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Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

ON A MODIFIED SUM INTEGRAL OF STIELTJES TYPE 

STEFAN SCHWABIK, Praha 

(Received January 27, 1972) 

Let [a, fc] be a bounded interval on the real line, — o o < a < f c < + o o . Given 
a positive function 8 : [a, fc] -> (0, + oo), we consider finite sequences of numbers 
-4 = {a0, Tl9ccl9...9 Tk9 a*} such that 

(1) a = a 0 < ax < ... < a* = b , 

(2) ccJ_1 ^ Tj^ ccj9 j = 1 , 2 , . . . , fc, 

(3) \*j - T,.| = d(Tj) , | a ^ t - xj\ ^ 5(TJ) , j = 1, 2,..., fc . 

The set of all subdivisions A of [a, fc] satisfying (1), (2) and (3) with a given 
<5 : [a, fc] -• (0, + oo) we denote by s/(8). 

Further, replacing (2) by the condition 

(2*) cc0^Tt <ccl9 ccj-l < Tj < ccj, j = 2, 3,. . ., fc - 1 , a k_i < Tk <: afc 

we denote the set of all A satisfying (1), (2*) and (3) with a given 8 : [a, fc] -> (0, + oo) 
by sf*(S). 

In [2] it was proved that s/(8) 4= 0 for any 8 : [a, fc] -* (0, + oo) (cf. Lemma 1,1,1 
in [2]). The proof is based on choosing a finite covering of [a, b] by intervals of the 
form (T — <5(T), T + 8(T)) where T e [a, fc]. By the same argument we can prove that 
s/*(8) 4= 0 for any 8 : [a, fc] -> (0, + oo). 

Definition 1. The function f: [a, fc] -> JR is K-integrable (K*-integrable) on [a, fc] 
wifft respect to g : [a, £] -> -R i/ fhere exi5tt5 a number I such that to every e > 0 
ffcere is such a 8 : [a, fc] - • (0, + oo) that 

\K(A) -I\<e 

provided A e s/(8) (A e s/*(8)) where 

7 = 1 
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for A = {a0, T15 ax,..., xk, afc}. 

The number I (if it exists) will be denoted by K J^fdg (K* J«fdg) and will be 
called the Kurzweil integral (the modified Kurzweil integral) of f with respect 
to g on [a, b]. 

Remark. The concept of the K-integral was introduced and studied for the first 
time by J. Kurzweil in [2], it is used in [2] and in a number of other papers to study 
ordinary differential equations. 

In [2] and [4] it is shown that if a is a function of bounded variation on [a, b], 
i.e. g e BV(a, b), then the usual Perron-Stieltjes integral P.S. J**fdg (cf. [3]) is equi
valent to the integral K ftfdg. 

In [4] we studied further the relation between K jlf dg and the Young cr-integral 
Y jbfdg for g e BV(a, b) (for the Young integral see also [1]). In this direction we 
have obtained that for a e BV(a, b) the existence of Y J*f dg does not in general imply 
the existence of K J**fda (cf. Sec 3 in [4]). In this note we prove that the modified 
Kurzweil integral includes the Young <7-integral, i.e. the following theorem holds: 

Theorem 1. Let f: [a, b] -» R, let g : [a, b] -» JR be of bounded variation on 
[a, b] (g e BV(a, b)). Then if the Young a-integral Y ftfdg exists then also the mo
dified Kurzweil integral K* J*fda exists and both integrals are equal 

Proposition 1. Iff : [a, b] -» R, g e BV(a, b) and K ftfdg exists then K* ftfdg 
exists and both integrals are equal. 

Proof. It is easy to see that if A e s>/*(5) for some <5 : [a, b] -» (0, -f oo) then also 
A e s/(d) and the proposition is an easy consequence of Def. 1. 

Proposition 2. Iff: [a, b] -> R, g e BV(a, b) such that g(a) = g(t + ) = g(t~) = 
= g(b)for all t e (a, b) then K* §b

afdg exists and equals zero. 

Proof. Without any loss of generality we can suppose that g(a) = 0. Indeed our 
proposition evidently holds for g(t) = const, by definition and therefore the additivity 
of the integral yields that in the case g(a) =J= 0 it is sufficient to consider the function 
g(0 = #(0 ~ #(a) f° r whidi we have g(a) = 0. 

Since g is a function of bounded variation there exists a countable set N = [tu ... 
..., tm,...} cz (a, b) such that g(t) = 0 for te [a, b] - N and g(t) 4= 0 for teN. 
Moreover, we have varj g = 2 £ |flf(0| < + oo. Given now an arbitrary e > 0, we 

teN 

define for f, g and s a function 8 : [a, b] ~> (0, + oo) in the following way: 
If T e N, i.e. T = tm for some m =r 1, 2,. . . , then there is a 5(T) > 0 such that 

\0(t)\<*.2-~-*[\f(T)\ + iy* 

275 



for 0 < |* - T| < <5(T). This is a consequence of the existence of limits ^ ( T - ) , # ( T + ) 

for all re (a, b) and our assumption # ( T + ) = g(r-) = 0 for all re (a, b). F o r 

T e N let <5(T) b$ the positive number given above. 
If T e [a, b] — N then we define the set 

H, = { f e [ a , f e ] - N ; I g\f(t)\< I + 1} 

for all / = o, h 2, . . . Evidently U Ht = [a, fc] - N and H, n # w = 0 for / * m. 
i=o 

Further we determine for all / = 0 ,1 , . . . a set Ntcz N such that 

£ 2|0(O|<a(/ + l ) - 1 . 2 - ' . 
teN-Ni 

This is obviously possible since the series ]T |gf(r)| converges. If T e [a, b] - N then 
teN 

there exists a uniquely determined integer / ^ 0 such that r e H, and we define 

<%) = ^(T ,N , )>° 

where Q is the Euclidean distance on the real line. This <5(T) is positive since T $ Nt. 
By definition we have [T - <5(T), r + <5(T)] niV, = 0 for all r e Ht. 

Now let A = {a0, T19 a1?..., Tk, ak} be arbitrary and let us consider the corre
sponding sum K(A). We have 

M4I - I £/fo)(*fo) - *fa-i))l ^ I l/fo) (»(«;) - *(a1-i))l• 
1=1 1=1 

If T; 6 N, i.e., Xj = fm for some m = 1,2,... then 

l/fc) (*(«,) - 0(a1-O)l = 1/(01 (Ka1)l + k(«j-i)l) ^ 
= | / ( g | • 2fid/(0| + l ) " 1 • 2"m"1 < a/2M, 

since 4 G S / * ( 8 ) implies 0 < |ay - fm| < <5(0 and 0 < (a^! - tm\ < 8(tm). If 
Xj $ N then there is an integer / ^ 0 such that xi e Ht and we have | / (T/ ) | ^ / + 1. 
Hence 

|/(*j)(*(«,) - e(*j-i))\ ^ (l + i)k(«y) - 0(a;-OI £ (i + i )** . : . - .* 

and for the sum S, = J] |/(T;)(0(a1) — #(aj-i))| °f a^ absolute values of sum-

mands in K(A) with T, € Ht we can give the estimate 

St ^ (/'+ 1) £ v a r j ^ * $ (Z + 1) Z 2\g(t)\ 
rjeHt teNnMi 
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where Aff = U \ctj-u a,]. Let us mention that Mt r\Nt = 0 since M, c: (J [T,. — 
rjeHi tjeHi 

- 5(TJ)9 XJ + S(xj)"] and [T,. - <5(r,), T,- + <5(T./)] n JV, = 0 for any T, e Jf |. Hence 
N n Mt a N — N; and we have 

S, ^ (/ + 1) £ 2|ff(*)| < (/ + 1) e . (/ + I ) " 1 . 2 - ' = e . 2~J 

tsN-Ni 

Therefore we have 

|X(Л) |<E(X2- m + І 2 - ' ) = Зє 
m=-l í = 0 

and the proposition follows immediately from Def. 1. 

Proof of Theorem 1. Let us define the set 

Ns = {t e (a, 6); g(t+) = 0(1-), $(*) * g(t-)} 

and the function #5(r) = 0, t e [a, ft] - N5, #s(f) = g(t) for f e Ns. We put gR = 
= 9 - 0S-

Since Yj^fdc? exists by assumption and the existence of Y jafdgs and also the 
equality Yjafdgs = 0 follows from Proposition 1,1 in [4] the integral YjafdgR 

exists. Using Theorem 3,1 form [4] we obtain that K $afdgR exists and Proposition 1 
yields the existence of K* jlfdgR and the equality K* jafdgR = K $afdgR = 
= YjlfdgR. By Prop. 2 we obtain the existence of K* jafdgs and K* $afdgs = 0. 
Thus the integral K* jlfdg exists and 

K* f/dff = K* [/dfo + K* f fdg* = y [ f d ^ = y f fd<?. 
J a J a J a J a J a 
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