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Časopis pro pěstování matematiky, roč. 94 (1969), Praha 

ON FELLER'S BRANCHING DIFFUSION PROCESSES 

MILOSLAV JIŘINA, Praha 

(Received November 24, 1967) 

In [1] the following limiting procedure for branching processes is described: Let 
in any one-type-particle branching process with finite second moments the time 
parameter and the states of the process be transformed for each n in such a way that 
one new time unit corresponds to n time units of the original process and one unit in 
the new state space corresponds to n particles of the original process. Then, according 
to [1], the sequence of the transformed processes converges with n -* oo to a branch
ing diffusion process whose basic transition probabilities Q(t, A) are absolutely 
continuous on (0, oo) with the densities 

a\ i* \ X<** + a) v ! ( a V ' Y + 1 vl 

(1) ^ ^ - ^ \ ^ «J 
and with 

*f°»—'Ьcřh-J-
where — oo < a < oo and 0 < /? < oo; 0LJ(eat — 1) is to be replaced by Ijt if a = 0. 

The density q(t, a) satisfies the Kolmogorov equation 

(2) A q(t, a) = /? ~ (aq(t, a)) - a ~ (aq(t, a)) 
dt da da 

and the corresponding characteristic function f(t, y) satisfies 

(3) jf(t,y) = («y + m~f(t,y). 
tit dy 

(See [1], (5.1), (5.2), (5.6) and (12.9).) 
The proof of the assertion stated above, as presented in [1], is not complete. It 

shows only that the limit f(t, y) of the characteristic functions of the transformed 
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processes satisfies (3), provided that the limit exists in such a way that not only the 
characteristic functions of the transformed processes converge to f(t, y), but also 
their relative differences converge to the derivatives of f(t, y). The existence of these 
limits is not proved in [ l] . It is also not clear in [1] how the first and second moments 
of the original process are to be changed before the n-th transformation is applied. 
In the preliminary discussion in [l] (page 236) the moments are assumed to have the 
form 1 + a/n, fijn; in the proof of (12.9) ([1] page 245), the second moment is con
stant. To obtain the same results for the first and second moment (see [ l ] , (5.11), 
(5.12)), it is necessary to leave the particles at the beginning of the process unchanged 
for the first alternative and to transform them in the same way as the states for the 
second alternative. The asymptotic behaviour of the third moments indicates that 
only the second alternative can lead to reasonable results. 

Asymptotic properties of branching processes with transformed time and states 
were studied in several papers by Lamperti (see [2], e.g.). It seems, however, that the 
original assertion of [1] has not yet been proved completely. It is the purpose of this 
paper to provide a correct proof for this assertion. 

Since all probability distributions in this paper are concentrated on the non-
negative part of the real line, it is somewhat more suitable to use real Laplace trans
forms or their logarithms instead of characteristic functions. We shall not be interested 
in differential equations, but we shall prove directly that the logarithm of the Laplace 
transform of the transition probabilities for the n-th transformed process converge 
(with n-+ co) to \j/(t, x) defined by (7), which is the desired result (see remark following 
the Theorem). 

Let &n be a sequence of homogeneous Markov branching processes with one type 
of particles, with discrete time parameter te T= {0,1, 2,...} and with the state 
space S = {0,1, 2, . . .}. The probability of the transition from the state a to the state b 
after t time units in the n-th process 0>n will be denoted by Pn(t, a, b). The probability 
distribution induced by Pn(t, a, b) on S will be denoted by Pn(t, a, .). We shall suppose 
that each 0>n has finite third moments and we shall denote by Mn and Dn the mean 
value and dispersion of Pn(l, 1, .). To each 0>n we shall assign a new Markov process 
ln with discrete time parameter t e Tn = {0, ljn, 2\n,...} and with the state space 
Sn = {0, l/n, 2/n,...}. The transition probabilities Qn(t, a, b) of Jn will be defined by 

(4) Qn(t, a, b) = Pn(tn, an, bn) , teTn, a,beSn. 

It is easily seen that Jn is really a Markov process and it is also a branching process in 
the sense that for each t e Tn and a e Sn 

*an Qn(t,a,.) = Qn(t,\\n,.) 

where Qn(t, a, .) denotes the probability distribution induced on Sn by> QJ(t, a, b) 
and the symbol *fc indicates that the operation of convolution is to be applied Jc-times. 

Let <Pn(t, a, x) be the Laplace transform of the probability distribution Pn(t, a, .) 
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and (pn(i9 a, x) its logarithm, i.e. <Pn(t9 a, x) = £ exb Pn(t9 a, b) and cpn(t9 a, x) = 
6 = 0 

= log #„(*, a, x) for all r e T, a e S and x S 0. Similarly 

il/n(t9a9x) = log^exbQn(t9a9b) 
beSn 

for all teTn9 a e Sn and x = 0. 
By (4) 

(5) ^„(r, a, x) = (?„ f tn9 an, - J . 

From the basic identity for branching processes 

(6) q>n(t9 a9x) = a <pn(t91, x) 

it foliowS by (5) that a similar relation holds for J2„: 

\f/n(t9 a9x) = a \j/n(t9 1, x) . 

It is therefore sufficient to study the function ij/n(t91, x). For simplicity reasons 
we shall write \l/n(t9 x) instead of \j/n(t91, x) and similarly $n(t9 x) and cpn(t9 x) instead 
of $n(t91, x) and cpn(t91, x). We shall also ommit the value t = 1; hence #n(x) = 
= <&>„(!, 1, x), <pn(x) - (pn(h U x). 

For each real t ^ 0 let [t]n denote the largest x e Tn less or equal to t9 i.e. [t]n = 
= \tn\\n, where \y\ = \y\t denotes the integral part of y. 

Theorem, Let us suppose that the limits 

(1) lim n(Mn - 1) = a , lim \Dn = p 
n-*ao n-+ao 

exist with — oo < a < oo, 0 < ft < oo and that the third moments <Pn(0) are 
bounded with respect to n. Then for each fixed t ^ 0 and x0 ^ 0 

(8) ' Hlt]n,x)—-*Ht,x) = 

I xé" Ti + - ( 1 - e")x\ if a 4= 0 

^ x[l - fite]"1 if a = 0 

uniformly with respect to xe <x0, 0>. 

Remark. It is easily seen by straightforward calculation that i//(t9 x) is the logarithm 
of the Laplace transform of the probability distribution Q(t9 a) defined by (1). It 
follows then from (8) that &([*]-,» .) converges (weakly) to Q(t9 .). 
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P r o o f of the Theorem. It follows from (7) that Mn > 0 for all sufficiently large w. 
Hence, we may assume without loss of generality that Mn> 0 for all n. Let us write 
an = n(Mn - 1). Then an -+ a according to (7). The proof of the Theorem will 
consist of several lemmas. In all of them the real number t > 0 is fixed. 

t> ] 
(i) Mr = (l + -M 

(II) If a„ 4= 0, a„ --*• 0, then 

M™-1_\ n) ft 

n(M„-l) a„ -

(III) There exists n0 such that 

MB _ e 2 | a " 

for all n ^ n0 and all s = 0, 1, ... [fn]. 
Proof of (III). Since a„ -+ a, there exists n0 such that |ex„j _ 2|a| for n _ n0 . 

Then for n ^. n0 and s _ [ tn ] 

M: = (i + a)* s (i + f j s (i + *!)""' s (. + ±1)" S r«* . 

(IV) There exists n 0 such that 

0 __ q>n(s9 x) __ e2M'x 

for all n __ w0, all s = 0, 1 , . . . [ t a ] and all x __ 0. 
Proof of (IV). It is well known for branching processes that 

(9) <p;(5,0) = <l>„(s,0) = M : for all seT. 

Further 

(io) *:(,, x) = *;ts>*K(s> *)-[*;(*» *)]2 _ 

#2(s> *) 

= [ ( t #e* P„(s, b)) (£ e*» Pn(s, & ) ) - ( £ fce* P„(s, b)f] *„-*(-, x) . 
4 = 0 » = 0 » = 0 

Hence, by Schwartz inequality, 

(11) <pl(s, x)_0 for all s e T and x _ 0 . 

Using Taylor formula, (9) and (11) we have 

(12) 0 _ q>„(s, x) - M'jc + i r f ( s , {) x 2 _ M*nx 
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and (IV) follows from (III) for the same n0. 

(V) There exists 80 < 0 and K0 > 0 such that 

<?;'(*) < K 0 , \q>;(x)\<K0 

for all 50 < x S O ând all n. 
Proof of (V). According to the assumptions of the theorem, there exists Kt > 0 

such that 0 < &'n(x) S *;(0) = M„ < Kl5 0 = *J(x) = C(0) = Dn + Mn
2 < Kl9 

0 = C W = <(0) < Kt for all x = 0 and all n. Using (12) with s = 1 we see 
that \<pn(x)\ < Kt\x\ for all n and, consequently there exists S0 < 0 such that $n(x) > 
> \ for all 80 < x g 0 and all n. The first inequality of (V) follows now from (10). 
The proof of the second inequality is similar. 

(VI) limcpfXx) = 2p. 
x-+0 
ÍІ-+CX) 

Proof of (VI). By (V), 

\q>"n(x) - 2jJ| £ ^ ( x ) - < 0 ) | + |rf(0) - 2jj| = 

= Idfa.) *| + |D. - 2/?| = K0|x| + |D, - 2jB| 

for all <5 < x ^ 0 and all n; the assertion now follows from the assumption Dn --* 2p. 

(VII) q>n(s9 x) < 0 for all n, s e T and x < 0 . 

Proof of (VII). Let us suppose to the contrary that q>n(s9 xt) = 0 for some n, s and 
X! < 0. Then q>n(s9 x) = 0 for all xx = x rgi 0, because <p„(s, x) is non-decreasing 
and <pB(s, 0) = 0. Hence, by (9), Ms

n = q>n(s9 0) = 0, which contradicts the assumption 
M „ > 0 . 

(VIII) To each e > 0 there exist nx and <5t < 0 such that 

1 _ <?*»(* ~ !>*) 
< e <pn(s, x) 

for all n *t nx, all s = 1 [fn] and all d1 ^ x < 0. 

Proof of (VIII). It is well known that 

(13) <Pn(s, x) = <Sff„(9>„(s - 1, x)) 

holds for branching processes (see [3], Chap. Ill, § 7, e.g.). Using (13) and the Taylor 
formula we have 

(14) <pn(s, x) = Mn <pn(s - 1, x) + WXUS> *)) ^»(s - -» x) 

where, by (VII), 

(15) <p„(s - 1, x) < C„(s, x) < 0 for x < 0 . 
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Hence we may write for x < 0 

1 _ ffr *) - - ^ + I rtMs, x)) <pn(s - 1, *)Y 
<pn(s~l,x) \n 2 / 

Let us choose <50 < 0 according to (V) and put <50 -= e~2,a|'<50. Then, for all n ^ n0, 
all s = 1, 2,..., [fn] and all <50 __ x < 0, 

50 __ cpn(s - 1, x) < C„(s, x) < 0 
and 

1 
ęj^x) 

ęn(s - 1, x); 
__ — + -.K0e

z,*ł' |x| 
и 2 

ø2\x\t\ 

according to (IV) and (V). 
The assertion of (VIII) follows now from the fact that the right-hand side of the 

last inequality is arbitrarily small for sufficiently large n and sufficiently small jx|. 
We shall now finish the proof of the Theorem. Let us write for s 5_ s0 

Fn(s, s0, x) __ Msrs+1 q>n(s - 1, x) - Mn°~s <pn(s, x) . 

The assertion of the Theorem is trivial for x = 0. We shall assume x0 __ x < 0 and 
then, by (VII), (pn(s — 1, x) < 0. Hence, we may write then 

(16) 

where 

(17) 

1 
Mn°-°ęn(s,x) Mn°-*+1<p(s-l,x) 

+ Gn(s, s0, x) 

Gn(s, s0, x) = Fn(s, s0, x)/M2 s°-2 s + 1 <p„(s - 1, x) cp„(s, x) = 

= - M a » , x)) P-fr-1'*) M;(s°-S+1> 
<j»„(s> * ) 

according to (14). Summing in (16) for s = 1,..., s0 we obtain 
1 J so 

~ ~ 7 — \ = ir^r + 5- G »( s ' s ° ' x ) 
W ^ J M^x .-l 

and, finally, by (5), (6) and (17), 
<»> 

Mţ'"] 

Ýn(U]n, X) /- -. X\ 
n<Pn\\tn\,-\ 

<Pn\S ~ l . - J 
V "/ A^-l 

x 2n »=o " \ " \ ' n)j "-H) 
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Let e > 0. By (III), (IV), (VI), (VIII) and (15), there exists n2 such that 

(pjs - 1,-J 
V » / W . - l ì4« мг 1 - ßм\ 

9-{s'-n) 
for all n > n2, all s-*0,l,..., [m] and all x0 g x < 0. Then also 

< г 

i [ m l „/ / x^T 1 '") 
2n s--o v V ' n / / / x\ 

9aVň) 
M* J8 

Mţ"0 - 1 
n(Mп - 1) 

< є 

for all n > n2 and all x0 ^ x < 0; the second ratio is to be replaced by [fn]/n if 
M„ - 1 for some n. Hence, by (I), (II) and (18) 

e-t [I _ _ («« -1)1 if a + 0 
1 „/ L* « J 

/?* if a = 0 

uniformly in <x0, 0), which proves (8). 
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