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VLADIMÍR SOUČEK, Praha 
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INTRODUCTION 

Let / and g be two nonlinear functional defined on a real Banach space X. Con
sider the eigenvalue problem 

(E) Xf(u) = g'(u) , u e Mr(f) = {x e X : f(x) = r} 

(r > 0 is a prescribed number, / ' and g' denote Frechet derivatives of / and g, 
respectively). The value of the functional g at the solution of (E) is called the critical 
level. Denote by F the set of all critical levels. L. A. LJUSTERNIK and L. SCHNIRELMANN 
proved that the set F is, under suitable assumptions, at least countable (see [1,10,11]). 
In papers [2, 3] it is proved that F is a sequence of positive numbers converging to 
zero. While the determination of the lower bound for the number of points of the 
set F is based on topological methods, the upper bound is found on the basis of 
properties of real-analytic functional / and g. It is our object in this paper to prove 
that if/ and g are not real-analytic functional, then the set F is small, i.e., a-Hausdorff 
measure of F is zero, where a depends on differentiability of functional/and g. The 
proof is based on the Morse-Sard theorem in infinite-dimensional Banach space which 
was firstly for so-called "Fredholm functionals" considered by S. I. POCHOZAJEV 
[13] (see Section 2). The results about the structure of the set F are obtained in 
Section 3. Section 4 deals with the applications of previous abstract results to the 
boundary value problem for ordinary differential equations. 

1. NOTATIONS AND GENERAL REMARKS 

Let X be a real Banach space with the norm || • ||, X* its dual, Q an open set in X. 
Consider the other (real) Banach space Y with the norm || • | | y and a mapping F of Q 
into 7. 
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Differentiability of mappings. The mapping F is said to have Frechet derivative 
AF(x9 •) at the point x e Q if dF(x, •) is a linear and bounded mapping of X into Y 
such that for each heX 

F(x + h) - F(x) = dF(x, h) + r(x, h), 
where 

l i m l ^ # = 0. 
ll*ll-o IIAII 

Further, for each hl9h2eX9 denote 

d2F(x, hl9 h2) = lim dF{x + **» *') " dF(x> *') . 
«-o £ 

If we have defined dn"1F(x,...) as a multilinear continuous mapping of X x ... 
... x X ((n — l)-times) into Y9 then we set for each hl9 ...9hneX 

(.) d»r(x, hu ..., h„) = lim d - ^ + ^ f t 1 , . . . , * - 1 ) - - d - ^ » , * 1 , . . , * - 1 ) 
5-0 § 

The mapping F is said to have FrSchet derivative dnF(x, ...) of the order n, if 
dnF(x,...) is a multilinear continuous mapping o f l x ... x X (n-times) such that 
the relation (*) holds uniformly for jjhj = 1,..., \\hn\ = 1. We shall denote 
dF(x, •) = F'(x), i.e., dF(x, h) = F(x) (h) and dnF(x,...) = F(w)(x). Let us suppose F 
has Frtehet derivatives up to the order n in X. If Xu X2 are subspaces of the space X9 

and X = Xx © X2, x1eXl9 X2G X29 then we denote for h eX2 

F&u *2) (*) = SX2F(xl9 x29 h) = lim F ( X l ? *2 + **> ~ F ( X l ? X2) . 
* - o € 

Linear mapping 3X2F(xj, x2; •) (for xl5 x2 fixed) of K2 into Y is said to be partial 
derivative of F in x = (xl5 x2) with respect to the variable x2. Analogously, we can 
introduce partial derivative with respect to the variable xx and the partial derivatives 
of the higher orders (up to the order n). For example, we see 

d2
X2 XlF(x» ** *i. **) = lim e^F(^ + ^^h2)-d^F(^x2;h2) 

«-o i 

If/is a functional on Q9 then 

d2f(x,h,-)=f(x)(h, •) 

(for x fixed) can be considered as a continuous linear mapping of X into X*. We 
shall denote f(x) (h,.) = f(x) (h). 
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Spaces C*'a. Let k be a positive integer, a a real number, a e <0, 1>. We shall write 
F e C*'a(0) if 

(a) F has on Q all Frechet derivatives up to the order k and these derivatives are 
continuous in the variable x, i.e., with respect to the norm 

«F<;>(x)||,. = sup i F ^ x ) ^ , . . . , * , ) | - ; 
/i.eX,||/i.| | = l 

i = i , . . . , y 

(b) the derivative F(k) is a-holderian, i.e., there exists c > 0 such that 

||F«>(X) - J*»(J,)I- = cll* - > f 
for each x, y e Q. 

We shall denote Ck'°(Q) = Ck(Q). 
The mapping F is said an element of the space Cka(Q) (D denotes the closure of Q) 

if FeCk,a(Q) and the derivatives F0) (j = 0,..., k) are continuously extendible 
on Q. 

Proposition 1.1 (Implicit function theorem). Let X, Y, Z be real Banach spaces, 
Q an open set in the space X x Y, [x0, y0] e Q. Consider a mapping F e Cka(Q) 
of Q into Z such that there exists the mapping [Fy(x0, y0)]

_1 of Z onto Y and 
F(xo> yo) = 0. 

Then there exists a neighborhood U(x0) of the point x0, and a neighborhood U(y0) 
of the point y0 and only one mapping (p from U(x0) into U(y0) such that 

(\.\) \F'y(x, y)]"1 exists and maps Z onto Yfor each x e U(x0) and y e U(y0), 

(1.2) F(x, <p(x)) = 0o« U(x0). 

Moreover, <p e Ck'a(U(x0)). 

Proof of this assertion for FeCk (i.e., for a = 0) is given in the paper [6]. Let us 
show that it holds for a e (0, 1>, too. Suppose that U(x0), U(y0) are neighborhoods 
and cp is a mapping such that (1.1), (1.2) are fulfilled and q> e Ck(U(x0)). We shall 
prove cp e Ck*a(U(x0)). It follows from (1.2) 

dF([x, <p(x)], h) = ^F([x, q>(x)l h) + ayF([x, cp(x)], dq>(x, h)) 

for each h eX. By using (1.1) we obtain 

*'(*) = - [I7;^' ^ ) ) ] _ 1
 F'X(X, <**)) • 

Further, (if k = 2), 

<P"(X) = - [F;(X, cp(x))ri F;X(X, <p(x)) [F;(X, ^ ( X ) ) ] - 1 , 

F'(X, <p(x)) - [F;(X, <p(x))Tl F;y(x, v(x)) <p'(x) [F;(X, ^(X))]- 1 , 

F'x(x, <p(x)) - [F'y(x, ^(X))] - 1 F'UX, <p(x)) - [F'y(x, <p(x))y* F;y(x, <p(x)) cp'(x) . 
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It is easy to see that 

<p(k)(x) = *-.(*) + ... + <*>p(x), 

where $i(x) (for fixed x) is a multilinear continuous mapping of X x ... x X (k-
times) into Z, which can be obtained as a suitable composition of [F'y(x <p(x)j]" * 
and of partial derivatives up to the order k (i = 1 ... P). Derivatives of F of the 
order k are a-holderian mappings, too. 

Hence, it is sufficient to show \Fy(x, <?(*))] _ 1 *s a-holderian. For xl5 x2 e ^(*0) 
we have (||' || i is the norm defined in (a)) 

\\lF;(xl,cp(xi))y
l-lF;(x2,cp(x2)r% = 

\\[F;(X2, cP(x2))y
i F;(X2, cp(x2)) [F;(XI, <K*,))r' -

- [F;(X2) ^ (X , ) ) ] - 1 F;(X1;<p(xi))[F;(X1; <K*i))r 1 I ^ 

g |[F;(X2 ,<P(X2))T% . |F;(X2,q>(x2)) - F;(XI, «,(X.))||. • 

. | [FXx 1 , v (x 1 ) ) ] - 1 | 1 ^c | | x . - x 2 | « 

(it is easy to see that the norms ||[/^(x, <KX))] ~ * II1 a r e bounded for x from a suf
ficiently small neighborhood U(x0) of the point x0). 

Hausdorff measure. Let A be a subset of w-dimensional Euclidean space En and let s 
be a positive real number. Set for each e > 0 

oo 

lisXA) = infX(diamA.)\ 
» = i 

the infimum being taken over all countable coverings {^4t}^i of A such that 
diam Ax < e. The number 

HS(A) = lim fis>E(A) 
«-+o + 

is said to be s-Hausdorff measure of the set A. If fis(A) = 0, then the set A is said to 
be s-null. If A is s-null, then A is r-null for each r > s. If s = n, then nn(A) is the 
n-dimensional Lebesgue measure of the set A. 

2. INFINITE-DIMENSIONAL VERSION OF THE MORSE-SARD THEOREM 

The well-known theorem about real-valued functions, so called Morse-Sard 
theorem, says that if Q is an open subset of Euclidean n-space En and / e Cn(Q) is 
a real function, then the Lebesgue measure of the set/(B) is zero, where 

B = {xefl:grad/(x) = 0} . 

For further consideration, the following generalization is fundamental. 
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Proposition 2.1 (see [8]). Let Q be an open set in En, let f be a function, f e Ck*(Q) 
(where k is positive integer, a e <0, 1)). 

Then the set f(B) is \n\(k + a)]-nw//. 
t 

Remark 2.1. If \n\(k + a)] g 1, then the Lebesgue measure of the set / (#) is zero. 
If s < \n\(k + a)], then we can construct a function fe Cka(Q) such that the set f(B) 
is not 5-null (see [8]). I f / e C°°(0), then the set/(B) is s-null for each s > 0, but this 
set need not be countable. It is proved in [14], that in the case of real-analytic func
tion / ( i .e . , each point weQ has an open neighborhood U such that the function/ 
has a power series expansion in U), the set/(B) is countable. 

In the sequel we wish to give analogous assertion as in Proposition 2.1 for functionals 
in infinite-dimensional Banach spaces. As the counterexample of I. KUPKA (see [9]) 
shows, in the whole generality SU9I1 assertion is not true. I. Kupka constructed the 
functional feC00 on the separable Hilbert space such that the set f(B) has nonzero 
Lebesgue measure. S. I. Pochozajev in the paper [13] introduced the notion of 
"Fredholm functional" and he proved under some assumptions that the set f(B) 
has a zero Lebesgue measure f o r / e Ck(Q). The analog of Morse-Sard theorem for 
real-analytic "Fredholm functionals" in infinite-dimensional Banach spaces and for 
functionals which derivative has a finite-dimensional range is given in the paper [4]. 
In this Section we give the proof of Morse-Sard theorem for "Fredholm functionals" 
fe Cka(Q), Q is an open subset in infinite-dimensional Banach space. 

We recall that the linear operator A defined on the Banach space X with values 
in Banach space Y is said to be Fredholm operator if the following conditions are 
fulfilled: 

(i) R -= A(X) is a closed subspace of Y, 
(ii) YjR has a finite dimension, 

(iii) Z = -4-1(0) is a finite-dimensional subspace of X. 

Note that if A — L + M, where Lis an isomorphism of X onto Y and M is linear 
completely continuous mapping of X into Y, then A is Fredholm operator (theorem 
due to L. Schwartz — see e.g. [5, Appendix B]). 

Definition 2.1. Let X, Y be two Banach spaces, ficXan open subset and x0 e Q. 
The mapping F : Q -> Y is said to be Fredholmian at the point x0 if F has Frechet 
derivative F'(x0) at the point x0 and F'(x0) is a Fredholm operator. Denote by 
N(F, x0) the dimension of the space 

{heX:F(x0)(h) = 0}. 

The functional / :Q -+ Ex is said to be Fredholm functional at the point x0eQ 
i f /has Frichet.derivative/' on some open neighborhood U(x0) c Q of the point x a 

and the mapping / ' : U(x0) -> X* is a Fredholmian operator at the point x0. (From 
the definition of Fredholm functional / follows that there exists f"(x0)). 
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If / : Q -> E1 is a Fredholm functional at x0 e ;Q denote by N(f, x0) the dimension 
of the subspace 

{heX:f'(x0)(h) = 0} 

(i.e., N(/, x0) = N(/', x0)). 

The main theorem (Theorem 2.2) is not lucid at the first sight. This is the reason 
for the formulation of the following theorem, which is its special case. Theorem 2.2 
is useful for the proof of Theorem 3.2, which is necessary for some more complicated 
applications (see the proof of Theorem 4.1 for p > 2). 

If q> is a given functional defined on Q, then we denote 

B = {y e Q : (p'(y) = 0} . 

Theorem 2.1. Let q> be a functional defined on an open subset Q of a Hilbert 
space H. Let k ^ 1 be a positive integer, a e <0, 1>. Suppose that (p e Ck+lvx(Q), 
y0eB and (p is Fredholm functional at the point y0. 

Then there exists a neighborhood V(y0) c Q of the point y0 such that 

q>(B n V(y0)) 

is [N((p, y0)l(k + a)] - null. 

Corollary 2.1. Suppose that k _ 1 is an integer, a e <0, 1> and q> is a functional 
defined on an open subset Q of a separable Hilbert space H. Let (p e C*+1'a(:G) and 
denote for positive integer n 

&n = {y e -B : 9 is Fredholm functional at the point y, N((p, y) rg n} . 

Then the set (p(Bn) is [nj(k + aj\-null. 

Proof. Assume that Theorem 2.1 is proved. For each y0 e Bn let V(y0) be an open 
neighborhood from the assertion of Theorem 2.L The system {V(yo)}yo6Bn forms an 
open covering of the set Bn. Therefore we can select a countable covering {V(yf)}?°=1, 
for the space H is separable. Since the sets q>(B n V(y»)) (* = 1,2,.. .) are[n/(fc + a)]-

00 

null, the assertion follows from q>(B„) c \J (p(B n V(y;)). 
i = l 

Corollary 2.2. Let the assumptions of Corollary 2.1 be fulfilled. Suppose (p e C°°(0) 
00 

and denote BF = U Bn. 

Then the set (p(BF) is s-nullfor each s > 0. 
(This follows immediately from corollary 2.1.) • 

We shall consider two Banach spaces Yl9 Y2 satisfying the following condition (Y): 
there exists a bilinear form <.,.> on Yx x Y2 such that <.,.> is continuous on Y2 

for each fixed yx e Yt and if y2 e Y2, <>, y2> = 0 for each y e Yl9 then y2 = 0. 
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For example, the spaces Yx = Co,a(<0, 1>) (the space of all functions from the class 
C2'a«0, 1» which values in the points 0,1 are zero) and Y2 = C°'a(<0, 1» satisfy 
the condition (Y) with the bilinear form 

<u, v} = u(t) v(t) àt 

Theorem 2.2. Let Yl9 Y2 be two Banach spaces satisfying condition (Y), Q an open 
set in Yv Let q> be a functional on Q, <pe Cka(Q). Suppose for each y eQ there 
exists <P(y) e Y2 (under our assumptions there exists only one) such that 

(*) ?W(*) = < * . # 
for each y e Q, heYv 

Let k be a positive integer, a e <0, 1> and y0 e B. Suppose that # e Ck,lx(Q) and 4> 
is Fredholmian at the point y0. 

Then there exists a neighborhood V(y0) a Q of the point y0 such that the set 

<P(B n V(y0)) 

is [N(4>, y0)l(k + a)]-miH. 

Remark 2.2. Theorem 2.2 implies Theorem 2.1 by the setting Yt = Y2 = H, <.,.> 
the inner product in H and <P = cp'. 

Proof of Theorem 2.2. Define F = $'(y0) (i.e., F is a linear mapping of Yt into Y2). 
The subspace R = F(Yt) is closed and the space Y2\R is finite-dimensional (see 
Definition 2.1). Hence, there exists a projection PR of Y2 onto R, i.e., a bounded linear 
mapping such that PR = PR. Denote 

Z1 = {yeYl:F(y) = 0}. 

The space Zt is finite-dimensional, dim Zx = N(4>, y0), for the mapping $ is Fred
holmian at the point y0. Thus, there exists a closed subspace Z2 of Yj. such that 
Zt © Z2 = Yi. For each >> e B it is <P(y) = 0 and thus 

where 

Hence, 

0 = Ф(y) - Ф(Уo) = F(y - y0) + Қy), 

l i m — i M — = 0 . ' 
y-yo \\y — yohi 

0 = F(y- y0) + PR r(y) . 
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For y e Yt we shall write y = [zl9 z2], where zt e Zf. For y e Q a Yt = Z1 x Z2 

define 

^f l>- ' z ^]) = Ay) = ^ - ^o) + PR r(y) • 

We have A e Ck>*(Q) and 

A'Z2(z\9z»2) = F9 ([z?,z^] = y0). 

The linear operator A'Z2(z\9 z2) is an isomorphism of Z2 onto R and therefore there 
exists [A22(̂ ?» z-D]1- IrnP-icit function theorem (see Proposition 1.1) implies that 
there exists a neighborhood U(z?) c Z t of the point z?, a neighborhood U(z2) c= Z2 

of the point z2 (such that [U(z?) x U(z2)] c fl) and unique mapping a> from U(z?) 
into U(z2) such that 

(2.1) A(zl9 co(Zl)) = 0 

for each zx e U(z?). 

Moreover, co e CM(U(Z?)). 
Define 

<Po(zi) = <KI>i> a^i)] ) 
for Zj G U(z?) and 

D = {Zl G U(z?) : ^ (z , ) = 0} . 

It is easy to see <p0 e CM(U(z?)). If [zl9 z2~]eB n [U(z?) x U(z^)], then we obtain 
from (2.1) that z2 = c0(zj) and thus 

<P'o(zi) = <P*,([>i> ^2]) + <Pz2(0l> ^J ) w'(Zi) = 0 . 
Hence, 

cp(B n [U(z?) x U(z2
0)]) c ?0(D n U(z?)) 

and with respect to Proposition 2.1 there exists a neighborhood U0(z?) c U(z?) 
such that the set <p0(D n U0(z?)) is [N(#, y0)/(k + a)]-null. Thus, the set q>(B n V(x0)) 
is [N(09 y0)l(k + a)]-null, where V(y0) = U0(z?) x U(z°). 

Corollary 2.3. Let Banach spaces Yl9 Y2 satisfy the condition (Y), let the space Yt 

be separable, let Q be an open set in Yv Let q> be a functional, q> e Ck'*(Q). Suppose 
that # is a mapping of Q into Yl9 4> e Ck,*(Q)9 the condition (O) is satisfied. Set 

Bn -= [y e B : $ satisfies Fredholm condition in y9 N(<P9 y) ^ n) . 

Then the set <p(Bn) is [nj(k + a)]-nu//. 

Proof. Analogously as Corollary 2.1 but by using Theorem 2.2. 
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Corollary 2.4. Let the assumptions of Corollary 2.3 be fulfilled and let <p e C°°(-2), 

# e C°°(G). Sef -9E = U £„. 
n = l 

Then the set (p(i*V) is s-null for each s > 0. 
(It follows immediately from Corollary 2.3.) 

3. INVESTIGATION OF THE SET OF ALL CRITICAL LEVELS 

Let X be a Banach space, let / , g be real functional on X. For a given number 
r > 0 define 

Mr(/) = { x e X : / ( x ) = r } . 

This Section deals with the eigenvalue problem 

(3.1) kf'{x) = g'{x), xeM,(/). 

If x0 e X is a solution of the problem (3.1) with a certain number A = A0, then x0 

is said to be a critical point of the functional g with respect to the manifold Mr(f) 
and the corresponding number X0 is said to be an eigenvalue of the problem (3.1), 
the number g(x0) is said to be a critical level of g. We shall denote the set of all 
critical levels by F and the set of all critical points by S, i.e., 

5 = {x G M,(/): there exists X, Xf'(x) = g'(x)} , F = g(S) . 

Remark 3.1. Suppose that / is (a + l)-homogeneous, g is (b + l)-homogeneous 
with a > 0, b > 0 (i.e, f(tx) = *a+1/(*)> g(tx) = tb+1 g(x) for each t > 0, x e l ) . 

. It is easy to see that/' is a-homogeneous, a' is b-homogeneous (as the mappings of X 
into X*) and 

/ (*) = (a + l )" 1 (x, / ' (x)) , g{x) =- (6 + l )" 1 (x, *'(*)) 

for each xeX (the brackets (x, x*) denote the value of the functional x* e X* at the 
point x G X). Let x0 be an arbitrary critical point of the functional g with respect to 
the manifold Mr(f), X0 a corresponding eigenvalues (i.e., (3.1) holds with x = x0, 
X = A0). Then we obtain (under assumption (x0, /'(x0)) =# 0) that 

x = (s0 , 9'(x0)) = b + 1 g(x0) b + 1 , . 

° (*o,/'(*o)) « + l / ( * o ) r(a + l ) * W ' 

Hence, if we obtain that there the set F is s-null for some s > 0, then the same is true 
for the set of all eigenvalues. 

The reason for the formulation of Theorem 3.1 is the same as in the case of Theorem 
2.1. Theorem 3.1 is a special case of Theorem 3.2, but it can be proved also directly 
from Theorem 2.1. Theorem 3.1 gives a possibility to obtain information about the 

i 
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set of critical levels (or eigenvalues) in certain special applications (see the proof of 
Theorem 4.1 for the case p = 2). Theorem 3.2 is applicable in more general setting, 
namely, in the cape of differential operators with higher growths (see the proof of 
Theorem 4.1 for p > 2). 

Theorem 3.1. Let f, g be two functionals defined on a real Hilbert space H. 
Suppose f, g e Ck+1,a(H) and let x0e S and let X0 be the corresponding eigenvalue. 

Then under assumption f'(x0) #= 0 and X0f — g is a Fredholm functional at x0 

there exists a neighborhood V(x0) of the point x0 such that the set g(S n V(x0)) is 
l(N(X0f-g,x0)+l)l(k + cc)]-null. 

Corollary 3.1. Let f g be two functionals defined on H,f,ge Ck+1,a(H). Suppose 
f'(x) + Ofor each x e S and denote by Sn the set of all y e S such that the functional 

(y>f(y)) 

is a Fredholm functional at the point y and 

Then the set g(Sn) is [(« + l)/(fc + a)]-ww//. 

Corollary 3.2. Suppose that the assumptions of Corollary 3.1 are fulfilled with 
00 

f,ge C°°(H). Then the set g(SF) is s-null for each s > 0, where SF = \J Sn. 

Theorem 3.2. LetX, Xl9 X2 be three real Banach spaces, X1 c X. Suppose Xl9 X2 

satisfy the condition (Y) (see Section 2). Letf, g be functionals on X,f, g e CX(X) n 
n Ck+1,a(X1). Suppose for each xeX1 there exist F(x)eX2, G(x)eX2 (under our 
assumptions there exist uniquely) such that 

(f.) E(x)(h) = <h,F(x)>, a'(x)(fc) = <h,G(x)> 

for each x,heXt. 

Suppose F, Ge Ck,a(X%). Let x0e S r\Xx and let X0 be the corresponding eigen
value. Assume that the mapping X0F — G : Xt -+ X2 is Fredholmian at the point x0 

and, 

(f2) there exists h0eXl such that f'(x0) (ho) * 0 . 

Then there exists a neighborhood V(x0) c: Xx of x0 such that the set g(S nV(x0)) 
is [(N(X0F - G, x0) + l)/(fc + a)]-nu//. 
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Remark 3.2. Setting Xt = X2 = H, <.,.) the inner product in H and F = / ' , 
G = #' we obtain that Theorem 3.2 implies Theorem 3.L 

Proof of Theorem 3.2. Denote 

Y1^{yeXl:fXxo)(y)^0}. 

Then Xx = Yt ® {h0}, hence for each x eXx there exist £ 6 £ t and j e ^ such that 
x -= £h0 + y. Consider <!;0 e Eu y0 e Yt such that x0 = £0h0 + y0. Define /(£, y) = 

= /(«*o + 30-
Then / i s a functional defined on Fx x YuJe Ck+l'\E1 x Yt), 

8j(Uyo)=f'(xo)(ho)*0 
and 

m,y) = r, 
for {Zh0 + y)eMJ(f). 

Implicit function theorem (see Proposition 1.1) implies there exist neighborhoods 
U(Z0) <-= Fi (of the point £0), U(y0) <=• Yx (of the point y0) and only one mapping Y\ 
which maps U(y0) into U(Z0) and such that 

J(n(y)> y) = r 
for each y e U(y0). 

Moreover, r\ e Ck+i>«(U(y0)). Define 

<p(y) = g(n(y) K + y) 
for y e U(y0). 

For y e U(y0), veY^vit have 

(32) «'(v\h)-- 5>J^y)>y)®- f'^y">h° + &(t,) 

K'' W W dj(n(y), y) (1) /'(u(y) lto + y) ( M 

(see the proof of Proposition 1.1). From here 

(3.3) „ ' W („) - -9W) K + .v) (/to) ffl> *» + d (,) + 

/ (i(y) K + y) (h0) 

+ g'(r\(y) K + y) (v) . 
Denote 

V(x0) = {x e Z . : x = £h0 + y, £ e t/({„), >> e £/(*,)} , 

B = {yeV(yo):<p'(y) = 0}. 

From (3.3) we obtain: if x e S n F(x0), then y e B . Hence, g(S n F(x0)) <= <p(B). 
It is easy to see that it is sufficient to prove there exists a neighborhood U0(y0)

 c 

<= U(y0) of the point y0 such that the set <p(B n U0(>>0)) is [(N(X0F - G, x0) + 1): 
: (k + a)]-null. 

227 



We shall prove that the functional cp satisfies the assumptions of Theorem 2.2. 
Define 

Y2 = {yeX2:<ho,y> = 0}. 

It is easy to see the spaces Yu Y2 satisfy the condition (Y) with the restriction of the 
form <.,.> on Yt x Y2. Define 

(3.4) Hy) = _ < * » g ^ * ° + y » FfoO) K + y) + G(r,(y) h0 + y) 
<h0, F(ri(y) h0 + y)} 

for y e U(y0). 
Obviously, <P maps U(y0) into Y2 and, $ e cM(U(.Ho))- From (3.3), (3.4) and the 

assumption (f.) the validity of the assumption (<£) in Theorem 2.2 follows. Now, we 
shall show that $ is Fredholmian at the point y0. 

By calculation we obtain 

(3.5) $'(y0) (v) = -A0 F'(x0) (v) + G'(x0) (v) -

_ <*o. -X0F'(x0)(v)+G'(x0)(v)y ( . 
<K,F(y0)>

 F{y°} 

for each veYx. 
Denote 

M = {veYx :<P'(yo)(v) = 0}9 

K = {v eX, : k0 F'(x0) (v) - G'(x0) (v) = 0} . 

If v e M and at the same time 

(3.6) <h0, A0 F'(x0) (v) - G'(x0) (v)> = 0 , 

then clearly (from (3.5)) it is v e K. 
Thus, if the relation (3.6) holds for each ve M, then M c K. In the oposite case 

we can write M -= Mt © {t?0}, where 

</io, ô F'(x0) (v0) - G'(x0) (v0)y * 0 
and 

^ ^ ^ F ^ ^ - G ^ x , ) ^ = 0 

for all t; e Mi. Now we obtain as the above, that Mx c K, hence 

M c K 9 {v0} . 

In all cases, we have 
dim M ^ dim K + 1, 

i.e., 
N(#, 3>0) ^ N(A0F - G, x0) + 1 . 
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Further, the range R = (>l0 F'(x0) — G'(x0)) (Xx) is a closed subspace of X2 of 
finite codimension, the same is true also for the subspace 

R' = (X0F'(x0)-G'(x0))(Yi) 

of the space 72, for: 

(1) if A0 F'(x0) (h0) - G'(x0) (h0) e R', then clearly R = R'; 

(2) if A0 F'(x0) (h0) - G'(x0) (h0) <£ R', then we know that (A0 F'(x0) - G'(x0)) 
maps Xx onto R and Xx = Yt ® {h0}, where Yx is the closed subspace of Xx. Now 
it follows immediately from Banach open mapping theorem that 

R' = (X0F'(x0)-G'(x0))(Yi) 

is also a closed subspace of X2. 

Since 
R = R' © {A0 F'(x0) (ft0) - G'(x0) (h0)} 

it is clear that R' has a finite codimension. Now, if we define the projection P : X2 -»• 
-+Y2by 

p : x i ^ x _ <feo>*> F(x 0 ) , 
<h,F(x0)>

 K0)' 
then clearly 

4»'(y0)(>'i) = i,(i?') 

and such projection of closed subspace of finite codimension is again closed subspace 
of finite codimension. 

Hence, the assumptions of Theorem 2.2 are verified and thus there exists a neigh
borhood U0(yo) <-= U(yo) of the point y0 such that the set cp(B n U0(y0)) is 
[(N(A0F - G, x0) + l)/(fc + a)]-null. 

Therefore the set g(S n V0(x0)) is [(N(A0F - G, x0) + l)/(fc + a)]-null, where 

Po(*o) = {xeXx:x = £h0 + y, £e U(Z0), y e U0(y0)} . 

Corollary 3.3. Let the assumptions of Theorem 3.2 be fulfilled with Xx separable. 
Moreover, suppose that for each xeXx there exists heXt such that f'(x) (h) + 0 
and let for yeS nXx be (y ,/ '(y)) + 0. Denote by Sn the set of all y e S n Xx 

such that the mapping 

*<^Kc« 
is Fredholmian at the point y and 

* » - * ' ) * • 
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Then the set g(Sn) is [(n + l)j(k + a)]-nw//. 
(The proof is similar to that of Corollary 2.1.) 

Corollary 3.4. Let the assumptions of Corollary 3.3 be fulfilled with F, G e 

77ien the set g(SF) is s-null for each s > 0, where 
oo 

sF = U s „ . 
H = l 

(This Corollary follows immediately from Corollary 3.3.) 

Corollary 3.5. Suppose the assumptions of Corollary 3.3 (3.4, respectively) are 
satisfied. Let f be (a + i)-homogeneous and g be (b + \)-homogeneous (a, b > 0). 
Denote by An (/1F, respectively) the set of all eigenvalues corresponding to the set Sn 

(SF> respectively). 
Then the set An is [(n + l)/(k + <xj]-null (the set AF is s-null for each s > 0, 

respectively). 
(This follows from Corollary 3.3 (3.4, respectively) and from Remark 3.L) 

4. APPLICATION TO THE BOUNDARY VALUE PROBLEM 
FOR ORDINARY DIFFERENTIAL EQUATIONS 

Let m be a positive integer, p a real number, p ^ 2. Denote by JV™(<0, 1>) the well-
known Sobolev space with the norm 

i.e., Wp((fl91>) is the space of all functions u with the absolute continuous de
rivatives w(0 on the interval <0,1> (i = 0, 1,..., m - 1) and such that for the de
rivative of the order m (which exists almost everywhere on <0, 1>) it is 

\u(m)(x)\p dx < oo . Í: 
I f C = [Co, Ci. •••. C»]e£m+i, then we shall denote r\ ~ [Co, Ci, • ••, Cm-i] e Em. 
For each u e W?(<Q, 1>) define 

C(«) = [«,«<1>,...,«<->]e[L;,]-+1, 

iK«)« [«,«(1>,...,«(m-1>] 6 [Lp]w . 
Set 

W7«0,1» = {« e W;«0 ,1» : u(0) = H(1) = ... = «(m~i>(0) = «<-->(l) = 0} . 
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Further, let Vbe a subspace of *V;«0, 1» which is determined by the conditions 

(4.1a) 

(4.1b) 

m - 1 

У>°J.u<І)(0) = 0, j = l, . . . ,г, 
i = 0 

E c ' « ( » ( l ) = 0, j=l,...,s, 
i = 0 

where r, 5 are given numbers, O g r ^ m , O r g s ^ m and the rank of the matrix (c^) 
is r, the rank of the matrix (c]j) is 5. (If r = 0, then no condition (4.1a) is prescribed.) 
Obviously, 

fV;«o,i»c=Vcz *V ;«o, i» . 

Let us consider two real functions 

A(x,U . . . , Q e C 2 « 0 , l > x £ m + 1 ) , 

B(x, »j0,..., t,m_,) e C2«0, 1> x Em) . 

Suppose that the following growth conditions hold for each £e-Em+i, x e <0, 1> 
(fi is a positive function defined on Em): 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

(4.2e) 

%<*<> 

ÕA 

дC, 

Õ2A 

(*.С) 

= fa) (1 + |Cm|)p . i = 0 , l , . . . , m - l ; 

ártiMi + lcjr1 ; 

<Э 2A 

rЭ 2 Л 

(*.c) 

(*.c) 

= MW (1 + |Cm|)p, i j = o, i , . . . ,m-i ; 

^ W l i + P ' " 1 . i = 0 , l , . . . ,m-l ; 

ÕC 
(*.c) áя(ч)(i + |C.|)'-

Assume there exist Cj > 0, c2 ^ 0 and in the case V 4= »7«0, *>) a l s 0 c2 > 0 
such that for each C> C° e Em+1, x e <0,1> 

(4.3) 
<Э2Л 

(*,c°)ciCjèc1|q
2 + c2н

2, 

where | • j denotes the norm in Em and the absolute value in Ev 
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Let us consider functions H0, Hu N0, Ati e C2(Em) such that 

(4-4) ' " l 7 - ^ O f 0 ) * * , SO (fc-0,1) 

i,j=o drji orjj 

for each rj°, rj e Em. 

Now, we define two functional / , g on V: 

(4.5) /(«) = f A(x, C(«) (x)) dx + H0(n(u) (0)) + H.(ir(«) (1)) , 

<?(«) = f B(x, ,/(«) (x)) dx + iVoO-O.) (0)) + N ^ w ) (1)) . 

We shall consider the eigenvalue problem 

(4.6) Xf'(u) = g'(u), «6M r( / ) = {«eV : /(«) = r } , 

where r > 0 is a prescribed number. An element « e V is a solution of the problem 
(4.6) if/(«) = r and 

^ m dA , . . 
+ (4.7) x\ I ^ ( x , C ( « ) ( x ) ) ^ ( x ) d x 

Jo J=odCj 

+ x'i1 [ ^ ° 0K«) (o)) ^(o) + ̂  0/(«) (i)) *°Xi)] -

- f " l ^ (*. »K«) (*)) fc^x)d* - " E [ ? 0K«) (<>)) ^ o ) + 
Jo i = o ^ j J=° L5t/j 

+ ^0?(«)( i ) )^( i ) ] = o 
for each heV. 

Lemma 4,1. Let the conditions (4.2a, b) and (4.3) be fulfilled. If u eVis a solution 
of the problem (4.6) with k * 0, fhen w e Cm(<0, 1». 

Proof. The equation (4.7) holds for each h e V If h e Wpm«0, 1» c V, then (4.7) 
can be written as follows: 

(4.8) f \x £ (x, C(«) (x)) + "£(-1)"-> f " | ^ ^ ^ [A ^ (t, C(«) (0) " 
Jo I 3Cm '= 0 Jo ( m -J - O'L 5 0 

<tø 
Єrjj 

(t,r,(u)(i))~\dt\h™(x)dx = 0 
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Hence, for each h e Wm((0, 1>) we have the equation of the type 

(4.9) J R(x) h(m)(x) dx = 0 , 

where R is a function of the class Lp*«0, 1>), 1/P + 1/p* = 1 (this follows from the 
growth conditions (4.2a, b)). Let us show that the following assertion (*) holds: 
if R e Lp,«0, 1» and (4.9) holds for each h e JVp

m«0, 1», then there exist constants 
a0, ..., am_1 such that 

R(x) = a0 + atx + ... + am_1x
m"1 . 

For the proof of the assertion (*) denote by a0, al9 ..., am_1 such constants that 

n 
(R(x) + a0 + fljx + ... + a m _ 1 x m _ 1 )x y dx = 0 Г. I o 

for each j = 0, 1, ..., m — 1. 

The last relation implies 

(R(x) + a0 + a-x + ... + a,,,.^"1-1) h(m)(x) dx = 0 

for each h e JVp

m«0, 1». Suppose fe Lp«0, 1» and set 

*(*) = H~~^~,V(r) + *o + M + ... + b^t-^dt, 
Jo (m - 1)! 

where ft; (j = 0,..., m - 1) are choosen such that h e JV^O, 1>). Substituting the 
function h into (4.9) we have 

0 = \(R(x) + a0 + ... + am_1x
m"1)(f(x) + b0 + ... + fc^.^-^dx -* 

= (Jt(x) + a0 + ... + am_1x
m"1)f(x)dx . 

ThusK(x) + a0 + ... + a,,,.^1""1 = 0, for the function fe Lp«0, 1» was arbitrary. 
Hence, the assertion (*) is proved. 

In our case we have 

(4.10) F(x,C(«)W) = ^(x,C(«)(x)) = 
Ot,m 

* V A Jo (w - ; - 1)! L дÇy fy, J 

+ a0 + ... + am-1x
и-Л = в(x) є c«0,1» • 

+ 
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Since 
8F , 

£<* *«> o 
for each x 6 <0, 1> and all [*/, Cm] e £„,+ - (see (4.3)), there exists on some neighbor
hood 17 of the point [x0, rj(u) (x0)] only one function (according to Implicit function 
theorem) £m(x, rj) such that 

F(x> V> tm(*> l)) = g(x) 

for each [x, rf] e U. Moreover, £m is continuous on U. For sufficiently small |x - x0| 
it is [x, r\(u) (x)] e U and 

F(x, rj(u) (x), CM(x, ^(u) (x))) = g(x) 

and COT(x> *?(") (*)) is continuous, for tj(u) (x) is continuous. From (4.10) follows that 
M(X) is a solution of the equation 

F(x,C(u)(x)) = g(x), 

too, and the uniqueness of the implicit function implies 

«<m>(x) = Cm(x, *,(«)(*)) 

and thus u(m) is continuous on some neighborhood of arbitrary point x0 e <0, 1>, 
which proves our lemma. 

Lemma 4.2. Let the conditions (4.2) be fulfilled. Let u0 e V, X 4= 0 and 

D = {v e V: Xf\u0) (v, h) = g"(u0) (v9 h) for each heV). 

Then dim D ^ m. 

Proof. Let v e D and h e V. Then 

0 = Xr(u0) (v, h) - g"(u0) (v, h)^xC t ^ (X, C(u0) (x)>< £>(x) . 
Jo iJ=o C(3id(>j 

. h<J\x) dx + xmZ \£$2- (n(u0) (0)) *«(0) *CD(0) + 

+ ^ W ^ W ) ^ ! ) ^ ! ) ! - f ^ /§~(x,rj(u0)(x))v^(x)h^(x)dx -
d^ify,- J Jo ij^odrjidrjj 

- "E \f~ (*(«•) (o)) »(0(°) AU)(°)+ r j - W»o) W) ^(i)(i) *0)(i)l 

(with respect to the conditions (4.2c—e)). 
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At first, let us consider H0 = Ht = N0 -= Nx == 0. Set 

Vt = {heV: h(l) = fc'(l) = ... = fe(m_1)(l) = 0} . 

IBy using the formula 

v(»(x) = T (* ~ *)m ' " „(»)(r) dt + v^(0) + xt/' + 1>(0) + .. 
J © ( m - i - 1)! 

x - - ' - 1 

... + — ^""«(O) 
( w _ . _ i), v > 

and integration by parts we obtain for v e D, h e Vt 

(4.11) 0 = Xf"(u0) (v, h) - g"(u0) (v, h) = 

- f' U ~2 <*. C(«o) W) t>(m,M + "̂Z ^ r (*. « W) • 
Jo I Km i = 0 ÔCfÔCm 
/ fx / # \ m - » - l m-1 

• ( I iM ^ * + ^ X)) + A -- (" l)M_y' • 
VJo (m - i - l)i 1=o 

• I" i* " 'r'"1 . / ^ r ('. C(«o) (0) »(m)(0 dt + "z ( - i r - • 
Jo (m - J - 1)! *C» SCy w-o 
f x ( x - 0 " - / _ T , 52Ai , , , , * . , « 32B / , w « 1 

• ^-~~- A " 7 1 7 ( t ' c Mo) ( t ) ) _ 7 f~T ( ' ' " ("o ) ( t ) ) • 
J o (m - ; - 1)! L 5& "C/ Sif i ̂ j J 

f ' (t - ^y""'"1 „(„)(_) dT + p ^ f)) d J fc(«^ dx > 
J o ( m - i - l ) ! J 

where 

x m - i - l 
P ^ , x) = vw{0) + x i;(i + 1)(0) + ... + — — ; o("-->(0) . 

Analogously as the assertion (*) in the proof of Lemma 4.1 we can prove the fol
lowing assertion (•*): if R e L_*(<0, 1>), (ljp + l/P* = 1), t 

J R(x) fc<m>(x) dx = 0 

for each h eVu then there exist constants a0, ai9.., ar-\ such that 

R(x) = a0 + a-* -f- ... + 0.--*r~1 > 

where r is the integer from the condition (4.1a). 
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Thus, we have from (4.11) 

Ä x , C(-o) (x)) v™(x) + AИ£ -ţj- (x, C(«0) (x) • 
OÇm i = 0 <Л>i 0Sm 

U o ( m - i - l ) ! W / A V J o ( m - ; - l ) ! 

д2A • (u c(«o) (*)) f(m)(0 ď + "z (-!)""' • 
дLЄCj »J-o 

Jo (m-j - l)!l_ 5C;5C, 3IJI5ÍJÍ J 

7 r (t - -O""'"1 „o-v^ d T \ d / = a + ax 

V J o ( m - i - l ) ! ) 
+ ... + я r -ix г - 1 -

m " ~ l ^2/1 m ~ 1 

- A I - £ 4 " (x, C(«.) (*)) J»i(*. *) - 1 ( - 1 ) - ' • 
i - o ac. 5cm

 i>j'=0 

r-(x - .r- ' -* V _ ^ ( ( , c(uo)(0) _ J !L .« n ( U o ) ( 0 )1 Pi{v, t) dt 
J o (m - j - 1)1 L Ĉi 5Cj a ^ drlj J 

This can be written in the form 

^

x m _ 1 

K(X,t)v(m\t)dt = a0 + • • + « r - l ^ _ 1 + E » ( , W,(*) > 
0 i = 0 

where K(x, t) e c«0, 1> x <0, 1», / , e C«0, 1» (i - 0, 1,..., m - 1). 

Let us consider the mapping nx m - 1 

(4.13) JV: v e V i-> v(m)(x) + K(x, r) v(m)(0 d* - £ i,(o(0)/f(x). 
Jo / = 0 

Because 

< * ) = n - ^ ^ ^ 
Jo (m - -0! 

where P is a polynomial of the degree at most (m - l), we obtain immediately from 
the fact that the Volterra's operator 

w i-> w(x) + j K(x, t) w(r) dt 

is continuously invertible in the space C(<0, 1», that the space D of all solutions 
v e V of the equation (4.12) is finite-dimensional. So we can restrict the mapping W 
to D. Thus we have 

dim D = dim Ker W + dim Im W. 
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Denote w, e C«0, 1» such that 

wt(x) + J K(x9 t) wit) dt = fi(x) . 

Then each v e Ker W has the form 

(4.i4) w(X) = fx (* ~ ^ 7 f iV'W-w) dt +m>:1 ^ ) x' 
Jo (m - lj! i = o i=o i\ 

and with respect to condition (4Aa) we have 

dim Ker W ^ m — r . 

Since dim Im W = r, we conclude 

dim D^r + m — r = m. 

This concludes the proof in the case H0 = Hx = N0 = Nx = 0. 
Let us consider the general case. We can write 

*H° (n(u0) (0)) „<0(0) A«>(0) + ^ Wu0) (1)) -(')(!) ftO)(i) -

= _ _ _ 2 ^ (ff(Bo) (0)) ,(0(0) f' Xm";'"1 h«(*) dx 
7/fy, J o ( m - J - l ) ! 

for each h e V1? i, j = 0, 1, ..., m — 1. 

Hence, also in the case we can derived the equation of the type (4.12), where the 
functions 

d2H0 , , W n v . x"1--1-1 

•OK«o)(0)); 
drji drjj (m - j - 1)1 

can be included in the functions/f(x). This completes the proof. 

The following assumptions will be usefull for the main theorem of this Section: 
m-l 3 p 

(4.15) ~ £ - ( « , , ) , , > 0 , 
i = o or\i 

m~l dN, 
(4-16) l f « ^ 0 

i=o orii 

for each x e <0, 1>, all neEm with n + 0 and k = 0,1. 

Theorem 4.1. Let the conditions (4.2)-(4.4), (4.15), (4.16) be fulfilled. Suppose 
A e C*+1-<(<0, 1> x Em+1), B e C*+1-««0, 1> x Em), H0, Hu N0, Nt e C*+1-*(_m) 
(fc = l , a e < 0 , l » . 
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Then the set of all critical levels of the problem (4.6) (where / , g are defined 
by (4.5)) is [(m -I- l)/(k + a)]-nu/J. 

Corollary 4.1. Let the assumptions of Theorem 4.1 be fulfilled, let a > 0, b > 0. 
Suppose that 

A(x,TC) = T f l +1^(x,C), 

Hfa) =T f l + 1 HX^) , 

I?(x,T//) = T5+1£(x,>/), 

AT/*!/) =T b + 1 N / f ? ) 

/or x e <0, 1>, C e Em+l9 IJ e £m, T > 0 and; = 0, 1. 

Tfcen t/ie set 0/ all eigenvalues of the problem (4.6) is [(m + l)/(fc + a)]-nw//. 
(This follows from Theorem 4.1 and Remark 3.1.) 

Remark 4.1. The assumption B e C k + 1 •«(<(), 1> x Em) implies g e C*+1«a(V). But 
it is not true that 

(4.17) AeCk+i««0,l> x £m + 1) - > / e C+1-*(V) . 

In general setting this is true for certain subspaces of V of the smooth functions. The 
implication (4.17) holds under additional growth conditions on the derivatives of the 
function A up to the order (k + 1). 

Proof of Theorem 4.1. At first, let us show that this theorem in the case p = 2 
and under assumption fe Ck+1(X(V) follows easily from Theorem 3.1 and Corollary 
3.1. In this case, Vis a Hilbert space with the*inner product 

(M2>m = ž fW.кwd*. 
7 = 0 Jo 

We have g e Ck+1>*(V) (see Remark 4.1) and 

(4.18) /•(„) (*, fc) - f f £±r (x, C(«) (x)) h"(x) hU\x) dx + 
<".i=o J o oQi dl,j 

+ "l \P^W-)(o))*(0(o)h"\o) + p±(n(u)(i))*<»>(i)h«\\)\ > c\\h\\lm 

(see (4.3) and (4.4)), where c > 0. (We have in (4.3) c2 > 0 in the case V * W7(<0,1» 
and in the case V = 1^™(<0,1>) the norm || • ||2)m is equivalent with the norm defined by 

( f|u(M)(*)|2 d^)1/2 
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only.) It follows from (4.18) that f"(u) (h) (as a mapping of variable ft of V into 
F* = V) is an isomorphism of V onto V. Further, we have 

g»(u) (h, v) = "X f -^f - (rj(u) (x)) *«>(*) v^>(x) dx + 

+ " l r ^ 2 - OK") (o)) >>(0(o) 1^(0) + ̂  OK") (i)) tf'Xi) » 0 ) ( o l . 

It is easy to see from here that for fixed ueV the mapping g"(w) (h) of V into V is com
pletely continuous. Properties of f" and g" imply that the functional (kf — g) is 
Fredholm in each point u e V. Using Lemma 4.2, Theorem 3.1 and Corollary 3.1 we 
obtain our assertion. 

Now, let us consider the more general case. We shall show the assumption of 
Theorem 3.2 are satisfied setting X = V, Xt = {v e Cm«0, 1» : v satisfies (4.1a, b)}. 
Further, we shall denote by w = [w0, wx, ..., wm] the elements of the space 
[C«0, l>)]m + \ the elements of E2m are denoted by y = [y0,..., y2m-i] and the 
elements of the space [C«0, l>)]m + 1 x E2m are denoted by [w, y], where we 
e[C«0, l » ] m + \ yeE2m. Set 

m pi 
P = {[>, >>] e [C«0, l ) ) ] ^ 1 x £2m : £ w.(x) t/'>(x) dx 

/=o Jo 
m - 1 

+ E G>, ^(°(0) + ym+l- t>(0(l)) = 0 for each veXt}. 

Set X2 = ([C(<0, l>)]m+1 x -^m)^ with the usual norm of the factor space. If 
[w, y] e [C«0, l>)]m+1 x E2m, then we shall denote by [w, j>] an element of X2 

which is generated by [w, >>]. For each v e Xu [w, y] e X2 define 

<v, [ý>, y]> == £ 
І = O J 

1 m - l 

v ф ) Җx) dx + I (уŕ «/<>(0) + ym+i ««'>(!)) , 
ř = 0 

where [w, j>] e [C(<0, l>)] m + 1 x E2m is an element generatting the class [w, y]. It 
is easy to see that Xu %2 with the bilinear form <.,.> satisfy the condition (Y). For 
each u eXt define 

F(u) = [w, y] , 
where 

wf(x) = — (x, £(«) (x)), i = 0,..., m ; 

.v, - ^ O K - X O ) ) , i = 0 , . . . , m - l ; 

.v^.-^W-JW). i = 0 , . . . , m - l . 

239 



Then F is a mapping of XY into X2 and for each w, v, h e Xx we frave 

m /•! m Г Ґ) A 

'<h,Ąu)> = j : £(x,t(u)(x))h<Ҷx)âx 
i = OJo Җi 

+ 

m-1 

+ Y f ? 2 W-) <°» f c ( 0 < 0 > + ? w>(1)) fc(0(1))' 
i=o \ or\i orji / 

(4.19) </., F'(«) («)> = Z f1 - ^ - (x, C(«) (x)) ^')(x) ft«)(x) dx + 
iJ = 0 J o OCioCj 

+ " l ( f ^ W«) (°)) ^(°(0) h«\0) + i ^ L („(M) (1)) v<;>(i) *«(!)) = 
;,7=o \drji drjj 8r]t dr\} ) 

= /"(w)(M). 

Let us consider a fixed element w0 e Ki- Then F'(w0) (v) is a mapping from XY into K2. 
Using (4.3), (4.4) it is 

(4.20) <«,, F'(wo) (v)> = J] - ^ - (x, C(u0) (x)) v<»(x) v^(x) dx + 
iJ = 0 Jo Ĉf GCy 

+ " l (Pr- (n(uo) (0)) v"\0) „<'>(0) + ^ - („(Mo) (i)) „u>(i) ,(0(1)) = ij=o\dr\idrij drjidrjj ) 
/•l m - l 

= ( c . l ^W + ^ I I ^ W H d x , 
J o < = ° 

where cx > 0, c2 = 0 and c2 > 0 in the case V * IVp
m(<0, 1». Hence, if F'(w0) (v) = 

= 0, then v = 0. That means, the mapping F'(w0) (v) is one-to-one. 
Let [w, y] GK2 be arbitrary. Let us show there exists veXx such that 

F'WW = [*J]. 
This holds if and only if 

(4-21) f t ^F(x,C(u0)(x))v^(x)h^(x)dx + 

Jo U-o ^Cî Cj 

+ " l f j ^ 2 - W«o) (0)) *O)(0) fc«>(0) + f ^ («(u) (1)) 1^(1) h"(l)) = 
iJ=o\dr]idrjj crjidrjj ) 

m fl m - l 

= I w((x) fc«)(x) dx + I (* fc<')(0) + ym+, h^(l)) 
i = oJo i = 0 

for each h eXx. 

Introduce a Hilbert space 

V2 = {z e WT«0, 1» : z satisfies (4.1a, b)} 

240 



with the inner product (.,.)2>m. Let us seek a function veV2 such that the equation 
(4.21) holds for each h e V2. The right hand side in (4.21) can be considered as a linear 
functional on V2, i.e., as an element of V2. The left hand side in (4.21) can be considered 
as a bilinear form ((v, h)) on V2. By (4.18) we have 

where c > 0. 

Thus, there exists v satisfying (4.20) for each heV2. Further, analogously as in the 
proof of Lemma 4A we can show veXx and 

\\v\\Xilc(u0)\\[*,y-]\\X2. 

We have proved that the mapping F'(u0) (v) for each fixed u0 e X1 is an isomorphism 
of X! onto X2. 

For u eXt set 

where 
G(u) = [ü,y]eX2, 

Wi(x) = —(x,r,(u)(x)), 

y, =fH(«)(0)), 
CT? i 

ym+i=f%«)(l)) 

for i = 0, ..., m — 1 and wm(x) = 0. 
We have 

m - l Лl a n m - 1 /aтu 

<*, G(u)> = £ Џ (x, П(u) (x)) àx + I ( - p tøu) (0)) h«>(0) + 

+ Ş l ( ř / ( « ) ( 1 ) ) ^ ( 1 ) > ) = Ű'(»)(Й). 
ЩІ ) 

pl m-l Я2д 

(4.22) <Л,G'(«)(-)>-A I ^ ( x , / . ( « ) ( x ) ) » < > > ( x ) ^ ) d x + 

Jo '.J=o Öf.fyf 

+ EÏт-Ş-í-K")^))^)*^) + І-Ş- („(«) (1)) t>«>(l) *^l)W(«)(M) 
for each M, t;, ft e X ^ 

It is easy to see that for each u0eXx the mapping G'(u0) (v) of .Kt into K2 *s 

completely continuous. Suppose X0 4= 0. Thus the mapping X0F — G is Fred-
holmian at arbitrary point u0eXv Lemma 4.2 together with (4.19), (4.22) gives 
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N(X0F — G, M0) :g m. According to Lemma 4.1 all solutions of the problem (4.6) 
with X 4= 0 are the elements of the space Xx. 

If X = 0 is an eigenvalue, then 

m - l fl 5 p 

o = «'(«)(«) = Z ^ M ( « ) ( x ) K > ( x ) d x + 

"l f ? 2 0K«) (o)) »(0(o) + ^ 0K-) (i)) «(0(i) 

m - 1 

+ 

With respect to (4.15) and (4.16) it is w = 0. Hence the set {g(u) :ueXu g'(u) = 0} 
contains only one point g(0). This fact together with the previous considerations and 
with Theorem 3.2 and Corollary 3.3 gives our assertion. 

Remark 4.2. Let the assumptions of Theorem 4.1 be satisfied with exception of 
conditions (4.15), (4.16). Then the set of all critical levels which correspond to all 
eigenvalues X 4= 0 is [(m + l)/(fc + a)]-null. 

Remark 4.3. The properties of the Hausdorff measure imply that to obtain some 
reasonalbe result we must suppose [(m + l)/(k + a)] ^ 1. 
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