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Časopis pro pěstování matematiky, rot. 96 (1971), Praha 

FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS 
IN BANACH SPACES AND ITS APPLICATIONS TO DIFFERENTIAL 

AND INTEGRAL EQUATIONS 

SVATOPLUK FucfK, Praha 

(Received March 23, 1970) 

1. INTRODUCTION 

This paper deals with the solution of nonlinear operator equations in Banach 
spaces and with the nonlinear generalization of the Fredholm alternative. Theorems 
of the following type are obtained: If Tis an operator (generally nonlinear) defined 
on a real Banach space X with values in a real Banach space Y, then T(X) = Y 
provided that the equation Tx — QY has the solution x = Qx only and X, Y, T satisfy 
some additional conditions. 

Similar results were obtained by S. I. POCHOZAJEV [15] for real Banach spaces 
and for homogeneous operators and, by J. NECAS [11], for complex Banach spaces 
and for operators which are "near to homogeneous" ones. M. KUCERA [20] proved 
a result similar to that in [11] for the real space, his conditions concerning "being 
near to homogeneity" being stronger than those in [11]. Preceding papers discourse 
only on the operators the domain of which is a Banach space X, the range being in its 
dual space X*. Hence, the integral operators defined on LP(Q) (p 4= 2) with values 
in Lp(Q) are not included in the abstract theory established in [11], [15], [20]. Such 
a problem is solved in Section 7 on the base of Section 3. 

We generalize the preceding results for the case of the operators "near to homo
geneous", acting from a real Banach space to another real Banach space. The main 
result is obtained in the third section of the paper. In Sections 4 and 5 we investigate 
the notion of the approximation scheme and the ^-operator, given in Section 3. 
These notions are a slight modification of those introduced by W. V. PETRYSHYN 
[12,13,14], S. I. POCHOZAJEV [15], D. G. DE FIGUEIREDO [5,6, 7] and F. E. BROWDER -

W. V. PETRYSHYN [ 2 ] . 

Section 6 deals with the set of eigenvalues of homogeneous operators. The hypo
theses of Theorem 6.1 are very difficult to verify in infinite dimensional Banach space. 
Theorem 6.2 can be used to "near to linear" operators only. 
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Finally, in the last section, we apply the abstract Fredholm alternative to the 
Dirichlet problem for partial differential equations and to some integral equations. 
In these applications it is necessary to know that the corresponding Banach spaces 
have a Schauder basis. This concerns particularly the space ty£\ti) (p # 2). This 
fact is proved in Section 4 for Q a Et. Unfortunately, we do not know the cor
responding proof in the case of En (n ^ 2). But if this is true, then our main result 
can be directly applied to more general partial differential equations, such as in [11]. 

2. TERMINOLOGY, NOTATION AND DEFINITIONS 

Let X be a real Banach space with the norm ||. \\x, Qx its zero element; then X* 
denotes the adjoint (dual) space of all bounded linear functionals on X. The pairing 
between x* e l * and x eX is denoted by (x*, x). We shall use the symbols "->", 
" o M to denote respectively the strong and the weak convergences in X. For a finite 
dimensional space X, dimX denotes the dimension of X. 

Let M be a subset of X, M its closure in X, dM its boundary in X. M is said to be 
compact (weakly compact) if for any sequence {xn}, xne M there exists a sub
sequence {x„k} and an element x0eX such that xnk -> x0 (x„k t> x0) with k -> GO. 

The following assertion will be referred to as Eberlein-Smuljan Theorem: A Banach 
space X is reflexive if and only if every bounded subset ofX is weakly compact. 

Let T be a mapping (nonlinear, in general) with the domain M c X and the range 
in the Banach space y(we write T:M -+Y). Then 

(1) Tis said to be continuous on M if xn -> x0 in X implies Txn -> Tx0 in Yfor all 
xm x0 e M. 

(2) Tis said to be demicontinuous on M if xn -> x0 in X implies Txn t> Tx0 in Y 
for xn, x0 G M. 

(3) Tis said to be strongly continuous on M if x„ t> x0 in X implies Txn -> Tx0 

in y for x„, x0 e M. 

(4) Tis said to be weakly continuous on M if xn t> x0 in X implies Txn o Tx0 in Y 
for xn, x0 6 M. 

(5) Tis said to be strongly closed on M if xn t> x0 in X and Txn -> y in Yimplies 
Tx0 = y. 

(6) Tis said to be completely continuous on M if Tis continuous on M and for 
each bounded subset D c M, T(D) is a compact set in y. 

(7) Tis said to be contractive with the constant a e <0,1) on M, if ||Tx — Ty\\Y ^ 
^ a|x - y\\x for all x, y e M. 

(8) T:X -> yis said to be regularly surjective from X onto Yif T(X) = yand 
for any JR > 0 there exists r > 0 such that \\x\\x g r for all x eX with \\Tx\\Y ̂  K. 
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3. MAIN THEOREMS 

Definition 3.1. Let K > 0 be a real number, X and Y Banach spaces, {Xn} and {Yn} 
two sequences of finite dimensional subspaces such that Xn c X, Yn c y. For each 
positive integer n let Qn: y-» ybe a bounded linear operator from yonto y„, Q« = 
= Qn (i.e. linear projection). 

We shall say that the couple <X, y> has an approximation scheme [{X„}, {Yn}, 
{QH}]K for the operators from X into Y (briefly speaking, <X, Y} has an approxima
tion scheme [{X„}, {Yn}, {6«}]x) if the following conditions are satisfied: 

(l)X1 C I 2 C . . . C I „ C I „ + 1 CZ..., 

(2)Y^Y2 cz...czYn c=yw+1 <z..., 

(3) U-Y„ = X, 
n=-l 

(4) dimXn = dimyn, 

(5) || Qn || (Y-+Y) = ^ ' where (y-> Y) is the space of all bounded linear operators 
from yinto Y, 

(6) Qny -* y 1n ^for each y € Y. 

Definition 3.2. Let X and ybe two Banach spaces, let <X, Y> have an approximation 
scheme [{X„}, {Yn}, {ft,}]* and T: X - Y 

(a) Tis said to be an A-operator with respect to a given approximation scheme 
[{Xn}, {y„}, {Q„}]K (briefly speaking, Tis an _4-operator) if for any sequence {n,} of 
positive integers satisfying n7- -• oo and a bounded sequence {xnj}, x^eK^ such 
that QnjTxnj -> y e y in y for some y eY, there exists an infinite subsequence {nm} 
and x0eX such that JCWJ(IC) -> x0 in X and Tx0 = y. 

(b) Let Tbe an A-operator. Tis said to be an A*-operator if the following condition 
is satisfied: Let R > 0, h e Y. If for some a > 0 and a sequence {kj} of positive integers 
satisfying fey -» oo, ||Q*,Tu - tQkjh\\Y ^ a holds for ueXkj9 \\u\\x = 1? and any 
t e <0,1>, then there exists x0 e X, \\x0\\x ^ R such that Tx0 = fc. 

Lemma 3.1. Let X and Y be two Banach spaces such that X is a reflexive space 
and <K, y> has an approximation scheme [{Xn}> {Yn}> {Q»}]x- Let T:X -*Ybe an 
A-operator, heY, R > 0. Suppose that for all ueX, \\u\x = R and any t e <0,1> 
there is \\Tu - th\\Y > 0. 

Then there exist a > 0 and a sequence {kj} of positive integers, kj -+ oo such 
that \\QkjTu - tQkjh\\Y £ a for any kj, all ueXkj, |jw||x = tf and * e <0, 1>. 

Proof. To prove the assertion, let us suppose the contrary. Then unjeXnj, 
\\unj\\x = R and tnj e <0,1> with \Qnj Tunj - tnj Qnjh\Y - 0 (as ns -» oo) exist. 
According to the compactness of <0,1> and to Eberlein-Smuljan Theorem the 
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subsequences {tnj{k)} <= {tnj} and {unj{k)} cz {unj} such that tnj{k) - tQ, unj{k) > « 0 e l 
in X can be chosen. Since Qnjik)h -• ft by Definition 3.2.a) there is {w^^,,} <={wrty(k)} 
such that unj{k* -» w0 in X and Tw0 = h. Thus ||w0||x = £, ||Tw0 - t0h\\Y = 0. This 
is a contradiction with our assumptions. 

Theorem 3.1. Let X and Ybe two Banach spaces, let X be a reflexive space and let 
<X, y> have an approximation scheme. Let T:X ~> Ybe an A*-operator satisfying 

lim llTwIL = +00 . 

Then Tis regularly surjectivefrom X onto Y. 

й | x fora l luєX, | |и| | x-= 

\r * Шr - ĄhL > o. 
Proof. For h e ythere exists R > 0 such that ||Tw||y > | 

= R. Thus for any t e <0, 1> and all w e X it is || Tw - th 
By Lemma 3.1 and Definition 3.2b there is x0 e l , \\x0\\x ^ R such that Tx0 = h, 
hence T(X) = Y. 

It can be easily shown that Tis regularly surjective. 

Proposition 3.1. Let X be a reflexive Banach space, Y a Banach space, let <K, Y} 
have an approximation scheme. Let T': X ~> Y be an A-operator and let S : X -» Y 
be completely continuous. 

Then T + S is an A-operator. 

Proof. Let {nj} be a sequence of positive integers, nj -> oo, {xnj} a bounded 
sequence with xnjeXnj such that Qnj(T + S)xnj-> y eY in Y. Eberlein-Smuljan 
Theorem and the complete continuity of the operator S imply that there is a sub
sequence {xnj{k)} c {xnj} 'such that xnj{k) > x 0 e X i n I and Sxnj(k) -> w e Y in Y. 
The uniform boundedness of {Qn} implies Q»jik)Sxnj{k) in Y since \\QnjikySxnj{k) -
- HI* = K\\Sxnj{k) - w||r + ||e„,(k)w - w||y. Thus Qnj(k)Txnj{k) -> y - w in Y and 
by Definition 3.2a there is a subsequence of {xnj{k)} (we denote it by {xnj{k)} again) 
such that xrty(k) -+ x0 in X, Tx0 = y — w and Sx„i(fc) -• Sx0. This implies Tx0 + 
+ Sx0 = y, and the proof is complete. 

Proposition3.2. LetX and Ybe two Banach spaces, let <K, Y} have an approxima
tion scheme. Let A 4= 0 be a real number and T:X -*Yan A-operator. 

Then XT is an A-operator. 

The proof follows immediately from Definition 3.2. 

Lemma 3.2. Let X and Ybe two finite dimensional spaces, dim X = dim Y. Denote 
KR = {x; xeX9 \\x\\x < *}, SR = 8KR. 

Let heY and f :KR~+Y be a continuous mapping such that /( — x) = — f(x) 
for arbitrary xeRR and ||/(x) — th\\Y > 0 for each t e <0, 1> and all x e SR. 

Then there exists x0 e KR such that f(x0) = h. 
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Proof. Let E be a linear homeomorphism y-> X. Then for the Brouwer degree d 
of mappings Ef — Fh and Ef on the set KR with respect to the point 0^ the relation 

d[Ef - Eh; KR, 9 J = d[Ef\ KR, 6 J 4= 0 

holds. (See [3], [8].) This property of the degree of the mapping Ef — Eh implies the 
existence of x0 e KR such that Ef(x0) = £/i and thus/(x0) = h. 

Proposition 3.3. Let X and Y be two Banach spaces, X reflexive, T: X -> Y such 

that T( — x) = —T(x)for arbitrary xeX (the so called odd mapping). Let <K, Y} 

have an approximation scheme and let T be a demicontinuous A-operator. 

Then Tis an A*-operator. 

Proof. Let R > 0 and heY. Let for some a > 0 and some sequence {kj} of positive 
integers, kj -> oo 

\\QkjTu-tQkjh\\Y = u 

hold for each t e <0, 1> and all u e Xkj, \\u\\x = R. 

Lemma 3.2 implies that there is a sequence {ukj}, ukjeXkj, ||wjkjjr _ R with 
Qkj Tuk. = Qkjh. According to Eberlein-Smuljan Theorem we can suppose uk. t> M0 6 
e l i n l . Since Qkjh -• h in Ywe have Qk. Tuk. -* /T in Y. By Definition 3.2a there is 
a subsequence {ukj(n)} c: {uk.} such that Mkj.(n) -• M0 in K, TM0 = h and thus Tis an 
A*-operator. 

Corollary 3.1. Let X and Y be two Banach spaces, X reflexive and let <K, Y} have 
an approximation scheme. Suppose that T:X -+Y is an odd demicontinuous A-
o per a tor with 

lim ||Tii||y = -foo . 
| |M||X-OO 

Then Tis regularly surjective from X onto Y. 

Definition 3.3. Let X and Y be two Banach spaces, T:X -• y, T0:X -*Y and 
a > 0 a real number. 

(a) T0 is said to be a-homogeneous if T0(tu) = f T0(u) holds for each t = 0 and 
allMGK. 

(b) Let T0 be an a-homogeneous operator. Tis said to be a-quasihomogeneous 
with respect to T0 if tn \ 0 (i.e. tt ^ t2 = . . . = t„ > 0 are real numbers and 
lim tn = 0), un D> M0 in K, fn T(un\tn) -+ geYinY, then T0M0 = g. 

n-+ao 

(c) T is said to be a-strongly quasihomogeneous with respect to T0, if tn \ 0, 
un t> M0 in Z imply fn T(un\tn) -+ T0u0 in Y. 
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Proposition 3.4. Let X and Ybe two Banach spaces, T:X ->Y9 T0 :X ->Y. 

(a) 1/ T is a-homogeneous and strongly closed, then T is a-quasihomogeneous 
with respect to T. 

(b) If T is a-homogeneous and strongly continuous, then T is a-strongly quasi-
homogeneous with respect to T. 

(c) IfTis a-strongly homogeneous with respect to T09 then T0 is a -homogeneous. 

Proposition 3.5. Let X and Y be two Banach spaces, S : X -+ Y9 S0 : X -+ Y Let S 
be an a-strongly quasihomogeneous operator with respect to S0. 

Then S0 is strongly continuous. 

Proof. For u e X it is lim ta S(ujt) = S0u in 7. Suppose that there exists a sequence 
t\o 

{un}9 uneX and e > 0 such that un o u0 in X and \\S0un — S0w0||y ^ e. For each n 
there exists *„, 0 < tn ^ l/n such that 

So" 

Then 
WHY 4 

e ^ ||S0uB - S0M0||r ^ I S0un -ta
nS (^]\ + \t°n s(^) - S0u0| ^ 

I Vn/lr II VnJ \\r 

£l+\s0u0-fus(±)\. 
4 || \tnJ\\r 

Letting n tend to infinity we obtain e g Je. This is a contradiction proving the 
proposition. 

Definition 3.4. Let X and Y be two Banach spaces, T0 : X -> Y9 S0 : X -+ Y a-
homogeneous operators and X 4= 0 a real number. 

X is said to be an eigenvalue for the couple (T0, S0) if there exists u0 eX9u0 =# 9* 
such that XT0u0 — S0u0 = 0y. 

Lemma 3.3. Let X and Y be two reflexive Banach spaces T:X -*Y9 T0:X ->Y an 
a-homogeneous operator, S :X -+Y and S0 :X ->Y Let T be an a-quasihomo
geneous operator with respect to T0 and let S be an a-strongly quasihomogeneous 
operator with respect to S0. Suppose that there exists a constant c > 0 such that 

Mr MM* 
holds for each ueX. 

Let X 4= 0 be a real number. If X is not an eigenvalue for the couple (T0, S0\ then 

lim |jllii - SUIY = oo . 
||t«||x---> 
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Proof. Let us assume the contrary. Then there exist a sequence {utt}9 uH sX and 
a real number K > 0 so that ||wn||x -• oo and ||ATwn - Sun\\Y < K. Set vn = nll/||iiII|x. 
By Eberlein-Smuljan Theorem we can suppose that XTun — Sun i> 9 e Y in Y and 
t ; n > t ? 0 e l i n X. We have 

and 

Hence 

and 

lT(\\un\\xvn) - S(\\un\\xvn) t> g 

A irVTW x r»)-? J i^ sW x t ' -! '" e r in y-
M» \\X \\Un\\x 

^;S(\\uH\\xvn)->S0v0 m y 
*« X 

A-r-1-r7T(|ii.lx».)-*So»0 in 7. 
Ir»llx 

Definition 3.3b implies XT0v0 = S0t;o and the proof will be complete if v0 4= 0^. It 
is clear that 

* F V T ( N W | = \MT
L^\\Tun\\r^c\X\>0. 

\\Un\\x IIF ||«ii||x 

Hence S0i;0 4= 9y and v0 4
s Qx. 

Theorem 3.2. Let X and Y be two reflexive Banach spaces, let {X, Y} have an 
approximation scheme, T: X -+Y let be an odd operator, T0 :X -+Y an a-homo-
geneous operator, S :X -*Y an odd completely continuous operator, S0 :X -+ Y. 
Suppose that T is demicontinuous and a-quasihomogeneous with respect to T0 

A-operator, and S is a-strongly quasihomogeneous operator with respect to S0. 

Suppose that there exists a constant c > 0 such that |Tu||y ^ c |lwl* holds for 
allueX. 

Let X 4= 0 be a real number which is not an eigenvalue for the couple (T0, S0). 
Then the operator XT — S is regularly surjective from X onto Y. 

Proof. See Lemma 3.3, Propositions 3.1 and 3.2 and Corollary 3.1. 

Theorem 3.3. (This theorem is a generalization of the results in [15] for the case 
y 4= X*. The proof is analogous to that in [15].) LetX and Y be two reflexive Banach 
spaces, let <X, y> have an approximation scheme [{.KB}, {Yn}, {6H}]K- LetT:X -+Y 
be an odd a-homogeneous and continuous A-operator. Let S :X -*Y be an odd 
completely continuous a-homogeneous operator. Let X 4= 0 be a real number such 
that X is not an eigenvalue for the couple (T, S). Then the operator XT— S is 
regularly surjective from X onto Y. 
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Proof. It is ||ATI* - Su | y > 0 for each u e l , | | u | x = 1. By Lemma 3.1 there 
ex;st a > 0 and a sequence {kj} of positive integers, kj -> co such that 

||AQfcjTu - QfcjSu||y = a 

holds for each k} and all ueXkp \\u\\x -= 1. Let u 0 eK , ||u0||x = 1- T ^ e n there 
exist ukj e Xkj9 ukj -> u0 in X and we have 

a < 
\IK||x/ \ ||-*y||-/ 

O*? 
ЧЛ*. 

i—\ - QkjTu0 + 

+ I- QkjTu0 - Q t jSu0 | | r + ÍQkjS f - - - Y ) ~ --^-o 
I MIM*/ 

X|A| Y-І ÎŁLЛ 

llkllJ 
Tu0 

+ K S (J±JL.) 

V ||-*j||x/ 
Su0 

+ KU Tu0 - SuJr 

K\\X Tu0 - Su0L 

for kj -> oo. Hence ||A Tu0 — Su0\\Y ^ a/K holds for each u0 e l , |]u0 | |x == 1, and 
thus, for arbitrary u eX there is 

ЯГu - Su L > и 
X 

By the previous statement it is lim || A Tu - 5u||y = co and according to Corollary 
||«||x-oo 

3.1, the proof is complete. 

4. APPROXIMATION SCHEME 

Proposition 4.1. Let X be a reflexive Banach space and let <K, X} have an ap
proximation scheme [{K„}> {X}> {QH}]K and Qn+1Qn = QnQn+i-

Then <K, K*> has an approximation scheme. 

Proof. For each integer n let Q* : X* -• K* be the operator adjoint to Q„ and set 
Y, == Q£(X*). Then dim X„ = dim Ym, 

Xl c K 2 c . . . czX„c:XB+1 cz . . . , 

y, <=y2 c . ^ y , , c-yn+1 c - . . . , 

and |e:||(x.-.x*)= ||&||<x--x> £ * • To show that [{Xm}9 {YH}9 {(£}"\K is an ap
proximation scheme for <K, X*} we must prove that for each x* eX* it is Q*x* -* 

-• x* in X*. It is easy to show that g*x* o x* in K* (i.e. (J Y„ is weakly dense in K*) 
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and Qnx* e \J Yn. The set (J Yn is a convex one and by the well-known theorem \J Yn 
n = 1 n = 1 n = 1 

is weakly closed. Hence \J Yn = X*. For each x* e U yn there is an integer n0 such 
n = l n = l 

that x* G Yn for n = n0 and x* = <2*x* = Q*x*. Thus 6*** -* ** i n * * f ° r a l1 

x* e U y„, U y„ = X* and ||6*]|(x»-->x*) ^ K and according to Uniform Boundedness 
n = l n = l 

Theorem (see [4]) the proof is complete. 

Proposition 4.2. Let X and Ybe two infinite dimensional Banach spaces. Suppose 
that X is a separable space and (Y9 Y} has an approximation scheme {{Yn}9 {Yn}9 

Then <K, Y} has an approximation scheme. 

(This Proposition shows that whether the couple <K, y> has an approximation 
scheme depends only on the space Y.) 

Proof. Let xl9 x 2 , . . . be a dense sequence in X. Let Xnbe the linear hull of {x l 5 . . . 
..., x„}. Then there exists a subsequence {Xk(n)}such that [{Xjt(n)}, {Yn}9 {6*}]* is an 
approximation scheme for the couple <K, y>. 

Definition 4.1 ([1], [5], [6], [7]). Let K ^ 1. A separable Banach space X is said 
to have Property (nK) if there exists a sequence of finite dimensional subspacesXB cz X 
such that 

( a ) X 1 c z Z 2 c r . . . c : X y | c z X w + 1 c z . . . > 

(b) [JXn = X9 
n - - l 

(c) each Xn is the range of continuous linear projection Qn: X -» X with the norm 

= K . 

Definition 4.2 ([4]). A separable Banach space X is said to have Schauder basis 
[en}9 eneX if for each xeX there exists a unique sequence {al9 al9...} of real 

n 

numbers such that J] a&i -> x in X (with n -> oo). 
i=l 

Proposition 4.3. A Banach space with a Schauder basis has Property (nK) for 
some K. 

Proof. See [7]. 

Proposition 4.4. Let X be a Banach space with Property (nK). 

Then (X9 X} has an approximation scheme. 
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Proposition 4.5. Let X be an infinite dimensional Banach space with a Schauder 
basis. Then the couple <X, K> has an approximation scheme. 

Moreover, ifYis a separable infinite dimensional Banach space, then (Y, X} has 
an approximation scheme. 

If X is a reflexive Banach space with a Schauder basis, then <X, X*> has an 
approximation scheme. 

Proposition 4.6. Let Xbea Banach space mth Property (n^), such that dim Xn = n. 
Then X has a Schauder basis. 

Proof. See [10]. 

Remark 4.1. A separable Hilbert space, C[0, 1], Lp[0, 1], C*([0, 1]), ^([0,1]") 
(see [17]) all have an approximation scheme (they have a Schauder basis). 

Remark 4.2. Let Obea bounded open subset of the Euclidean N-space EN. Then 
LP(Q) is linearly homeomorphic to Lp[0, meas G], where meas Q is the N-dimensional 
Lebesgue measure of Q (see [9, Chapter II, § 12]). Hence LP(Q) has a Schauder basis. 

Remark 4.3. Let X be a Banach space with Schauder basis {eu e2,...}. For xeX 
GO 

there exists a unique sequence {att} of real numbers such that x = £ afef. Set a{ = 
= af(x). Then a , e l * , i==1 

Definition 4.3. Let / = (0, 1), k ^ 1 integer and p ^ 1 real number. By Sobolev 
space Wjf\l) we mean the set of all functions / such that / and its derivatives / ( i ) up 
to the order k — 1 are absolutely continuous functions in J and the derivative of the 
order k (which exists almost everywhere) belongs to LP(I). The norm in W^\l) is 

\\fUP^-(hn\un)iip-
1 = 0 

We set 
*?»(i) = 

= {/;/6<>(J),/(o) =/'(o) = ... -/»-»(o) -/(i) = ... -f*-lXi) = o}. 

Proposition 4.7. W^\t) has a Schauder basis. 

Proof. We prove the proposition by induction with respect to k. Suppose that 
{/*} is a Schauder basis in W£k\I) and {a*,} is a sequence of continuous linear func-

00 

tionals such that for each / e Wpk\l) there is / = £ a*,(/)/* (see Remark 4.3). Set 

r w - i , «*+i(/)=/(o) 
/ r *(*) - f/f- .to dt, «!;+»(/) -«;_,(/') 
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for n = 2, x el, fe Wf+1)(I). Then fB*+1 e Wf+i)(l). For arbitrary fe Wik+t)(^ 
! _ lwe have ' 

if-iťi(лл+%^чn- Ґ|fw-f(°)-ľV) Ґfлodt 
n=l J 0 | и=l J 0 

+ ||f' - ЫiГЩfaчi) = 2||f' -Шf')Ґn\\W-чn 

Þ 

dx -F 

and hence 

iim||f-iar
i(f)friik,<-w = o 

I->co « = 1 

Let 
i lim|| Š^»fí+1 |k(^»(/) = 0 

/->oo w = l 

for some sequence {c„} of real numbers, i.e 

0 = lim P L +ÉcBf7*_1(0dť 
l-oo Jo I «=2 Jo 

dx 

апс! 

0 = В т || 2 с^-хЦнг^ск^/) 
l-юo n=-2 

Since {f*} is a Schauder basis in Wj;k)(l) we have cB = 0 for n = 2 and lim j 0 taj* dx =̂ 
l-*ao 

= 0, i.e. cn = 0 for each positive integer n. We obtain that the sequence {f*+1} is 
a Schauder basis in FVP

(*+1)(J) and, since for fc = 0 the space LP(I) = JVP

(0)(7) h^s 

a Schauder basis (see Remark 4.1), we proved our assertion. 

Proposition 4.8. W^\I) has a Schauder basis. 

Proof. Let us construct the basis {fn} in Wj;x\l) from the basis {f°} in Lp(l) as 
in Proposition 4.7 where {f0} is a Haar orthogonal system in Lp(l). Set/J = f * + l , 
xn(f) = d l O for each positive integer n and all fe W?\l). Then fn

l e ^ ( 1 ) ( I ) , 
{/J} is a Schauder basis in ^^(i) and {a1} are functionals coresponding to {/„*}. 

5. A-OPERATORS 

Definition 5.1. A Banach space X is said to be strictly convex if for each x, y e X, 
* * y, \\x\\x = \\y\\x - 1 and all t e (0,1) there is \\tx + (1 - t) y\\x < 1. 

Definition 5.2. A Banach space X is said to have Property (H) if X is strictly convex 
and if xn t>- x0 in X and ||xn||;r -* |*o||x imPli e s xn -• x0 in X. 
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Remark 5.1. LP(Q), lp(p > 1), Hilbert spaces all have Property (H). 

Proposition*5.1. Let X be a reflexive Banach space, Ya Banach space, T:X -+Y, 
S : X -+Y, f :X -> Ex, 4> : X -> y*. Let (X, Y} have an approximation scheme 
[{Xn}, {Yn}, {(?„}]*• Let S be a completely continuous operator, let f be a weakly 
upper semi-continuous functional (i.e. xn t> x0 in X implies lim supf(xrt) ^ f(x0)), 
f(Qx) = 0 and let 0 be a weakly continuous operator, <P(QX) = 9y«.. 

Suppose that y, (p are continuous real valued strictly increasing functions on 
<0, oo) such that y(0) = 0. 

Let n : (0, oo) x X -» (0, oo) and suppose that Q* 4>(x) = <P(x) for each positive 
integer n and all x e X„. 

Then Tis an A-operator provided that one of the following conditions is satisfied: 

(5A) T is continuous and 

(<P(x - y), Tx - Ty) + f(x - y) = y(\\x - y\\x) 

for each x, y e X. 

(5.2) Tis continuous and 

(<P(x - y), Tx - Ty) + (<P(x - y), Sx - Sy) + f(x - y) = y(||x - y\x) 

for each x, y e X. 

(5.3) T is demicontinuous, <P(X) = Y*, $(tw) = n(t, w) <P(w) fort>0 and all 
w eX and 

($(x - y), Tx - Ty) = y(||x - y\\x) 

for each x, y e X. 

(5.4) T is demicontinuous, <P is the same as in (5.3) and 

(*(x - y), Tx - Ty) + (<P(x - y), Sx - Sy) = y(||x - y\\x) 

for each x, y e X. 

(5.5) X has Property (H), Tis demicontinuous, 4> is the same as in (5.3) and 

(#(x - y), TX - Ty) * ( ^ | x | x ) - <K|M|*))(H* ~ IMk) 

for each x, y e X. 

(5.6) X has Property (H), Tis demicontinuous, <P is the same as in (5.3) and 

(4>(x - y), Tx - Ty) + (#(x - y), Sx - Sy) £ 

2 ! W H x ) - « < H , ) ) ( | x I x - H z ) 

for each x, yeX. 
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Proof. Let xnj eXnj, xn. t> x0 in X, QnjTxnj -* y in Y. Then for x eXnj we have 

(<P(xnj - x), QnjTxnj - Qn.Tx) = (<P(xnj - x), Txnj - Tx). 

Let condition (5.1) be satisfied. Then for xeXe, n ; ^ J there is 

y( |xnj - x\\x) ^ ($(xnj - x), QnjTxnj - QnjTx) + j(xnj - x) 
and 

lim sup y(\\xnj - x\\x) ^ ($(x0 - x), y - Tx) + f(x0 - x) . 
ttj-*ao 

The last inequality holds for each x e X. Set x = x0. We obtain 0 ^ lim sup y(\\xnj — 
- x o | | x ) < ; 0 a n d 

\\QnjTxnj - Tx0 | | r = K||Txnj. - Tx0||y + \\QnjTx0 - Tx0 | |y . 

Thus Tx0 = y and xnj -> x0 in X. 

Let condition (5.3) be satisfied. We obtain xnj -> x0 in X and 0 ^ (#(x0 — x), y — 
— Tx) for each xeX. Set xt = x0 — tw for t > 0 and weX. Then 

0 ^ (#(fw), y ~ T(x0 - fw)) = /i(r, w)) (<%), y - T(x0 - tw)) , 

0 = (<f>(w), y - T(x0 - rw)). 

Letting t tend to zero we obtain 

0 ^ (#(w), y - Tx0) 

for each w e X and &(X) = Y* implies y = Tx0. 

Let condition (5.5) be satisfied. Then \\xnj\\x -> \\x0\\x and xnj t>x0 in X. Hence 
xnj -> x0 in K and 0 ^ (#(x0 — x), y — Tx) for each x 6 X and similarly as in the 
previous part one obtains y = Fx0. 

Let condition (5.2) or (5.4) or (5.6) be satisfied. Then the assertion is a consequence 
of Proposition 3.1 and condition (5.1) or (5.3) or (5.5) respectively. 

Remark 5.2. Let X be a reflexive Banach space and let the couple <K, K*> have an 
approximation scheme. We identify X with K** and set Y = K* and <P the identity 
operator on X. Then $ satisfies the assumptions of Proposition 5.1. 

Definition 5.3. a) A gauge function is a real-valued continuous function \i defined 
on the interval <0, oo) such that 

(0 m = o. 
(2) l im fi(t) = oo, 

f->oo 

(3) n is strictly increasing. 
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b) The duality mapping in X with a gauge function p, is a mapping J from X 
into the set 2X* of all subsets of X* such that 

J x = { ( M , x = Qx, 
\{x*, x* eK*, (x*, x) = llxl* ||x*||x., ||x*|x. = p(\\x\\x)} , x * Qx . 

For next two remarks see [1], [5], [6] and [7]. 

Remark 5.3. a) The set Jx is non-empty. 

b) Let X be a Banach space with a strictly convex dual space X*. Let J be the 
duality mapping in X with the gauge function p.. Then the set Jx consists of precisely 
one point. 

c) Let X be a Banach space with a strictly convex dual space X*. Let J : X -» X* 
be the duality mapping with the gauge function \i and t > O.Then J{tw) = /?(*>, w). Jw 
where /} is a positive function on (0, co) x X. 

d) Let K* be a strictly convex Banach space, J : X -• X* the duality mapping in K 
with the gauge function \i and [{K„}, {K„}, {(?«}]* an approximation scheme for 
<K, X}. Then Q* Jx = Jx for each X6.YB and all positive integers n. 

Remark 5.4. Let X be a Banach space with a strictly convex dual space X*, J : X -• 
-• K* the weakly continuous duality mapping in K with the gauge function p (for 
example, there exist a gauge function /J and the duality mapping J which is weakly 
continuous in the spaces lp, 1 < p < oo). Set Y = X and <P = J. Then $ satisfies the 
assumptions of Proposition 5.1. 

Proposition 5.2. Let X be a Banach space, [{Xn}, {Xn}, {Q„}]K <M approximation 
scheme of {X, K>, T:X -+ X, T= I — S where I is the identity operator and S is 
a contraction mapping with the constant a e <0,1). Let OLK < 1. 

Then T is an A-operator. 

Proof. According to Banach Contraction Mapping Fixed Point Theorem there 
exists one and only one x0eX for each y e Y such that Tx0 = y. 

Let R > 0, xnjeXnj, \\xnj\x = R, QnjTxnj -> y = Tx0 in X. Then 

(i - CCK) \\xnj - e«^o|x = IK - QnjXoh - le^sx,, - e^sc^olU =" 

= llc^-i- e»̂ eŵ o|x = 

= I f t . ^ - y||x + \\Tx0 - QnjTQnjx0\\x = 

= lG.,1*., - y\\x + K||-fic0 - TQnjx0\\x + \\QnjTx0 - Tx0||x -> 0. 

Thus x.,̂  — Qnjx0 -+ 0x'mX and xnj --> x0 in X. 
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Corollary 5.1. Let X, S, K, a satisfy the assumptions of Proposition 5.2. If X is 
a reflexive Banach space and U : X -+ X is a completely continuous operator, 
then T= I - S — U is an A-operator. 

Proof. See Propos:tions 5.1 and 3.1. 

6. THE SET OF EIGENVALUES 

Definition 6.1. Let X be a Banach space, T0 : X -» X*, S0 : X -• X* two potential 
operators (i.e. there exist functional / , g such that T0 = grad/, S0 = grad g in the 
Gateaux sense - see [18]). Let f(x) = 0 iff x = dx and set <p(x) = g(x)jf(x) for 
x-#ex. 

M0 eX, u0 #= Qx is said to be an R-eigenvector of (T0, S0) if D<p(u0, h) = 0 for 
each heX. (D(p(u0i h) is the linear differential Gateaux at the point M0). k0 = 
= <P(M0) is said to be an R-eigenvalue. 

Proposition 6.1. Let X be a Banach space, T0 : X -> X* and S0 : X -> X* two 
a-homogeneous potential operators. Suppose that there exists a constant c > 0 
such that 

(T0x,x) = c||x||x
+1 

for each xeX. 

Then every eigenvalue of the couple (T0, S0) is an R-eigenvalue. 

Proof. There is 

f(x) = (T0x, x) , ø(x) = (S0x, x) 
a + 1 a + 1 

Let k0 4= 0 be an eigenvalue of (T0, S0), i.e. there exists u0 -# 9X such that X0T0u0 — 
~" S 0 M 0 = By*. 

Thus 

^O(-T0M0, fc) = (S 0M 0 , h) 

for each h e K so that 

, _ ( S 0 M 0 , M0) 

( T 0 M 0 , M0) 

Hence 
(S0u09 u0) (T0M0 , h) - (T0M0 , M0) (S0M0 , h) = 

(T0M0 , M0)2 

for each h e X, i.e. Z> <P(M0, fi) = 0 where 

П ) (Г„«,u) /(«) 
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Lemma 6.1. Let X be a separable and reflexive Banach space, G a X an open 
subset, f : G -> El a functional of the class Cm (i.e. there exists the Frechet deriva
tive DJ f(x) up to the order m which is continuous — see [18]). Let the following 
conditions be satisfied: 

(6A) sup dim Ker D2f(*) = / < co 
xeG 

where Ker D2 f(x) = {h; heX, (D2f(x) h, w) = 0 for each w e X}, 

(6.2) m = max (/, 2) , 

(6.3) D2 f(x) (X) is closed subset of the space (X -> X*) for each xeG. 

Set M = {*; x e G, Df(x, h) = 0 for each heX}. 

Then measf(M) = 0. (For proof see [16)]. 

Proposition 6.2. Let X be a reflexive and separable Banach space, T0 : X -> X*, 
S0 :X -* X* be two potential operators. Let the functional <p (see Definition 6.1) 
satisfy the assumptions of Lemma 6.1. 

Then the set of R-eigenvalues of the couple (T0, S0) has the Lebesgue measure 
zero. 

Theorem 6.1. Let X be a reflexive Banach space such that <X, X*> has an ap
proximation scheme. Let T: X -» X* be an odd A-operator, T0 : X -> X* an a-
homogeneous operator, S : X -* X* an odd completely continuous operator and 
S0 : X -> X*. Suppose that Tis an a-quasihomogeneous operator with respect to T0 

and S is an a-strongly quasihomogeneous operator with respect to S0. Suppose that 
there exists a constant c > 0 such that 

• |r«|x.M««* 
and 

(r0«,«);>cl«|i+1 

for each ueX. 

Let T0 = gradf, S0 = grad g and set cp(u) = g(u)jf(u) for u + Qx. Suppose 
that the functional cp satisfies the assumptions of Lemma 6A on some neighborhood 
of the unit sphere in X. 

Then there exists a set N <=. Eu measN = 0 such that (AT— S)X = X* for 
each ke Et — N. 

Lemma 6.2. Let X and Y be two Banach spaces, T0 : X -+ Y, S0 : X -+ Y be linear 
operators such that T0 is continuous, S0 is completely continuous, T0X = Y. Suppose 
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that there exists a constant c > 0 such that 

\\T0x\\Y *c\\x\\x 

for each xeX. 

Then the set of eigenvalues for the couple (T0, S0) is at most denumerable and if 
it has a limit point A, then X = 0. 

Proof. For the problem XI — T0
lS0 we have well-known theorems (see [4]) 

about the set of eigenvalues. X is an eigenvalue for (T0, S0) iff X is an eigenvalue for 
(I, T0

1S0) (I is the identity operator in X). 

Theorem 6.2. Let X and Ybe two reflexive Banach spaces such that <X, Y) has an 
approximation scheme. Let T:X -*Y be a demicontinuous and odd A-operator, 
S : X -+ Y be a completely continuous and odd operator, S0 : X -> Yand T0:X -+Y 
linear operators. Suppose that T is an l-quasihomogeneous operator with respect 
to T0 and S is an 1-strongly quasihomogeneous operator with respect to S0. Suppose 
that there exists a constant c > 0 such that 

INI , ^ C|n|z 
and 

||T0u||y^c||u||A 

for each ueX. 

Let T0X = y. 
Then there exists a set N cz Eu N is at most denumerable and ifN has a limit 

point X, then X = 0 and N is such that (XT - S) X = Yfor each X e £, - N. 

1. APPLICATIONS 

a) Let Q be a bounded domain in £A- and fy£\Q) the Sobolev space (for definition 
see [19, Chapter 1]). The space W^\Q) is a Hilbert separable space. Denote A the 
Laplace operator. We seek the weak solution of the Dirichlet problem 

-""-"d"H-- / ( J > 0 ) 

tt = 0 on dQ 

for / E (^(Q))*, i.e. we seek u e fy\l){Q) such that for each v e W$\Q) the identity 

x[ i ^ ^ d x - f - l H t - m ^ f / t - d x 
J0i=i5Xi5xt J o l + K J 
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holds. This equation has a solution for each f e (W£\Q))* if the equation 

X\ £ dx - Mu dx = 0 
Jni^idXidXi JD 

(for all vejfr£\Q)) has zero solution only (see Theorem 3.2), i.e. for X 4= \\Xk 

where {Xk} is the spectrum of the Dirichlet problem for the equation 

— Aw — Xu = 0. 

b) Let Q be an open bounded subset of Eh. It is known (see [7]) that (Lp(Q), 
Lp(Q)y has an approximation scheme with K = 1. 

Let p > 1 and let hu be NSmyckij's operator (for the definition and properties see 
[18]) generated by the function/(x) (w3/(l -f u2)) where / e Lm(Q). Let A e (Lp(Q) -> 
-• LP(Q)) with the norm fl.^!^.^). Suppose that there exists a constant m such 
that |/(x)| ~ m almost everywhere in Q and 

a= H C L ^ M • w . f < 1. 

Then the operator 1/ = Alhu is a contraction with a constant a < 1 and moreover, 
U is 1-quasihomogeneous with respect to U0u = Ah0u where h0u is Nemyckij's 
operator generated by the function f(x) u. By Propositions 5.2, 3.2 and 3.3 the 
operator T = I — C7 is an _A*-operator which is 1-quasihomogeneous with respect 
to the operator T0 = I — U0. 

Let K(x, y), L(x, y) be continuous functions on Q x Q and s ^ 0. Set 

L(x,y)u(y)dy\ 

Su = - JJ fL ! _ K(x, y) u(y) dy . 
1 + L(x,y)u(y)dy Jii Цx,y)u(y)( 

The operator S is strongly continuous and 1-strongly quasihomogeneous with 
respect to the operator 

S0u = | K(x,y)u(y)dy. = íк(x,y)u(y)> 
Ja 

By Theorem 3.2 the equation 

(1) A(u(x) - Ahu) -Su = F(x) 

has a solution u e Lp(ti) for arbitrary F e I;/®) provided the equation 

(2) X(u(x) - Ah0u) - S0u = 0 

has the trivial solution only. 
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According to Theorem 6.2 there exists a set N cz Eu N being at most denumerable 
and if A is a limit point of N, then X = 0 and N is such that (1) has a solution u e 
e Lp(Q) for each F e LP(Q) and all XeEx - N. 

REMARKS 

1. Preliminary communication was published in Comment. Math. Univ. Carolinae 
11,1970,271-284. 

2. W. V. Petryshyn (Arch. Rat. Mech. Anal. 30, 1968, 270-284 and same Arch. 
33,1969, 331 — 338) solved this problem for the linear operators using similar methods. 

3. When the preliminary communication had been published the author obtained 
a reprint of the paper by W. V. Petryshyn: Nonlinear Equations involving Noncompact 
Operators, Proc. Symp. Pure Math., Nonlinear Functional Analysis, Vol. XVIII, 
Part 1, 1970, Providence, Rhode Island, pp. 206-233. W. V. Petryshyn dealt with 
the same problem and his Theorem 1.4 on the p. 216 is essentially the same as Theorem 
3.3 in this paper. 

4. Author is very much indebted to the reviewer for his advice and comments. 
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