1}
\end{equation*}
$$

and F_{i} has the form

$$
F_{i}=\left[\begin{array}{c:c}
F_{11}^{(i)} & 0 \\
\hdashline F_{21}^{(i)} & \overline{F_{22}^{(i)}}
\end{array}\right],
$$

$F_{11}^{(i)}$ being an $h \times h$ matrix.
Let $\eta(t)$ be a function which possesses a continuous n-th derivative on K_{i} and fulfills the inequality $0 \leqq \eta(t) \leqq 1, t \in K_{i}$, and define the matrix $H_{i}(t)$ on K_{i} by

$$
\begin{equation*}
H_{i}(t)=M_{i}(t)+\eta(t)\left(M_{i+1}(t) F_{i}-M_{i}(t)\right) \tag{2}
\end{equation*}
$$

Obviously, $H_{i}(t)$ has a continuous n-th derivative on K_{i} and due to the form of F_{i} we have $A(t) H_{i}(t)=\left[\tilde{B}_{i}(t)!0\right]$ on $K_{i}, \tilde{B}_{i}(t)$ being an $r \times h$ matrix. Moreover, $H_{i}\left(\tau_{i}\right)=M_{i}\left(\tau_{i}\right)$.

Next, denoting the elements of $M_{i}(t)$ by $m_{j k}(t), j, k=1,2, \ldots, r$, consider the expression

$$
\begin{equation*}
\Phi(t, \xi)=\left|\operatorname{det}\left[m_{j k}(\dot{t})+\xi_{j k}\right]\right| \tag{3}
\end{equation*}
$$

as a function of $r^{2}+1$ variables $t \in K_{i}$ and $\xi_{j k} \in(-a, a), j, k=1,2, \ldots, r$. Then we have $\Phi\left(\tau_{i}, 0\right)=\left|\operatorname{det} M_{i}\left(\tau_{i}\right)\right|=\left|\tilde{c}_{i}\right| \neq 0$. Since $\Phi(t, \xi)$ is a continuous function of
its variables, there is an open interval $\bar{K}_{i} \subset K_{i}$ which contains τ_{i} and a number $\delta>0$ such that

$$
\begin{equation*}
\frac{\left|\tilde{c}_{i}\right|}{2}<\Phi(t, \xi)<\frac{3\left|\tilde{c}_{i}\right|}{2} \tag{4}
\end{equation*}
$$

for every $t \in \bar{K}_{i}$ and $\xi_{j k} \in(-\delta, \delta), j, k=1,2, \ldots, r$.
On the other hand, since the matrix $Q_{i}(t)=M_{i+1}(t) F_{i}-M_{i}(t)$ is continuous on K_{i} and $Q_{i}\left(\tau_{i}\right)=0$, there is an open interval $K_{i}^{*} \subset K_{i}$ containing τ_{i} such that for every element $q_{j k}^{(i)}(t), j, k=1,2, \ldots, r$ of $Q_{i}(t)$ we have $\left|q_{j k}^{(i)}(t)\right|<\delta$ whenever $t \in K_{i}^{*}$. Consequently, using (2), we have

$$
\begin{equation*}
\frac{\left|\tilde{c}_{i}\right|}{2}<\left|\operatorname{det} H_{i}(t)\right|<\frac{3\left|\tilde{c}_{i}\right|}{2} \tag{5}
\end{equation*}
$$

for every $t \in \bar{K}_{i} \cap K_{i}^{*}$.
Thus, denote $\bar{K}_{i} \cap K_{i}^{*}=\left(\tilde{t}_{i+1}, \tilde{\tilde{t}}_{i}\right)$ and choose a function $\eta(t)$ which has a continuous n-th derivative and satisfies the conditions $\eta(t)=0$ for $t \in\left\langle t_{i}, \tilde{t}_{i+1}\right\rangle, 0<$ $<\eta(t)<1$ for $t \in\left(\tilde{t}_{i+1}, \tilde{\tilde{t}}_{i}\right), \eta(t)=1$ for $t \in\left\langle\tilde{\tilde{t}}_{i}, t_{i+1}^{*}\right\rangle$. Putting then

$$
\bar{H}_{i}(t)=(1-\eta(t)) \bar{M}_{i}(t)+\eta(t) \bar{M}_{i+1}(t) F_{i}
$$

where $\bar{M}_{k}(t)=M_{k}(t)$ on $I_{k}, \bar{M}_{k}(t)=0$ elsewhere, $k=i, i+1$, the matrix $\bar{H}_{i}(t)$ is defined on the entire interval $\left\langle t_{i}, t_{i+1}^{*}\right\rangle=I_{i} \cup I_{i+1}$, possesses a continuous n-th derivative there and by (5) fulfills the conditions $\operatorname{det} \bar{H}_{i}(t) \neq 0, A(t) \bar{H}_{i}(t)=$ $=\left[\bar{B}_{i}(t) 0\right]$ on $I_{i} \cup I_{i+1}$, where $\bar{B}_{i}(t)$ is an $r \times h$ matrix.
From the above considerations it follows that there is a sequence of closed intervals $\bar{I}_{i}=\left\langle\bar{t}_{i}, \overline{\bar{t}}_{i}\right\rangle, i=1,2, \ldots$, where $\bar{I}_{i} \subset I_{i}, \bar{t}_{1}=0, \bar{t}_{i}<\bar{t}_{i+1}<\overline{\bar{t}}_{i}<\bar{t}_{i+1}, i=1,2, \ldots$, $\bar{i}_{i} \rightarrow \infty$, which has the following property: Defining successively matrices $\bar{M}_{i}(t)$ on $\langle 0, \infty$) by

$$
\begin{array}{rlrl}
\bar{M}_{1}(t) & =M_{1}(t) \text { on } \bar{I}_{1}, \quad \bar{M}_{i+1}(t) & =M_{i+1}(t) F_{i} \text { on } \bar{I}_{i+1} \tag{6}\\
& =0 \text { elsewhere }, & & =0 \text { elsewhere },
\end{array}
$$

$i=1,2, \ldots$, where each matrix F_{i} can be obtained from matrices $\bar{M}_{i}\left(\tau_{i}\right), M_{i+1}\left(\tau_{i}\right)$, $\tau_{i} \in \bar{I}_{i} \cap \bar{I}_{i+1}$ as indicated above, and functions $\bar{\eta}_{i}(t), i=1,2, \ldots$ with a continuous n-th derivative by $\bar{\eta}_{1}(t)=1$ on $\left\langle 0, \bar{t}_{2}\right\rangle, 0<\bar{\eta}_{1}(t)<1$ on $\left(\bar{t}_{2}, \bar{t}_{1}\right), \bar{\eta}_{1}(t)=0$ on $\left\langle\overline{\bar{t}}_{1}, \infty\right)$, and

$$
\begin{aligned}
& \bar{\eta}_{i}(t)=1 \text { on }\left\langle\bar{t}_{i-1}, \bar{t}_{i+1}\right\rangle, 0<\bar{\eta}_{i}(t)<1 \text { on }\left(\bar{t}_{i+1}, \overline{\bar{t}}_{i}\right), \\
& \bar{\eta}_{i}(t)+\bar{\eta}_{i-1}(t)=1 \text { on }\left(\bar{z}_{i}, \overline{\bar{t}}_{i-1}\right) \text { and } \bar{\eta}_{i}(t)=0 \text { elsewhere },
\end{aligned}
$$

then the matrix

$$
\begin{equation*}
M(t)=\sum_{i=1}^{\infty} \bar{\eta}_{i}(t) \bar{M}_{i}(t) \tag{7}
\end{equation*}
$$

has all the properties stated in the Theorem.
The assertion that rank $B(t)=h$ is obvious; hence, the Theorem is proved.

EXISTENCE SPOJITÉ BÁZE JISTÉHO LINEÁRNÍHO PODPROSTORU E_{r}, ZÂVISLÉHO NA PARAMETRU

VÁclav Doležal, Praha

V článku je dokázána věta o tom, že ke každé čtvercové matici $A(t)$, která je spojitá a má pevnou hodnost na intervalu $\langle 0, \infty$), existuje pevná soustava spojitých vektorů $P_{t}=\left\{x_{1}(t), x_{2}(t), \ldots, x_{k}(t)\right\}$ tak, že pro každé $t \geqq 0$ je P_{t} bazí podprostoru všech řešení rovnice $A(t) x=0$.

> Резюме
> СУЩЕСТВОВАНИЕ НЕПРЕРЫВНОГО БАЗИСА НЕКОТОРОГО ЛИНЕЙНОГО ПОДПРОСТРАНСТВА E_{r}, ЗАВИСЯЩЕГО ОТ ПАРАМЕТРА

ВАЦЛАВ ДОЛЕЖАЛ (Václav Doležal), Прага

В статье доказывается теорема о том, что для каждой квадратной матрицы $A(t)$, которая непрерывна и имеет фиксированный ранг на интервале $\langle 0, \infty$), существует фиксированная система непрерывных векторов $P_{t}=\left\{x_{1}(t), x_{2}(t), \ldots\right.$, $\left.\ldots, x_{k}(t)\right\}$ так, что для любого $t \geqq 0$ система P_{t} является базисом подпространства всех решений уравнения $A(t) x=0$.

