Časopis pro pěstování matematiky

Svatopluk Fučík; Milan Kučera; Jindřich Nečas; Jiří Souček; Vladimír Souček
Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 3, 217--243
Persistent URL: http://dml.cz/dmlcz/117841

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ČASOPIS PRO PĚSTOVÁNI MATEMATIKY

Vydávó Matematický ústav ČSAV, Praha
SVAZEK 99 * PRAHA 15. 8. 1974 * C $15 L O 3$

MORSE-SARD THEOREM IN INFINITE DIMENSIONAL BANACH SPACES AND INVESTIGATION OF THE SET OF ALL CRITICAL LEVELS

Svatopluk Fučík, Milan Kučera, Jindřich Nečas, Jiří Souček, Vladimír Souček, Praha

(Received January 24, 1973)

INTRODUCTION

Let f and g be two nonlinear functionals defined on a real Banach space X. Consider the eigenvalue problem

$$
\begin{equation*}
\lambda f^{\prime}(u)=g^{\prime}(u), \quad u \in M_{r}(f)=\{x \in X: f(x)=r\} \tag{E}
\end{equation*}
$$

($r>0$ is a prescribed number, f^{\prime} and g^{\prime} denote Fréchet derivatives of f and g, respectively). The value of the functional g at the solution of (E) is called the critical level. Denote by Γ the set of all critical levels. L. A. Luusternik and L. Schnirelmann proved that the set Γ is, under suitable assumptions, at least countable (see [1, 10, 11]). In papers $[2,3]$ it is proved that Γ is a sequence of positive numbers converging to zero. While the determination of the lower bound for the number of points of the set Γ is based on topological methods, the upper bound is found on the basis of properties of real-analytic functionals f and g. It is our object in this paper to prove that if f and g are not real-analytic functionals, then the set Γ is small, i.e., α-Hausdorff measure of Γ is zero, where α depends on differentiability of functionals f and g. The proof is based on the Morse-Sard theorem in infinite-dimensional Banach space which was firstly for so-called "Fredholm functionals" considered by S. I. Pochožajev [13] (see Section 2). The results about the structure of the set Γ are obtained in Section 3. Section 4 deals with the applications of previous abstract results to the boundary value problem for ordinary differential equations.

1. NOTATIONS AND GENERAL REMARKS

Let X be a real Banach space with the norm $\|\cdot\|, X^{*}$ its dual, Ω an open set in X. Consider the other (real) Banach space Y with the norm $\|\cdot\|_{Y}$ and a mapping F of Ω into Y.

Differentiability of mappings. The mapping F is said to have Fréchet derivative $\mathrm{d} F(x, \cdot)$ at the point $x \in \Omega$ if $\mathrm{d} F(x, \cdot)$ is a linear and bounded mapping of X into Y such that for each $h \in X$

$$
F(x+h)-F(x)=\mathrm{d} F(x, h)+r(x, h),
$$

where

$$
\lim _{\|h\| \rightarrow 0} \frac{\|r(x, h)\|_{Y}}{\|h\|}=0
$$

Further, for each $h_{1}, h_{2} \in X$, denote

$$
\mathrm{d}^{2} F\left(x, h_{1}, h_{2}\right)=\lim _{\xi \rightarrow 0} \frac{\mathrm{~d} F\left(x+\xi h_{2}, h_{1}\right)-\mathrm{d} F\left(x, h_{1}\right)}{\xi} .
$$

If we have defined $\mathrm{d}^{n-1} F(x, \ldots)$ as a multilinear continuous mapping of $X \times \ldots$ $\ldots \times X((n-1)$-times $)$ into Y, then we set for each $h_{1}, \ldots, h_{n} \in X$
$(*) \mathrm{d}^{n} F\left(x, h_{1}, \ldots, h_{n}\right)=\lim _{\xi \rightarrow 0} \frac{\mathrm{~d}^{n-1} F\left(x+\xi h_{n}, h_{1}, \ldots, h_{n-1}\right)-\mathrm{d}^{n-1} F\left(x, h_{1}, \ldots, h_{n-1}\right)}{\xi}$.
The mapping F is said to have Fréchet derivative $\mathrm{d}^{n} F(x, \ldots)$ of the order n, if $\mathrm{d}^{n} F(x, \ldots)$ is a multilinear continuous mapping of $X \times \ldots \times X$ (n-times) such that the relation (*) holds uniformly for $\left\|h_{1}\right\| \leqq 1, \ldots,\left\|h_{n}\right\| \leqq 1$. We shall denote $\mathrm{d} F(x, \cdot)=F^{\prime}(x)$, i.e., $\mathrm{d} F(x, h)=F^{\prime}(x)(h)$ and $\mathrm{d}^{n} F(x, \ldots)=F^{(n)}(x)$. Let us suppose F has Fréchet derivatives up to the order n in X. If X_{1}, X_{2} are subspaces of the space X, and $X=X_{1} \oplus X_{2}, x_{1} \in X_{1}, x_{2} \in X_{2}$, then we denote for $h \in X_{2}$

$$
F_{x_{2}}^{\prime}\left(x_{1}, x_{2}\right)(h)=\partial_{x_{2}} F\left(x_{1}, x_{2} ; h\right)=\lim _{\xi \rightarrow 0} \frac{F\left(x_{1}, x_{2}+\xi h\right)-F\left(x_{1}, x_{2}\right)}{\xi} .
$$

Linear mapping $\partial_{x_{2}} F\left(x_{1}, x_{2} ; \cdot\right)$ (for x_{1}, x_{2} fixed) of X_{2} into Y is said to be partial derivative of F in $x=\left(x_{1}, x_{2}\right)$ with respect to the variable x_{2}. Analogously, we can introduce partial derivative with respect to the variable x_{1} and the partial derivatives of the higher orders (up to the order n). For example, we see

$$
\partial_{x_{2}, x_{1}}^{2} F\left(x_{1}, x_{2} ; h_{1}, h_{2}\right)=\lim _{\xi \rightarrow 0} \frac{\partial_{x_{2}} F\left(x_{1}+\xi h_{1}, x_{2} ; h_{2}\right)-\partial_{x_{2}} F\left(x_{1}, x_{2} ; h_{2}\right)}{\xi} .
$$

If f is a functional on Ω, then

$$
\mathrm{d}^{2} f(x, h, \cdot)=f^{\prime \prime}(x)(h, \cdot)
$$

(for x fixed) can be considered as a continuous linear mapping of X into X^{*}. We shall denote $f^{\prime \prime}(x)(h,)=.f^{\prime \prime}(x)(h)$.

Spaces $C^{k, \alpha}$. Let k be a positive integer, α a real number, $\alpha \in\langle 0,1\rangle$. We shall write $F \in C^{k, \alpha}(\Omega)$ if
(a) F has on Ω all Fréchet derivatives up to the order k and these derivatives are continuous in the variable x, i.e., with respect to the norm

$$
\left\|F^{(j)}(x)\right\|_{j}=\sup _{\substack{h_{i} \in X,\left\|h_{i}\right\|=1 \\ i=1, \ldots, j}}\left\|F^{(j)}(x)\left(h_{1}, \ldots, h_{j}\right)\right\|_{Y}
$$

(b) the derivative $F^{(k)}$ is α-hölderian, i.e., there exists $c>0$ such that

$$
\left\|F^{(k)}(x)-F^{(k)}(y)\right\|_{k} \leqq c\|x-y\|^{\alpha}
$$

for each $x, y \in \Omega$.
We shall denote $C^{k, 0}(\Omega)=C^{k}(\Omega)$.
The mapping F is said an element of the space $C^{k, \alpha}(\bar{\Omega})(\bar{\Omega}$ denotes the closure of $\Omega)$ if $F \in C^{k, \alpha}(\Omega)$ and the derivatives $F^{(j)}(j=0, \ldots, k)$ are continuously extendible on $\bar{\Omega}$.

Proposition 1.1 (Implicit function theorem). Let X, Y, Z be real Banach spaces, Ω an open set in the space $X \times Y,\left[x_{0}, y_{0}\right] \in \Omega$. Consider a mapping $F \in C^{k, \alpha}(\Omega)$ of Ω into Z such that there exists the mapping $\left[F_{y}^{\prime}\left(x_{0}, y_{0}\right)\right]^{-1}$ of Z onto Y and $F\left(x_{0}, y_{0}\right)=0$.

Then there exists a neighborhood $U\left(x_{0}\right)$ of the point x_{0}, and a neighborhood $U\left(y_{0}\right)$ of the point y_{0} and only one mapping φ from $U\left(x_{0}\right)$ into $U\left(y_{0}\right)$ such that
(1.1) $\left[F_{y}^{\prime}(x, y)\right]^{-1}$ exists and maps Z onto Y for each $x \in U\left(x_{0}\right)$ and $y \in U\left(y_{0}\right)$,
(1.2) $F(x, \varphi(x))=0$ on $U\left(x_{0}\right)$.

Moreover, $\varphi \in C^{k, \alpha}\left(U\left(x_{0}\right)\right)$.
Proof of this assertion for $F \in C^{k}$ (i.e., for $\alpha=0$) is given in the paper [6]. Let us show that it holds for $\alpha \in(0,1\rangle$, too. Suppose that $U\left(x_{0}\right), U\left(y_{0}\right)$ are neighborhoods and φ is a mapping such that (1.1), (1.2) are fulfilled and $\varphi \in C^{k}\left(U\left(x_{0}\right)\right)$. We shall prove $\varphi \in C^{k, \alpha}\left(U\left(x_{0}\right)\right)$. It follows from (1.2)

$$
\mathrm{d} F([x, \varphi(x)], h)=\partial_{x} F([x, \varphi(x)], h)+\partial_{y} F([x, \varphi(x)], \mathrm{d} \varphi(x, h))
$$

for each $h \in X$. By using (1.1) we obtain

$$
\varphi^{\prime}(x)=-\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} F_{x}^{\prime}(x, \varphi(x))
$$

Further, (if $k \geqq 2$),

$$
\begin{gathered}
\varphi^{\prime \prime}(x)=-\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} F_{y x}^{\prime \prime}(x, \varphi(x))\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} \\
F^{\prime}(x, \varphi(x))-\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} F_{y y}^{\prime \prime}(x, \varphi(x)) \varphi^{\prime}(x)\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1}, \\
F_{x}^{\prime}(x, \varphi(x))-\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} F_{x x}^{\prime \prime}(x, \varphi(x))-\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1} F_{x y}^{\prime \prime}(x, \varphi(x)) \varphi^{\prime}(x) .
\end{gathered}
$$

It is easy to see that

$$
\varphi^{(k)}(x)=\Phi_{1}(x)+\ldots+\Phi_{p}(x)
$$

where $\Phi_{i}(x)$ (for fixed x) is a multilinear continuous mapping of $X \times \ldots \times X(k$ times) into Z, which can be obtained as a suitable composition of $\left[F_{y}^{\prime}(x \varphi(x))\right]^{-1}$ and of partial derivatives up to the order $k(i=1 \ldots p)$. Derivatives of F of the order k are α-hölderian mappings, too.

Hence, it is sufficient to show $\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1}$ is α-hölderian. For $x_{1}, x_{2} \in U\left(x_{0}\right)$ we have $\left(\|\cdot\|_{1}\right.$ is the norm defined in (a))

$$
\begin{gathered}
\|\left[F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\right]^{-1}-\left[F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right]^{-1} \|_{1}=\right. \\
\|\left[F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right)\right]^{-1} F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right)\left[F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\right]^{-1}- \\
-\left[F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right)\right]^{-1} F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\left[F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\right]^{-1} \|_{1} \leqq \\
\leqq\left\|\left[F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right)\right]^{-1}\right\|_{1} \cdot\left\|F_{y}^{\prime}\left(x_{2}, \varphi\left(x_{2}\right)\right)-F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\right\|_{1} . \\
\cdot\left\|\left[F_{y}^{\prime}\left(x_{1}, \varphi\left(x_{1}\right)\right)\right]^{-1}\right\|_{1} \leqq c\left\|x_{1}-x_{2}\right\|^{\alpha}
\end{gathered}
$$

(it is easy to see that the norms $\left\|\left[F_{y}^{\prime}(x, \varphi(x))\right]^{-1}\right\|_{1}$ are bounded for x from a sufficiently small neighborhood $U\left(x_{0}\right)$ of the point $\left.x_{0}\right)$.

Hausdorff measure. Let A be a subset of n-dimensional Euclidean space E_{n} and let s be a positive real number. Set for each $\varepsilon>0$

$$
\mu_{\mathrm{s}, \mathrm{e}}(A)=\inf \sum_{i=1}^{\infty}\left(\operatorname{diam} A_{i}\right)^{\mathrm{s}},
$$

the infimum being taken over all countable coverings $\left\{A_{i}\right\}_{i=1}^{\infty}$ of A such that $\operatorname{diam} A_{i}<\varepsilon$. The number

$$
\mu_{s}(A)=\lim _{\varepsilon \rightarrow 0+} \mu_{s, \mathrm{e}}(A)
$$

is said to be s-Hausdorff measure of the set A. If $\mu_{s}(A)=0$, then the set A is said to be s-null. If A is s-null, then A is r-null for each $r>s$. If $s=n$, then $\mu_{n}(A)$ is the n-dimensional Lebesgue measure of the set A.

2. INFINITE-DIMENSIONAL VERSION OF THE MORSE-SARD THEOREM

The well-known theorem about real-valued functions, so called Morse-Sard theorem, says that if Ω is an open subset of Euclidean n-space E_{n} and $f \in C^{n}(\Omega)$ is a real function, then the Lebesgue measure of the set $f(B)$ is zero, where

$$
B=\{x \in \Omega: \operatorname{grad} f(x)=0\}
$$

For further consideration, the following generalization is fundamental.

Proposition 2.1 (see [8]). Let Ω be an open set in E_{n}, let f be a function, $f \in C^{k, \alpha}(\Omega)$ (where k is positive integer, $\alpha \in\langle 0,1\rangle$).

Then the set $f(B)$ is $[n /(k+\alpha)]$-null.
Remark 2.1. If $[n /(k+\alpha)] \leqq 1$, then the Lebesgue measure of the set $f(B)$ is zero. If $s<[n /(k+\alpha)]$, then we can construct a function $f \in C^{k, \alpha}(\Omega)$ such that the set $f(B)$ is not s-null (see [8]). If $f \in C^{\infty}(\Omega)$, then the set $f(B)$ is s-null for each $s>0$, but this set need not be countable. It is proved in [14], that in the case of real-analytic function f (i.e., each point $w \in \Omega$ has an open neighborhood U such that the function f has a power series expansion in U), the set $f(B)$ is countable.

In the sequel we wish to give analogous assertion as in Proposition 2.1 for functionals in infinite-dimensional Banach spaces. As the counterexample of I. KUPKA (see [9]) shows, in the whole generality such assertion is not true. I. Kupka constructed the functional $f \in C^{\infty}$ on the separable Hilbert space such that the set $f(B)$ has nonzero Lebesgue measure. S. I. Pochožajev in the paper [13] introduced the notion of "Fredholm functional" and he proved under some assumptions that the set $f(B)$ has a zero Lebesgue measure for $f \in C^{k}(\Omega)$. The analog of Morse-Sard theorem for real-analytic "Fredholm functionals" in infinite-dimensional Banach spaces and for functionals which derivative has a finite-dimensional range is given in the paper [4]. In this Section we give the proof of Morse-Sard theorem for "Fredholm functionals" $f \in C^{k, \alpha}(\Omega), \Omega$ is an open subset in infinite-dimensional Banach space.

We recall that the linear operator A defined on the Banach space X with values in Banach space Y is said to be Fredholm operator if the following conditions are fulfilled:
(i) $R=A(X)$ is a closed subspace of Y,
(ii) $Y \mid R$ has a finite dimension,
(iii) $Z=A^{-1}(0)$ is a finite-dimensional subspace of X.

Note that if $A=L+M$, where L is an isomorphism of X onto Y and M is linear completely continuous mapping of X into Y, then A is Fredholm operator (theorem due to L. Schwartz - see e.g. [5, Appendix B]).

Definition 2.1. Let X, Y be two Banach spaces, $\Omega \subset X$ an open subset and $x_{0} \in \Omega$. The mapping $F: \Omega \rightarrow Y$ is said to be Fredholmian at the point x_{0} if F has Fréchet derivative $F^{\prime}\left(x_{0}\right)$ at the point x_{0} and $F^{\prime}\left(x_{0}\right)$ is a Fredholm operator. Denote by $N\left(F, x_{0}\right)$ the dimension of the space

$$
\left\{h \in X: F^{\prime}\left(x_{0}\right)(h)=0\right\} .
$$

The functional $f: \Omega \rightarrow E_{1}$ is said to be Fredholm functional at the point $x_{0} \in \Omega$ if f has Fréchet, derivative f^{\prime} on some open neighborhood $U\left(x_{0}\right) \subset \Omega$ of the point x_{0} and the mapping $f^{\prime}: U\left(x_{0}\right) \rightarrow X^{*}$ is a Fredholmian operator at the point x_{0}. (From the definition of Fredholm functional f follows that there exists $f^{\prime \prime}\left(x_{0}\right)$).

If $f: \Omega \rightarrow E_{1}$ is a Fredholm functional at $x_{0} \in \Omega$ denote by $N\left(f, x_{0}\right)$ the dimension of the subspace

$$
\left\{h \in X: f^{\prime \prime}\left(x_{0}\right)(h)=0\right\}
$$

(i.e., $\left.N\left(f, x_{0}\right)=\dot{N}\left(f^{\prime}, x_{0}\right)\right)$.

The main theorem (Theorem 2.2) is not lucid at the first sight. This is the reason for the formulation of the following theorem, which is its special case. Theorem 2.2 is useful for the proof of Theorem 3.2, which is necessary for some more complicated applications (see the proof of Theorem 4.1 for $p>2$).

If φ is a given functional defined on Ω, then we denote

$$
B=\left\{y \in \Omega: \varphi^{\prime}(y)=0\right\}
$$

Theorem 2.1. Let φ be a functional defined on an open subset Ω of a Hilbert space H. Let $k \geqq 1$ be a positive integer, $\alpha \in\langle 0,1\rangle$. Suppose that $\varphi \in C^{k+1, \alpha}(\Omega)$, $y_{0} \in B$ and φ is Fredholm functional at the point y_{0}.

Then there exists a neighborhood $V\left(y_{0}\right) \subset \Omega$ of the point y_{0} such that

$$
\varphi\left(B \cap V\left(y_{0}\right)\right)
$$

is $\left[N\left(\varphi, y_{0}\right) /(k+\alpha)\right]-n u l l$.
Corollary 2.1. Suppose that $k \geqq 1$ is an integer, $\alpha \in\langle 0,1\rangle$ and φ is a functional defined on an open subset Ω of a separable Hilbert space H. Let $\varphi \in C^{k+1, \alpha}(\Omega)$ and denote for positive integer n

$$
B_{n}=\{y \in B: \varphi \text { is Fredholm functional at the point } y, N(\varphi, y) \leqq n\}
$$

Then the set $\varphi\left(B_{n}\right)$ is $[n /(k+\alpha)]$-null.
Proof. Assume that Theorem 2.1 is proved. For each $y_{0} \in B_{n}$ let $V\left(y_{0}\right)$ be an open neighborhood from the assertion of Theorem 2.1. The system $\left\{V\left(y_{0}\right)\right\}_{y_{0 \in B_{n}}}$ forms an open covering of the set B_{n}. Therefore we can select a countable covering $\left\{V\left(y_{i}\right)\right\}_{i=1}^{\infty}$, for the space H is separable. Since the sets $\varphi\left(B \cap V\left(y_{i}\right)\right)(i=1,2, \ldots)$ are $[n /(k+\alpha)]$ null, the assertion follows from $\varphi\left(B_{n}\right) \subset \bigcup_{i=1}^{\infty} \varphi\left(B \cap V\left(y_{i}\right)\right)$.

Corollary 2.2. Let the assumptions of Corollary 2.1 be fulfilled. Suppose $\varphi \in C^{\infty}(\Omega)$ and denote $B_{F}=\bigcup_{n=1}^{\infty} B_{n}$.

Then the set $\varphi\left(B_{F}\right)$ is s-null for each $s>0$.
(This follows immediately from corollary 2.1.) .
We shall consider two Banach spaces Y_{1}, Y_{2} satisfying the following condition (Y): there exists a bilinear form $\langle.,$.$\rangle on Y_{1} \times Y_{2}$ such that $\langle.,$.$\rangle is continuous on Y_{2}$ for each fixed $y_{1} \in Y_{1}$ and if $y_{2} \in Y_{2},\left\langle y, y_{2}\right\rangle=0$ for each $y \in Y_{1}$, then $y_{2}=0$.

For example, the spaces $Y_{1}=C_{0}^{2, \alpha}(\langle 0,1\rangle)$ (the space of all functions from the class $C^{2, \alpha}(\langle 0,1\rangle)$ which values in the points 0,1 are zero) and $Y_{2}=C^{0, \alpha}(\langle 0,1\rangle)$ satisfy the condition (Y) with the bilinear form

$$
\langle u, v\rangle=\int_{0}^{1} u(t) v(t) \mathrm{d} t .
$$

Theorem 2.2. Let Y_{1}, Y_{2} be two Banach spaces satisfying condition (Y), Ω an open set in Y_{1}. Let φ be a functional on $\Omega, \varphi \in C^{k, \alpha}(\Omega)$. Suppose for each $y \in \Omega$ there exists $\Phi(y) \in Y_{2}$ (under our assumptions there exists only one) such that

$$
\varphi^{\prime}(y)(h)=\langle h, \Phi(y)\rangle
$$

for each $y \in \Omega, h \in Y_{1}$.
Let k be a positive integer, $\alpha \in\langle 0,1\rangle$ and $y_{0} \in B$. Suppose that $\Phi \in C^{k, \alpha}(\Omega)$ and Φ is Fredholmian at the point y_{0}.

Then there exists a neighborhood $V\left(y_{0}\right) \subset \Omega$ of the point y_{0} such that the set

$$
\varphi\left(B \cap V\left(y_{0}\right)\right)
$$

is $\left[N\left(\Phi, y_{0}\right) /(k+\alpha)\right]-n u l l$.

Remark 2.2. Theorem 2.2 implies Theorem 2.1 by the setting $Y_{1}=Y_{2}=H,\langle.,$. the inner product in H and $\Phi=\varphi^{\prime}$.

Proof of Theorem 2.2. Define $F=\Phi^{\prime}\left(y_{0}\right)$ (i.e., F is a linear mapping of Y_{1} into $\left.Y_{2}\right)$. The subspace $R=F\left(Y_{1}\right)$ is closed and the space Y_{2} / R is finite-dimensional (see Definition 2.1). Hence, there exists a projection P_{R} of Y_{2} onto R, i.e., a bounded linear mapping such that $P_{R}^{2}=P_{R}$. Denote

$$
Z_{1}=\left\{y \in Y_{1}: F(y)=0\right\} .
$$

The space Z_{1} is finite-dimensional, $\operatorname{dim} Z_{1}=N\left(\Phi, y_{0}\right)$, for the mapping Φ is Fredholmian at the point y_{0}. Thus, there exists a closed subspace Z_{2} of Y_{1} such that $Z_{1} \oplus Z_{2}=Y_{1}$. For each $y \in B$ it is $\Phi(y)=0$ and thus

$$
0=\Phi(y)-\Phi\left(y_{0}\right)=F\left(y-y_{0}\right)+r(y)
$$

where

$$
\lim _{y \rightarrow y_{0}} \frac{r(y)}{\left\|y-y_{0}\right\|_{Y_{1}}}=0
$$

Hence,

$$
0=F\left(y-y_{0}\right)+P_{R} r(y)
$$

For $y \in Y_{1}$ we shall write $y=\left[z_{1}, z_{2}\right]$, where $z_{i} \in Z_{i}$. For $y \in \Omega \subset Y_{1}=Z_{1} \times Z_{2}$ define

$$
. A\left(\left[z_{1}, z_{2}\right]\right)=A(y)=F\left(y-y_{0}\right)+P_{R} r(y) .
$$

We have $A \in C^{k, \alpha}(\Omega)$ and

$$
A_{z_{2}}^{\prime}\left(z_{1}^{0}, z_{2}^{0}\right)=F, \quad\left(\left[z_{1}^{0}, z_{2}^{0}\right]=y_{0}\right) .
$$

The linear operator $A_{z_{2}}^{\prime}\left(z_{1}^{0}, z_{2}^{0}\right)$ is an isomorphism of Z_{2} onto R and therefore there exists $\left[A_{z_{2}}^{\prime}\left(z_{1}^{0}, z_{2}^{0}\right)\right]^{-1}$. Implicit function theorem (see Proposition 1.1) implies that there exists a neighborhood $U\left(z_{1}^{0}\right) \subset Z_{1}$ of the point z_{1}^{0}, a neighborhood $U\left(z_{2}^{0}\right) \subset Z_{2}$ of the point z_{2}^{0} (such that $\left[U\left(z_{1}^{0}\right) \times U\left(z_{2}^{0}\right)\right] \subset \Omega$) and unique mapping ω from $U\left(z_{1}^{0}\right)$ into $U\left(z_{2}^{0}\right)$ such that

$$
\begin{equation*}
A\left(z_{1}, \omega\left(z_{1}\right)\right)=0 \tag{2.1}
\end{equation*}
$$

for each $z_{1} \in U\left(z_{1}^{0}\right)$.
Moreover, $\omega \in C^{k, \alpha}\left(U\left(z_{1}^{0}\right)\right)$.
Define

$$
\varphi_{0}\left(z_{1}\right)=\varphi\left(\left[z_{1}, \omega\left(z_{1}\right)\right]\right)
$$

for $z_{1} \in U\left(z_{1}^{0}\right)$ and

$$
D=\left\{z_{1} \in U\left(z_{1}^{0}\right): \varphi_{0}^{\prime}\left(z_{1}\right)=0\right\}
$$

It is easy to see $\varphi_{0} \in C^{k, \alpha}\left(U\left(z_{1}^{0}\right)\right)$. If $\left[z_{1}, z_{2}\right] \in B \cap\left[U\left(z_{1}^{0}\right) \times U\left(z_{2}^{0}\right)\right]$, then we obtain from (2.1) that $z_{2}=\omega\left(z_{1}\right)$ and thus

$$
\varphi_{0}^{\prime}\left(z_{1}\right)=\varphi_{z_{1}}^{\prime}\left(\left[z_{1}, z_{2}\right]\right)+\varphi_{z_{2}}^{\prime}\left(\left[z_{1}, z_{2}\right]\right) \omega^{\prime}\left(z_{1}\right)=0 .
$$

Hence,

$$
\varphi\left(B \cap\left[U\left(z_{1}^{0}\right) \times U\left(z_{2}^{0}\right)\right]\right) \subset \varphi_{0}\left(D \cap U\left(z_{1}^{0}\right)\right)
$$

and with respect to Proposition 2.1 there exists a neighborhood $U_{0}\left(z_{1}^{0}\right) \subset U\left(z_{1}^{0}\right)$ such that the set $\varphi_{0}\left(D \cap U_{0}\left(z_{1}^{0}\right)\right)$ is $\left[N\left(\Phi, y_{0}\right) /(k+\alpha)\right]$-null. Thus, the set $\varphi\left(B \cap V\left(x_{0}\right)\right)$ is $\left[N\left(\Phi, y_{0}\right) /(k+\alpha)\right]$-null, where $V\left(y_{0}\right)=U_{0}\left(z_{1}^{0}\right) \times U\left(z_{2}^{0}\right)$.

Corollary 2.3. Let Banach spaces Y_{1}, Y_{2} satisfy the condition (Y), let the space Y_{1} be separable, let Ω be an open set in Y_{1}. Let φ be a functional, $\varphi \in C^{k, \alpha}(\Omega)$. Suppose that Φ is a mapping of Ω into $Y_{2}, \Phi \in C^{k, \alpha}(\Omega)$, the condition (Φ) is satisfied. Set

$$
B_{n}=\{y \in B: \Phi \text { satisfies Fredholm condition in } y, N(\Phi, y) \leqq n\} .
$$

Then the set $\varphi\left(B_{n}\right)$ is $[n /(k+\alpha)]$-null.
Proof. Analogously as Corollary 2.1 but by using Theorem 2.2.

Corollary 2.4. Let the assumptions of Corollary 2.3 be fulfilled and let $\varphi \in C^{\infty}(\Omega)$, $\Phi \in C^{\infty}(\Omega)$. Set $B_{F}=\bigcup_{n=1}^{\infty} B_{n}$.

Then the set $\varphi\left(B_{F}\right)$ is s-null for each $s>0$.
(It follows immediately from Corollary 2.3.)

3. INVESTIGATION OF THE SET OF ALL CRITICAL LEVELS

Let X be a Banach space, let f, g be real functionals on X. For a given number $r>0$ define

$$
M_{r}(f)=\{x \in X: f(x)=r\}
$$

This Section deals with the eigenvalue problem

$$
\begin{equation*}
\lambda f^{\prime}(x)=g^{\prime}(x), \quad x \in M_{r}(f) \tag{3.1}
\end{equation*}
$$

If $x_{0} \in X$ is a solution of the problem (3.1) with a certain number $\lambda=\lambda_{0}$, then x_{0} is said to be a critical point of the functional g with respect to the manifold $M_{r}(f)$ and the corresponding number λ_{0} is said to be an eigenvalue of the problem (3.1), the number $g\left(x_{0}\right)$ is said to be a critical level of g. We shall denote the set of all critical levels by Γ and the set of all critical points by S, i.e.,

$$
S=\left\{x \in M_{r}(f): \text { there exists } \lambda, \lambda f^{\prime}(x)=g^{\prime}(x)\right\}, \quad \Gamma=g(S)
$$

Remark 3.1. Suppose that f is $(a+1)$-homogeneous, g is $(b+1)$-homogeneous with $a>0, b>0$ (i.e, $f(t x)=t^{a+1} f(x), g(t x)=t^{b+1} g(x)$ for each $t>0, x \in X$). It is easy to see that f^{\prime} is a-homogeneous, g^{\prime} is b-homogeneous (as the mappings of X into X^{*}) and

$$
f(x)=(a+1)^{-1}\left(x, f^{\prime}(x)\right), \quad g(x)=(b+1)^{-1}\left(x, g^{\prime}(x)\right)
$$

for each $x \in X$ (the brackets $\left(x, x^{*}\right)$ denote the value of the functional $x^{*} \in X^{*}$ at the point $x \in X$). Let x_{0} be an arbitrary critical point of the functional g with respect to the manifold $M_{r}(f), \lambda_{0}$ a corresponding eigenvalues (i.e., (3.1) holds with $x=x_{0}$, $\lambda=\lambda_{0}$). Then we obtain (under assumption $\left(x_{0}, f^{\prime}\left(x_{0}\right)\right) \neq 0$) that

$$
\lambda_{0}=\frac{\left(x_{0}, g^{\prime}\left(x_{0}\right)\right)}{\left(x_{0}, f^{\prime}\left(x_{0}\right)\right)}=\frac{b+1}{a+1} \frac{g\left(x_{0}\right)}{f\left(x_{0}\right)}=\frac{b+1}{r(a+1)} g\left(x_{0}\right)
$$

Hence, if we obtain that there the set Γ is s-null for some $s>0$, then the same is true for the set of all eigenvalues.

The reason for the formulation of Theorem 3.1 is the same as in the case of Theorem 2.1. Theorem 3.1 is a special case of Theorem 3.2, but it can be proved also directly from Theorem 2.1. Theorem 3.1 gives a possibility to obtain information about the
set of critical levels (or eigenvalues) in certain special applications (see the proof of Theorem 4.1 for the case $p=2$). Theorem 3.2 is applicable in more general setting, namely, in the case of differential operators with higher growths (see the proof of Theorem 4.1 for $p>2$).

Theorem 3.1. Let f, g be two functionals defined on a real Hilbert space H. Suppose $f, g \in C^{k+1, \alpha}(H)$ and let $x_{0} \in S$ and let λ_{0} be the corresponding eigenvalue.

Then under assumption $f^{\prime}\left(x_{0}\right) \neq 0$ and $\lambda_{0} f-g$ is a Fredholm functional at x_{0} there exists a neighborhood $V\left(x_{0}\right)$ of the point x_{0} such that the set $g\left(S \cap V\left(x_{0}\right)\right)$ is $\left[\left(N\left(\lambda_{0} f-g, x_{0}\right)+1\right) /(k+\alpha)\right]$-null.

Corollary 3.1. Let f, g be two functionals defined on $H, f, g \in C^{k+1, \alpha}(H)$. Suppose $f^{\prime}(x) \neq 0$ for each $x \in S$ and denote by S_{n} the set of all $y \in S$ such that the functional

$$
x \mapsto \frac{\left(y, g^{\prime}(y)\right)}{\left(y, f^{\prime}(y)\right)} f(x)-g(x)
$$

is a Fredholm functional at the point y and

$$
N\left(\frac{\left(y, g^{\prime}(y)\right)}{\left(y, f^{\prime}(y)\right)} f-g, y\right) \leqq n
$$

Then the set $g\left(S_{n}\right)$ is $[(n+1) /(k+\alpha)]$-null.
Corollary 3.2. Suppose that the assumptions of Corollary 3.1 are fulfilled with $f, g \in C^{\infty}(H)$. Then the set $g\left(S_{F}\right)$ is s-null for each $s>0$, where $S_{F}=\bigcup_{n=1}^{\infty} S_{n}$.

Theorem 3.2. Let X, X_{1}, X_{2} be three real Banach spaces, $X_{1} \subset X$. Suppose X_{1}, X_{2} satisfy the condition (Y) (see Section 2). Let f, g be functionals on $X, f, g \in C^{1}(X) \cap$ $\cap C^{k+1, \alpha}\left(X_{1}\right)$. Suppose for each $x \in X_{1}$ there exist $F(x) \in X_{2}, G(x) \in X_{2}$ (under our assumptions there exist uniquely) such that

$$
\begin{equation*}
f^{\prime}(x)(h)=\langle h, F(x)\rangle, \quad g^{\prime}(x)(h)=\langle h, G(x)\rangle \tag{1}
\end{equation*}
$$

for each $x, h \in X_{1}$.
Suppose $F, G \in C^{k, \alpha}\left(X_{1}\right)$. Let $x_{0} \in S \cap X_{1}$ and let λ_{0} be the corresponding eigenvalue. Assume that the mapping $\lambda_{0} F-G: X_{1} \rightarrow X_{2}$ is Fredholmian at the point x_{0} and,
$\left(\mathrm{f}_{2}\right) \quad$ there exists $h_{0} \in X_{1}$ such that $f^{\prime}\left(x_{0}\right)\left(h_{0}\right) \neq 0$.
Then there exists a neighborhood $V\left(x_{0}\right) \subset X_{1}$ of x_{0} such that the set $g\left(S \cap V\left(x_{0}\right)\right)$ is $\left[\left(N\left(\lambda_{0} F-G, x_{0}\right)+1\right) /(k+\alpha)\right]$-null.

Remark 3.2. Setting $X_{1}=X_{2}=H,\langle.,$.$\rangle the inner product in H$ and $F=f^{\prime}$, $G=g^{\prime}$ we obtain that Theorem 3.2 implies Theorem 3.1.

Proof of Theorem 3.2. Denote

$$
Y_{1}=\left\{y \in X_{1}: f^{\prime}\left(x_{0}\right)(y)=0\right\}
$$

Then $X_{1}=Y_{1} \oplus\left\{h_{0}\right\}$, hence for each $x \in X_{1}$ there exist $\xi \in E_{1}$ and $y \in Y_{1}$ such that $x=\xi h_{0}+y$. Consider $\xi_{0} \in E_{1}, y_{0} \in Y_{1}$ such that $x_{0}=\xi_{0} h_{0}+y_{0}$. Define $\bar{f}(\xi, y)=$ $=f\left(\xi h_{0}+y\right)$.

Then f is a functional defined on $E_{1} \times Y_{1}, f \in C^{k+1, \alpha}\left(E_{1} \times Y_{1}\right)$,

$$
\partial_{\xi} f\left(\xi_{0}, y_{0}\right)=f^{\prime}\left(x_{0}\right)\left(h_{0}\right) \neq 0
$$

and

$$
f(\xi, y)=r
$$

for $\left(\xi h_{0}+y\right) \in M_{r}(f)$.
Implicit function theorem (see Proposition 1.1) implies there exist neighborhoods $U\left(\xi_{0}\right) \subset E_{1}$ (of the point ξ_{0}), $U\left(y_{0}\right) \subset Y_{1}$ (of the point y_{0}) and only one mapping η which maps $U\left(y_{0}\right)$ into $U\left(\xi_{0}\right)$ and such that

$$
\bar{f}(\eta(y), y)=r
$$

for each $y \in U\left(y_{0}\right)$.
Moreover, $\eta \in C^{k+1, \alpha}\left(U\left(y_{0}\right)\right)$. Define

$$
\varphi(y)=g\left(\eta(y) h_{0}+y\right)
$$

for $y \in U\left(y_{0}\right)$.
For $y \in U\left(y_{0}\right), v \in Y_{1}$ we have

$$
\begin{equation*}
\eta^{\prime}(y)(v)=-\frac{\partial_{y} f(\eta(y), y)(v)}{\partial_{\xi} \bar{f}(\eta(y), y)(1)}=-\frac{f^{\prime}\left(\eta(y) h_{0}+y\right)(v)}{f^{\prime}\left(\eta(y) h_{0}+y\right)\left(h_{0}\right)} \tag{3.2}
\end{equation*}
$$

(see the proof of Proposition 1.1). From here

$$
\begin{gather*}
\varphi^{\prime}(y)(v)=-g^{\prime}\left(\eta(y) h_{0}+y\right)\left(h_{0}\right) \frac{f^{\prime}\left(\eta(y) h_{0}+y\right)(v)}{f^{\prime}\left(\eta(y) h_{0}+y\right)\left(h_{0}\right)}+ \tag{3.3}\\
+g^{\prime}\left(\eta(y) h_{0}+y\right)(v) .
\end{gather*}
$$

Denote

$$
\begin{gathered}
V\left(x_{0}\right)=\left\{x \in X_{1}: x=\xi h_{0}+y, \xi \in U\left(\xi_{0}\right), y \in U\left(y_{0}\right)\right\} \\
B=\left\{y \in U\left(y_{0}\right): \varphi^{\prime}(y)=0\right\}
\end{gathered}
$$

From (3.3) we obtain: if $x \in S \cap V\left(x_{0}\right)$, then $y \in B$. Hence, $g\left(S \cap V\left(x_{0}\right)\right) \subset \varphi(B)$. It is easy to see that it is sufficient to prove there exists a neighborhood $U_{0}\left(y_{0}\right) \subset$ $\subset U\left(y_{0}\right)$ of the point y_{0} such that the set $\varphi\left(B \cap U_{0}\left(y_{0}\right)\right)$ is $\left[\left(N\left(\lambda_{0} F-G, x_{0}\right)+1\right)\right.$: $:(k+\alpha)]$-null.

We shall prove that the functional φ satisfies the assumptions of Theorem 2.2. Define

$$
Y_{2}=\left\{y \in X_{2}:\left\langle h_{0}, y\right\rangle=0\right\}
$$

It is easy to see the spaces Y_{1}, Y_{2} satisfy the condition (Y) with the restriction of the form $\langle.,$.$\rangle on Y_{1} \times Y_{2}$. Define

$$
\begin{equation*}
\Phi(y)=-\frac{\left\langle h_{0}, G\left(\eta(y) h_{0}+y\right)\right\rangle}{\left\langle h_{0}, F\left(\eta(y) h_{0}+y\right)\right\rangle} F\left(\eta(y) h_{0}+y\right)+G\left(\eta(y) h_{0}+y\right) \tag{3.4}
\end{equation*}
$$

for $y \in U\left(y_{0}\right)$.
Obviously, Φ maps $U\left(y_{0}\right)$ into Y_{2} and, $\Phi \in C^{k, \alpha}\left(U\left(y_{0}\right)\right)$. From (3.3), (3.4) and the assumption $\left(\mathrm{f}_{1}\right)$ the validity of the assumption (Φ) in Theorem 2.2 follows. Now, we shall show that Φ is Fredholmian at the point y_{0}.

By calculation we obtain

$$
\begin{gather*}
\Phi^{\prime}\left(y_{0}\right)(v)=-\lambda_{0} F^{\prime}\left(x_{0}\right)(v)+G^{\prime}\left(x_{0}\right)(v)- \tag{3.5}\\
-\frac{\left\langle h_{0},-\lambda_{0} F^{\prime}\left(x_{0}\right)(v)+G^{\prime}\left(x_{0}\right)(v)\right\rangle}{\left\langle h_{0}, F\left(y_{0}\right)\right\rangle} F\left(y_{0}\right)
\end{gather*}
$$

for each $v \in Y_{1}$.
Denote

$$
\begin{aligned}
& M=\left\{v \in Y_{1}: \Phi^{\prime}\left(y_{0}\right)(v)=0\right\} \\
& K=\left\{v \in X_{1}: \lambda_{0} F^{\prime}\left(x_{0}\right)(v)-G^{\prime}\left(x_{0}\right)(v)=0\right\}
\end{aligned}
$$

If $v \in M$ and at the same time

$$
\begin{equation*}
\left\langle h_{0}, \lambda_{0} F^{\prime}\left(x_{0}\right)(v)-G^{\prime}\left(x_{0}\right)(v)\right\rangle=0, \tag{3.6}
\end{equation*}
$$

then clearly (from (3.5)) it is $v \in K$.
Thus, if the relation (3.6) holds for each $v \in M$, then $M \subset K$. In the oposite case we can write $M=M_{1} \oplus\left\{v_{0}\right\}$, where

$$
\left\langle h_{0}, \lambda_{0} F^{\prime}\left(x_{0}\right)\left(v_{0}\right)-G^{\prime}\left(x_{0}\right)\left(v_{0}\right)\right\rangle \neq 0
$$

and

$$
\left\langle h_{0}, \lambda_{0} F^{\prime}\left(x_{0}\right)(v)-G^{\prime}\left(x_{0}\right)(v)\right\rangle=0
$$

for all $v \in M_{1}$. Now we obtain as the above, that $M_{1} \subset K$, hence

$$
M \subset K \oplus\left\{v_{0}\right\} .
$$

In all cases, we have

$$
\operatorname{dim} M \leqq \operatorname{dim} K+1
$$

i.e.,

$$
N\left(\Phi, y_{0}\right) \leqq N\left(\lambda_{0} F-G, x_{0}\right)+1
$$

Further, the range $R=\left(\lambda_{0} F^{\prime}\left(x_{0}\right)-G^{\prime}\left(x_{0}\right)\right)\left(X_{1}\right)$ is a closed subspace of X_{2} of finite codimension, the same is true also for the subspace

$$
R^{\prime}=\left(\lambda_{0} F^{\prime}\left(x_{0}\right)-G^{\prime}\left(x_{0}\right)\right)\left(Y_{1}\right)
$$

of the space Y_{2}, for:
(1) if $\lambda_{0} F^{\prime}\left(x_{0}\right)\left(h_{0}\right)-G^{\prime}\left(x_{0}\right)\left(h_{0}\right) \in R^{\prime}$, then clearly $R=R^{\prime}$;
(2) if $\lambda_{0} F^{\prime}\left(x_{0}\right)\left(h_{0}\right)-G^{\prime}\left(x_{0}\right)\left(h_{0}\right) \notin R^{\prime}$, then we know that $\left(\lambda_{0} F^{\prime}\left(x_{0}\right)-G^{\prime}\left(x_{0}\right)\right)$ maps X_{1} onto R and $X_{1}=Y_{1} \oplus\left\{h_{0}\right\}$, where Y_{1} is the closed subspace of X_{1}. Now it follows immediately from Banach open mapping theorem that

$$
R^{\prime}=\left(\lambda_{0} F^{\prime}\left(x_{0}\right)-G^{\prime}\left(x_{0}\right)\right)\left(Y_{1}\right)
$$

is also a closed subspace of X_{2}.
Since

$$
R=R^{\prime} \oplus\left\{\lambda_{0} F^{\prime}\left(x_{0}\right)\left(h_{0}\right)-G^{\prime}\left(x_{0}\right)\left(h_{0}\right)\right\}
$$

it is clear that R^{\prime} has a finite codimension. Now, if we define the projection $P: X_{2} \rightarrow$ $\rightarrow Y_{2}$ by

$$
P: x \mapsto x-\frac{\left\langle h_{0}, x\right\rangle}{\left\langle h_{0}, F\left(x_{0}\right)\right\rangle} F\left(x_{0}\right),
$$

then clearly

$$
\Phi^{\prime}\left(y_{0}\right)\left(Y_{1}\right)=P\left(R^{\prime}\right)
$$

and such projection of closed subspace of finite codimension is again closed subspace of finite codimension.

Hence, the assumptions of Theorem 2.2 are verfied and thus there exists a neighborhood $U_{0}\left(y_{0}\right) \subset U\left(y_{0}\right)$ of the point y_{0} such that the set $\varphi\left(B \cap U_{0}\left(y_{0}\right)\right)$ is $\left[\left(N\left(\lambda_{0} F-G, x_{0}\right)+1\right) /(k+\alpha)\right]$-null.

Therefore the set $g\left(S \cap V_{0}\left(x_{0}\right)\right)$ is $\left[\left(N\left(\lambda_{0} F-G, x_{0}\right)+1\right) /(k+\alpha)\right]$-null, where

$$
V_{0}\left(x_{0}\right)=\left\{x \in X_{1}: x=\xi h_{0}+y, \xi \in U\left(\xi_{0}\right), y \in U_{0}\left(y_{0}\right)\right\} .
$$

Corollary 3.3. Let the assumptions of Theorem 3.2 be fulfilled with X_{1} separable. Moreover, suppose that for each $x \in X_{1}$ there exists $h \in X_{1}$ such that $f^{\prime}(x)(h) \neq 0$ and let for $y \in S \cap X_{1}$ be $\left(y, f^{\prime}(y)\right) \neq 0$. Denote by S_{n} the set of all $y \in S \cap X_{1}$ such that the mapping

$$
x \mapsto \frac{\left(y, g^{\prime}(y)\right)}{\left(y, f^{\prime}(y)\right)} F(x)-G(x)
$$

is Fredholmian at the point y and

$$
N\left(\frac{\left(y, g^{\prime}(y)\right)}{\left(y, f^{\prime}(y)\right)} F-G, y\right) \leqq n
$$

Then the set $g\left(S_{n}\right)$ is $[(n+1) /(k+\alpha)]$-null.
(The proof is similar to that of Corollary 2.1.)
Corollary 3.4. Let the assumptions of Corollary 3.3 be fulfilled with $F, G \in$ $\in C^{\infty}\left(X_{1}\right), f, g \in C^{\infty}\left(X_{1}\right) \cap C^{1}(X)$.

Then the set $g\left(S_{F}\right)$ is s-null for each $s>0$, where

$$
S_{F}=\bigcup_{n=1}^{\infty} S_{n} .
$$

(This Corollary follows immediately from Corollary 3.3.)
Corollary 3.5. Suppose the assumptions of Corollary 3.3 (3.4, respectively) are satisfied. Let f be $(a+1)$-homogeneous and g be $(b+1)$-homogeneous $(a, b>0)$. Denote by $\Lambda_{n}\left(\Lambda_{F}\right.$, respectively) the set of all eigenvalues corresponding to the set S_{n} (S_{F}, respectively).

Then the set Λ_{n} is $[(n+1) /(k+\alpha)]$-null (the set Λ_{F} is s-null for each $s>0$, respectively).
(This follows from Corollary 3.3 (3.4, respectively) and from Remark 3.1.)

4. APPLICATION TO THE BOUNDARY VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

Let m be a positive integer, p a real number, $p \geqq 2$. Denote by $W_{p}^{m}(\langle 0,1\rangle)$ the wellknown Sobolev space with the norm

$$
\|u\|_{p, m}=\left(\sum_{i=0}^{m} \int_{0}^{1}\left|u^{(i)}(x)\right|^{p} \mathrm{~d} x\right)^{1 / p}
$$

i.e., $W_{p}^{m}(\langle 0,1\rangle)$ is the space of all functions u with the absolute continuous derivatives $u^{(i)}$ on the interval $\langle 0,1\rangle(i=0,1, \ldots, m-1)$ and such that for the derivative of the order m (which exists almost everywhere on $\langle 0,1\rangle$) it is

$$
\int_{0}^{1}\left|u^{(m)}(x)\right|^{p} \mathrm{~d} x<\infty .
$$

If $\zeta=\left[\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m}\right] \in E_{m+1}$, then we shall denote $\eta=\left[\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m-1}\right] \in E_{m}$. For each $u \in W_{p}^{m}(\langle 0,1\rangle)$ define

$$
\begin{aligned}
& \zeta(u)=\left[u, u^{(1)}, \ldots, u^{(m)}\right] \in\left[L_{p}\right]^{m+1} \\
& \eta(u)=\left[u, u^{(1)}, \ldots, u^{(m-1)}\right] \in\left[L_{p}\right]^{m} .
\end{aligned}
$$

Set

$$
\dot{W}_{p}^{m}(\langle 0,1\rangle)=\left\{u \in W_{p}^{m}(\langle 0,1\rangle): u(0)=u(1)=\ldots=u^{(m-1)}(0)=u^{(m-1)}(1)=0\right\}
$$

Further, let V be a subspace of $W_{p}^{m}(\langle 0,1\rangle)$ which is determined by the conditions

$$
\begin{align*}
& \sum_{i=0}^{m-1} c_{i j}^{0} u^{(i)}(0)=0, \quad j=1, \ldots, r \tag{4.1a}\\
& \sum_{i=0}^{m-1} c_{i j}^{1} u^{(i)}(1)=0, \quad j=1, \ldots, s \tag{4.1b}
\end{align*}
$$

where r, s are given numbers, $0 \leqq r \leqq m, 0 \leqq s \leqq m$ and the rank of the matrix $\left(c_{i j}^{0}\right)$ is r, the rank of the matrix $\left(c_{i j}^{1}\right)$ is s. (If $r=0$, then no condition (4.1a) is prescribed.)
Obviously,

$$
\mathscr{W}_{p}^{m}(\langle 0,1\rangle) \subset V \subset W_{p}^{m}(\langle 0,1\rangle) .
$$

Let us consider two real functions

$$
\begin{aligned}
& A\left(x, \zeta_{0}, \ldots, \zeta_{m}\right) \in C^{2}\left(\langle 0,1\rangle \times E_{m+1}\right), \\
& B\left(x, \eta_{0}, \ldots, \eta_{m-1}\right) \in C^{2}\left(\langle 0,1\rangle \times E_{m}\right)
\end{aligned}
$$

Suppose that the following growth conditions hold for each $\zeta \in E_{m+1}, x \in\langle 0,1\rangle$ (μ is a positive function defined on E_{m}):

$$
\begin{equation*}
\left|\frac{\partial A}{\partial \zeta_{i}}(x, \zeta)\right| \leqq \mu(\eta)\left(1+\left|\zeta_{m}\right|\right)^{p}, \quad i=0,1, \ldots, m-1 ; \tag{4.2a}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial A}{\partial \zeta_{m}}(x, \zeta)\right| \leqq \mu(\eta)\left(1+\left|\zeta_{m}\right|\right)^{p-1} \tag{4.2b}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}(x, \zeta)\right| \leqq \mu(\eta)\left(1+\left|\zeta_{m}\right|\right)^{p}, \quad i, j=0,1, \ldots, m-1 \tag{4.2c}
\end{equation*}
$$

$$
\begin{align*}
& \left|\frac{\partial^{2} A}{\partial \zeta_{m} \partial \zeta_{j}}(x, \zeta)\right| \leqq \mu(\eta)\left(1+\left|\zeta_{m}\right|\right)^{p-1}, \quad j=0,1, \ldots, m-1 \tag{4.2~d}\\
& \left|\frac{\partial^{2} A}{\partial \zeta_{m}^{2}}(x, \zeta)\right| \leqq \mu(\eta)\left(1+\left|\zeta_{m}\right|\right)^{p-2} \tag{4.2e}
\end{align*}
$$

Assume there exist $c_{1}>0, c_{2} \geqq 0$ and in the case $V \neq \stackrel{\circ}{W}_{p}^{m}(\langle 0,1\rangle)$ also $c_{2}>0$ such that for each $\zeta, \zeta^{0} \in E_{m+1}, x \in\langle 0,1\rangle$

$$
\begin{equation*}
\sum_{i, j=0}^{m} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(x, \zeta^{0}\right) \zeta_{i} \zeta_{j} \geqq c_{1}\left|\zeta_{m}\right|^{2}+c_{2}|\eta|^{2}, \tag{4.3}
\end{equation*}
$$

where $|\cdot|$ denotes the norm in E_{m} and the absolute value in E_{1}.

Let us consider functions $H_{0}, H_{1}, N_{0}, N_{1} \in C^{2}\left(E_{m}\right)$ such that

$$
\begin{equation*}
\sum_{i, j=0}^{m-1} \frac{\partial^{2} H_{k}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta^{0}\right) \eta_{i} \eta_{j} \geqq 0 \quad(k=0,1) \tag{4.4}
\end{equation*}
$$

for each $\eta^{0}, \eta \in E_{m}$.
Now, we define two functionals f, g on V :

$$
\begin{align*}
& f(u)=\int_{0}^{1} A(x, \zeta(u)(x)) \mathrm{d} x+H_{0}(\eta(u)(0))+H_{1}(\eta(u)(1)), \tag{4.5}\\
& g(u)=\int_{0}^{1} B(x, \eta(u)(x)) \mathrm{d} x+N_{0}(\eta(u)(0))+N_{1}(\eta(u)(1)) .
\end{align*}
$$

We shall consider the eigenvalue problem

$$
\begin{equation*}
\lambda f^{\prime}(u)=g^{\prime}(u), \quad u \in M_{r}(f)=\{u \in V: f(u)=r\} \tag{4.6}
\end{equation*}
$$

where $r>0$ is a prescribed number. An element $u \in V$ is a solution of the problem (4.6) if $f(u)=r$ and

$$
\begin{gather*}
\lambda \int_{0}^{1} \sum_{j=0}^{m} \frac{\partial A}{\partial \zeta_{j}}(x, \zeta(u)(x)) h^{(j)}(x) \mathrm{d} x+ \tag{4.7}\\
+\lambda \sum_{j=0}^{m-1}\left[\frac{\partial H_{0}}{\partial \eta_{j}}(\eta(u)(0)) h^{(j)}(0)+\frac{\partial H_{1}}{\partial \eta_{j}}(\eta(u)(1)) h^{(j)}(1)\right]- \\
-\int_{0}^{1} \sum_{j=0}^{m-1} \frac{\partial B}{\partial \eta_{j}}(x, \eta(u)(x)) h^{(j)}(x) \mathrm{d} x-\sum_{j=0}^{m-1}\left[\frac{\partial N_{0}}{\partial \eta_{j}}(\eta(u)(0)) h^{(j)}(0)+\right. \\
\left.+\frac{\partial N_{1}}{\partial \eta_{j}}(\eta(u)(1)) h^{(j)}(1)\right]=0
\end{gather*}
$$

for each $h \in V$.

Lemma 4.1. Let the conditions (4.2a, b) and (4.3) be fulfilled. If $u \in V$ is a solution of the problem (4.6) with $\lambda \neq 0$, then $u \in C^{m}(\langle 0,1\rangle)$.

Proof. The equation (4.7) holds for each $h \in V$. If $h \in \overleftarrow{W}_{p}^{m}(\langle 0,1\rangle) \subset V$, then (4.7) can be written as follows:

$$
\begin{gather*}
\int_{0}^{1}\left\{\lambda \frac{\partial A}{\partial \zeta_{m}}(x, \zeta(u)(x))+\sum_{j=0}^{m-1}(-1)^{m-j} \int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!}\left[\lambda \frac{\partial A}{\partial \zeta_{j}}(t, \zeta(u)(t))-\right.\right. \tag{4.8}\\
\left.\left.-\frac{\partial B}{\partial \eta_{j}}(t, \eta(u)(t))\right] \mathrm{d} t\right\} h^{(m)}(x) \mathrm{d} x=0
\end{gather*}
$$

Hence, for each $h \in \dot{W}_{p}^{m}(\langle 0,1\rangle)$ we have the equation of the type

$$
\begin{equation*}
\int_{0}^{1} R(x) h^{(m)}(x) \mathrm{d} x=0 \tag{4.9}
\end{equation*}
$$

where R is a function of the class $L_{p^{*}}(\langle 0,1\rangle), 1 / p+1 / p^{*}=1$ (this follows from the growth conditions (4.2a, b)). Let us show that the following assertion (*) holds: if $R \in L_{p^{*}}(\langle 0,1\rangle)$ and (4.9) holds for each $h \in \stackrel{\circ}{W}_{p}^{m}(\langle 0,1\rangle)$, then there exist constants a_{0}, \ldots, a_{m-1} such that

$$
R(x)=a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}
$$

For the proof of the assertion (*) denote by $a_{0}, a_{1}, \ldots, a_{m-1}$ such constants that

$$
\int_{0}^{1}\left(R(x)+a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}\right) x^{j} \mathrm{~d} x=0
$$

for each $j=0,1, \ldots, m-1$.
The last relation implies

$$
\int_{0}^{1}\left(R(x)+a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}\right) h^{(m)}(x) \mathrm{d} x=0
$$

for each $h \in \dot{W}_{p}^{m}(\langle 0,1\rangle)$. Suppose $f \in L_{p}(\langle 0,1\rangle)$ and set

$$
h(x)=\int_{0}^{x} \frac{(x-t)^{m-1}}{(m-1)!}\left(f(t)+b_{0}+b_{1} t+\ldots+b_{m-1} t^{m-1}\right) \mathrm{d} t
$$

where $b_{j}(j=0, \ldots, m-1)$ are choosen such that $h \in \dot{W}_{p}^{m}(\langle 0,1\rangle)$. Substituting the function h into (4.9) we have

$$
\begin{aligned}
0=\int_{0}^{1}(R(x)+ & \left.a_{0}+\ldots+a_{m-1} x^{m-1}\right)\left(f(x)+b_{0}+\ldots+b_{m-1} x^{m-1}\right) \mathrm{d} x= \\
& =\int_{0}^{1}\left(R(x)+a_{0}+\ldots+a_{m-1} x^{m-1}\right) f(x) \mathrm{d} x .
\end{aligned}
$$

Thus $R(x)+a_{0}+\ldots+a_{m-1} x^{m-1}=0$, for the function $f \in L_{p}(\langle 0,1\rangle)$ was arbitrary. Hence, the assertion (*) is proved.

In our case we have

$$
\begin{gather*}
F(x, \zeta(u)(x))=\frac{\partial A}{\partial \zeta_{m}}(x, \zeta(u)(x))= \tag{4.10}\\
=\frac{1}{\lambda}\left(\sum_{j=0}^{m-1}(-1)^{m-j} \int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!}\left[\lambda \frac{\partial A}{\partial \zeta_{j}}(t, \zeta(u)(t))-\frac{\partial B}{\partial \eta_{j}}(t, \eta(u)(t))\right] \mathrm{d} t+\right. \\
\left.+a_{0}+\ldots+a_{m-1} x^{m-1}\right)=g(x) \in C(\langle 0,1\rangle)
\end{gather*}
$$

Since

$$
\frac{\partial F}{\partial \zeta_{m}}\left(x, \eta, \zeta_{m}\right)>0
$$

for each $x \in\langle 0,1\rangle$ and all $\left[\eta, \zeta_{m}\right] \in E_{m+1}$ (see (4.3)), there exists on some neighborhood U of the point $\left[x_{0}, \eta(u)\left(x_{0}\right)\right]$ only one function (according to Implicit function theorem) $\zeta_{m}(x, \eta)$ such that

$$
F\left(x, \eta, \zeta_{m}(x, \eta)\right)=g(x)
$$

for each $[x, \eta] \in U$. Moreover, ζ_{m} is continuous on U. For sufficiently small $\left|x-x_{0}\right|$ it is $[x, \eta(u)(x)] \in U$ and

$$
F\left(x, \eta(u)(x), \zeta_{m}(x, \eta(u)(x))\right)=g(x)
$$

and $\zeta_{m}(x, \eta(u)(x))$ is continuous, for $\eta(u)(x)$ is continuous. From (4.10) follows that $u(x)$ is a solution of the equation

$$
F(x, \zeta(u)(x))=g(x)
$$

too, and the uniqueness of the implicit function implies

$$
u^{(m)}(x)=\zeta_{m}(x, \eta(u)(x))
$$

and thus $u^{(m)}$ is continuous on some neighborhood of arbitrary point $x_{0} \in\langle 0,1\rangle$, which proves our lemma.

Lemma 4.2. Let the conditions (4.2) be fulfilled. Let $u_{0} \in V, \lambda \neq 0$ and

$$
D=\left\{v \in V: \lambda f^{\prime \prime}\left(u_{0}\right)(v, h)=g^{\prime \prime}\left(u_{0}\right)(v, h) \text { for each } h \in V\right\}
$$

Then $\operatorname{dim} D \leqq m$.
Proof. Let $v \in D$ and $h \in V$. Then

$$
\begin{gathered}
0=\lambda f^{\prime \prime}\left(u_{0}\right)(v, h)-g^{\prime \prime}\left(u_{0}\right)(v, h)=\lambda \int_{0}^{1} \sum_{i, j=0}^{m} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(x, \zeta\left(u_{0}\right)(x)\right) v^{(i)}(x) . \\
. h^{(j)}(x) \mathrm{d} x+\lambda \sum_{i, j=0}^{m-1}\left[\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(i)}(0) h^{(j)}(0)+\right. \\
\left.+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(1)\right) v^{(i)}(1) h^{(j)}(1)\right]-\int_{0}^{1} \sum_{i, j=0}^{m-1} \frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}\left(x, \eta\left(u_{0}\right)(x)\right) v^{(i)}(x) h^{(j)}(x) \mathrm{d} x- \\
-\sum_{i, j=0}^{m-1}\left[\frac{\partial^{2} N_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(i)}(0) h^{(j)}(0)+\frac{\partial^{2} \cdot N_{1}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(1)\right) v^{(i)}(1) h^{(j)}(1)\right]
\end{gathered}
$$

(with respect to the conditions $(4.2 c-e)$).

At first, let us consider $H_{0} \equiv H_{1} \equiv N_{0} \equiv N_{1} \equiv 0$. Set

$$
V_{1}=\left\{h \in V: h(1)=h^{\prime}(1)=\ldots=h^{(m-1)}(1)=0\right\} .
$$

By using the formula

$$
\begin{gathered}
v^{(i)}(x)=\int_{0}^{x} \frac{(x-t)^{m-i-1}}{(m-i-1)!} v^{(m)}(t) \mathrm{d} t+v^{(i)}(0)+x v^{(i+1)}(0)+\ldots \\
\ldots+\frac{x^{m-i-1}}{(m-i-1)!} v^{(m-1)}(0)
\end{gathered}
$$

and integration by parts we obtain for $v \in D, h \in V_{1}$

$$
\begin{gather*}
0=\lambda f^{\prime \prime}\left(u_{0}\right)(v, h)-g^{\prime \prime}\left(u_{0}\right)(v, h)= \tag{4.11}\\
=\int_{0}^{1}\left\{\lambda \frac{\partial^{2} A}{\partial \zeta_{m}^{2}}\left(x, \zeta\left(u_{0}\right)(x)\right) v^{(m)}(x)+\lambda \sum_{i=0}^{m-1} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{m}}\left(x, \zeta\left(u_{0}\right)(x)\right) .\right. \\
\cdot\left(\int_{0}^{x} \frac{(x-t)^{m-i-1}}{(m-i-1)!} v^{(m)}(t) \mathrm{d} t+P_{i}(v, x)\right)+\lambda \sum_{j=0}^{m-1}(-1)^{m-j} \\
\cdot \int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!} \frac{\partial^{2} A}{\partial \zeta_{m} \partial \zeta_{j}}\left(t, \zeta\left(u_{0}\right)(t)\right) v^{(m)}(t) \mathrm{d} t+\sum_{i, j=0}^{m-1}(-1)^{m-j} . \\
\cdot \int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!}\left[\lambda \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(t, \zeta\left(u_{0}\right)(t)\right)-\frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}\left(t, \eta\left(u_{0}\right)(t)\right)\right] . \\
\left.\left.\cdot \int_{0}^{t} \frac{(t-\tau)^{m-i-1}}{(m-i-1)!} v^{(m)}(\tau) \mathrm{d} \tau+P_{i}(v, t)\right) \mathrm{d} t\right\} h^{(m)}(x) \mathrm{d} x,
\end{gather*}
$$

where

$$
P_{i}(v, x)=v^{(i)}(0)+x v^{(i+1)}(0)+\ldots+\frac{x^{m-i-1}}{(m-i-1)!} v^{(m-1)}(0)
$$

Analogously as the assertion (*) in the proof of Lemma 4.1 we can prove the following assertion (**): if $R \in L_{p^{*}}(\langle 0,1\rangle),\left(1 / p+1 / p^{*}=1\right)$,

$$
\int_{0}^{1} R(x) h^{(m)}(x) \mathrm{d} x=0
$$

for each $h \in V_{1}$, then there exist constants $a_{0}, a_{1}, \ldots, a_{r-1}$ such that

$$
R(x)=a_{0}+a_{1} x+\ldots+a_{r-1} x^{r-1}
$$

where r is the integer from the condition (4.1a).

Thus, we have from (4.11)

$$
\begin{gathered}
\lambda \frac{\partial^{2} A}{\partial \zeta_{m}^{2}}\left(x, \zeta\left(u_{0}\right)(x)\right) v^{(m)}(x)+\lambda \sum_{i=0}^{m-1} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{m}}\left(x, \zeta\left(u_{0}\right)(x) .\right. \\
\cdot\left(\int_{0}^{x} \frac{(x-t)^{m-i-1}}{(m-i-1)!} v^{(m)}(t) \mathrm{d} t\right)+\lambda \sum_{j=0}^{m-1}(-1)^{m-j} \int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!} . \\
\frac{\partial^{2} A}{\partial \zeta_{m} \partial \zeta_{j}}\left(t, \zeta\left(u_{0}\right)(t)\right) v^{(m)}(t) \mathrm{d} t+\sum_{i, j=0}^{m-1}(-1)^{m-j} . \\
\int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!}\left[\lambda \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(t, \zeta\left(u_{0}\right)(t)\right)-\frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}\left(t, \eta\left(u_{0}\right)(t)\right)\right] . \\
\left(\int_{0}^{t} \frac{(t-\tau)^{m-i-1}}{(m-i-1)!} v^{(m)}(\tau) \mathrm{d} \tau\right) \mathrm{d} t=a_{0}+a_{1} x+\ldots+a_{r-1} x^{r-1}- \\
\int_{0}^{x} \frac{(x-t)^{m-j-1}}{(m-j-1)!}\left[\lambda \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(t, \zeta\left(u_{0}\right)(t)\right)-\frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}\left(t, \eta\left(u_{0}\right)(t)\right)\right] P_{i}(v, t) \mathrm{d} t .
\end{gathered}
$$

This can be written in the form

$$
\begin{equation*}
v^{(m)}(x)+\int_{0}^{x} K(x, t) v^{(m)}(t) \mathrm{d} t=a_{0}+\ldots+a_{r-1} x^{r-1}+\sum_{i=0}^{m-1} v^{(i)}(0) f_{i}(x) \tag{4.12}
\end{equation*}
$$

where $K(x, t) \in C(\langle 0,1\rangle \times\langle 0,1\rangle), f_{i} \in C(\langle 0,1\rangle)(i=0,1, \ldots, m-1)$.
Let us consider the mapping

$$
\begin{equation*}
W: v \in V \mapsto v^{(m)}(x)+\int_{0}^{x} K(x, t) v^{(m)}(t) \mathrm{d} t-\sum_{i=0}^{m-1} v^{(i)}(0) f_{i}(x) . \tag{4.13}
\end{equation*}
$$

Because

$$
v(x)=\int_{0}^{x} \frac{(x-t)^{m-1}}{(m-1)!} v^{(m)}(t) \mathrm{d} t+P(x)
$$

where P is a polynomial of the degree at most $(m-1)$, we obtain immediateiy from the fact that the Volterra's operator

$$
w \mapsto w(x)+\int_{0}^{x} K(x, t) w(t) \mathrm{d} t
$$

is continuously invertible in the space $C(\langle 0,1\rangle)$, that the space D of all solutions $v \in V$ of the equation (4.12) is finite-dimensional. So we can restrict the mapping W to D. Thus we have

$$
\operatorname{dim} D=\operatorname{dim} \text { Ker } W+\operatorname{dim} \operatorname{Im} W
$$

Denote $w_{i} \in C(\langle 0,1\rangle)$ such that

$$
w_{i}(x)+\int_{0}^{x} K(x, t) w_{i}(t) \mathrm{d} t=f_{i}(x) .
$$

Then each $v \in \operatorname{Ker} W$ has the form

$$
\begin{equation*}
w(x)=\int_{0}^{x} \frac{(x-t)^{m-1}}{(m-1)!}\left(\sum_{i=0}^{m-1} v^{(i)}(0) f_{i}(t)\right) \mathrm{d} t+\sum_{i=0}^{m-1} \frac{v^{(i)}(0)}{i!} x^{i} \tag{4.14}
\end{equation*}
$$

and with respect to condition (4.1a) we have

$$
\operatorname{dim} \text { Ker } W \leqq m-r
$$

Since $\operatorname{dim} \operatorname{Im} W=r$, we conclude

$$
\operatorname{dim} D \leqq r+m-r=m
$$

This concludes the proof in the case $H_{0} \equiv H_{1} \equiv N_{0} \equiv N_{1} \equiv 0$.
Let us consider the general case. We can write

$$
\begin{gathered}
\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(i)}(0) h^{(j)}(0)+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(1)\right) v^{(i)}(1) h^{(j)}(1)= \\
=-\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(i)}(0) \int_{0}^{1} \frac{x^{m-j-1}}{(m-j-1)!} h^{(m)}(x) \mathrm{d} x
\end{gathered}
$$

for each $h \in V_{1}, i, j=0,1, \ldots, m-1$.
Hence, also in the case we can derived the equation of the type (4.12), where the functions

$$
\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) \frac{x^{m-j-1}}{(m-j-1)!}
$$

can be included in the functions $f_{i}(x)$. This completes the proof.
The following assumptions will be usefull for the main theorem of this Section:

$$
\begin{align*}
& \sum_{i=0}^{m-1} \frac{\partial B}{\partial \eta_{i}}(x, \eta) \eta_{i}>0 \tag{4.15}\\
& \sum_{i=0}^{m-1} \frac{\partial N_{k}}{\partial \eta_{i}}(\eta) \eta_{i} \geqq 0 \tag{4.16}
\end{align*}
$$

for each $x \in\langle 0,1\rangle$, all $\eta \in E_{m}$ with $\eta \neq 0$ and $k=0,1$.
Theorem 4.1. Let the conditions (4.2)-(4.4), (4.15), (4.16) be fulfilled. Suppose $A \in C^{k+1, \alpha}\left(\langle 0,1\rangle \times E_{m+1}\right), \quad B \in C^{k+1, \alpha}\left(\langle 0,1\rangle \times E_{m}\right), \quad H_{0}, H_{1}, N_{0}, N_{1} \in C^{k+1, \alpha}\left(E_{m}\right)$ $(k \geqq 1, \alpha \in\langle 0,1\rangle)$.

Then the set of all critical levels of the problem (4.6) (where f, g are defined by (4.5)) is $[(m+1) /(k+\alpha)]$-null.

Corollary 4.1. Let the assumptions of Theorem 4.1 be fulfilled, let $a>0, b>0$. Suppose that

$$
\begin{aligned}
& A(x, \tau \zeta)=\tau^{a+1} A(x, \zeta) \\
& H_{j}(\tau \eta)=\tau^{a+1} H_{j}(\eta) \\
& B(x, \tau \eta)=\tau^{b+1} B(x, \eta) \\
& N_{j}(\tau \eta)=\tau^{b+1} N_{j}(\eta)
\end{aligned}
$$

for $\left.x \in\langle 0,1\rangle, \zeta \in E_{m+1}, \eta \in E_{m}, \tau\right\rangle 0$ and $j=0,1$.
Then the set of all eigenvalues of the problem (4.6) is $[(m+1) /(k+\alpha)]$-null. (This follows from Theorem 4.1 and Remark 3.1.)

Remark 4.1. The assumption $B \in C^{k+1, \alpha}\left(\langle 0,1\rangle \times E_{m}\right)$ implies $g \in C^{k+1, \alpha}(V)$. But it is not true that

$$
\begin{equation*}
A \in C^{k+1, \alpha}\left(\langle 0,1\rangle \times E_{m+1}\right) \Rightarrow f \in C^{k+1, \alpha}(V) . \tag{4.17}
\end{equation*}
$$

In general setting this is true for certain subspaces of V of the smooth functions. The implication (4.17) holds under additional growth conditions on the derivatives of the function A up to the order $(k+1)$.

Proof of Theorem 4.1. At first, let us show that this theorem in the case $p=2$ and under assumption $f \in C^{k+1, \alpha}(V)$ follows easily from Theorem 3.1 and Corollary 3.1. In this case, V is a Hilbert space with the inner product

$$
(u, v)_{2, m}=\sum_{j=0}^{m} \int_{0}^{1} u^{(j)}(x) v^{(j)}(x) \mathrm{d} x .
$$

We have $g \in C^{k+1, \alpha}(V)$ (see Remark 4.1) and

$$
\begin{align*}
& \text { (4.18) } f^{\prime \prime}(u)(h, h)=\sum_{i, j=0}^{m} \int_{0}^{1} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}(x, \zeta(u)(x)) h^{(i)}(x) h^{(j)}(x) \mathrm{d} x+ \tag{4.18}\\
& +\sum_{i, j=0}^{m-1}\left[\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(0)) h^{(i)}(0) h^{(j)}(0)+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(1)) h^{(i)}(1) h^{(j)}(1)\right] \geqq c\|h\|_{2, m}^{2}
\end{align*}
$$

(see (4.3) and (4.4)), where $c>0$. (We have in (4.3) $c_{2}>0$ in the case $V \neq \dot{W}_{p}^{m}(\langle 0,1\rangle)$ and in the case $V=\stackrel{\circ}{W}_{p}^{m}(\langle 0,1\rangle)$ the norm $\|\cdot\|_{2, m}$ is equivalent with the norm defined by

$$
\left(\int_{0}^{1}\left|u^{(m)}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

only.) It follows from (4.18) that $f^{\prime \prime}(u)(h)$ (as a mapping of variable h of V into $V^{*}=V$) is an isomorphism of V onto V. Further, we have

$$
\begin{gathered}
g^{\prime \prime}(u)(h, v)=\sum_{i, j=0}^{m-1} \int_{0}^{1} \frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(x)) h^{(i)}(x) v^{(j)}(x) \mathrm{d} x+ \\
+\sum_{i, j=0}^{m-1}\left[\frac{\partial^{2} N_{0}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(0)) h^{(i)}(0) v^{(j)}(0)+\frac{\partial^{2} N_{1}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(1)) h^{(i)}(1) v^{(j)}(1)\right] .
\end{gathered}
$$

It is easy to see from here that for fixed $u \in V$ the mapping $g^{\prime \prime}(u)(h)$ of V into V is completely continuous. Properties of $f^{\prime \prime}$ and $g^{\prime \prime}$ imply that the functional ($\lambda f-g$) is Fredholm in each point $u \in V$. Using Lemma 4.2, Theorem 3.1 and Corollary 3.1 we obtain our assertion.

Now, let us consider the more general case. We shall show the assumption of Theorem 3.2 are satisfied setting $X=V, X_{1}=\left\{v \in C^{m}(\langle 0,1\rangle): v\right.$ satisfies (4.1a, b) $\}$. Further, we shall denote by $w=\left[w_{0}, w_{1}, \ldots, w_{m}\right]$ the elements of the space $[C(\langle 0,1\rangle)]^{m+1}$, the elements of $E_{2 m}$ are denoted by $y=\left[y_{0}, \ldots, y_{2 m-1}\right]$ and the elements of the space $[C(\langle 0,1\rangle)]^{m+1} \times E_{2 m}$ are denoted by $[w, y]$, where $w \in$ $\in[C(\langle 0,1\rangle)]^{m+1}, y \in E_{2 m}$. Set

$$
\begin{aligned}
P= & \left\{[w, y] \in[C(\langle 0,1\rangle)]^{m+1} \times E_{2 m}: \sum_{i=0}^{m} \int_{0}^{1} w_{i}(x) v^{(i)}(x) \mathrm{d} x+\right. \\
& \left.+\sum_{i=0}^{m-1}\left(y_{i} v^{(i)}(0)+y_{m+i} v^{(i)}(1)\right)=0 \quad \text { for each } \quad v \in X_{1}\right\} .
\end{aligned}
$$

Set $X_{2}=\left([C(\langle 0,1\rangle)]^{m+1} \times E_{2 m}\right) / P$ with the usual norm of the factor space. If $[w, y] \in[C(\langle 0,1\rangle)]^{m+1} \times E_{2 m}$, then we shall denote by $[\tilde{w}, \tilde{y}]$ an element of X_{2} which is generated by $[w, y]$. For each $v \in X_{1},[\tilde{w}, \tilde{y}] \in X_{2}$ define

$$
\langle v,[\tilde{w}, \tilde{y}]\rangle=\sum_{i=0}^{m} \int_{0}^{1} w_{i}(x) v^{(i)}(x) \mathrm{d} x+\sum_{i=0}^{m-1}\left(y_{i} v^{(i)}(0)+y_{m+i} v^{(i)}(1)\right),
$$

where $[w, y] \in[C(\langle 0,1\rangle)]^{m+1} \times E_{2 m}$ is an element generatting the class [$\left.\tilde{w}, \tilde{y}\right]$. It is easy to see that X_{1}, X_{2} with the bilinear form $\langle.,$.$\rangle satisfy the condition (Y$). For each $u \in X_{1}$ define

$$
F(u)=[\tilde{w}, \tilde{y}],
$$

where

$$
\begin{aligned}
w_{i}(x) & =\frac{\partial A}{\partial \zeta_{i}}(x, \zeta(u)(x)), \quad i=0, \ldots, m \\
y_{i} & =\frac{\partial H_{0}}{\partial \eta_{i}}(\eta(u)(0)), \quad i=0, \ldots, m-1 \\
y_{m+i} & =\frac{\partial H_{1}}{\partial \eta_{i}}(\eta(u)(1)), \quad i=0, \ldots, m-1
\end{aligned}
$$

Then F is a mapping of X_{1} into X_{2} and for each $u, v, h \in X_{1}$ we have

$$
\begin{gather*}
\cdot\langle h, F(u)\rangle=\sum_{i=0}^{m} \int_{0}^{1} \frac{\partial A}{\partial \zeta_{i}}(x, \zeta(u)(x)) h^{(i)}(x) \mathrm{d} x+ \\
+\sum_{i=0}^{m-1}\left(\frac{\partial H_{0}}{\partial \eta_{i}}(\eta(u)(0)) h^{(i)}(0)+\frac{\partial H_{1}}{\partial \eta_{i}}(\eta(u)(1)) h^{(i)}(1)\right), \\
9) \quad\left\langle h, F^{\prime}(u)(v)\right\rangle=\sum_{i, j=0}^{m} \int_{0}^{1} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}(x, \zeta(u)(x)) v^{(i)}(x) h^{(j)}(x) \mathrm{d} x+ \tag{4.19}\\
+\sum_{i, j=0}^{m-1}\left(\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(0)) v^{(i)}(0) h^{(j)}(0)+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(1)) v^{(j)}(1) h^{(i)}(1)\right)= \\
=f^{\prime \prime}(u)(h, v) .
\end{gather*}
$$

Let us consider a fixed element $u_{0} \in X_{1}$. Then $F^{\prime}\left(u_{0}\right)(v)$ is a mapping from X_{1} into X_{2}. Using (4.3), (4.4) it is

$$
\begin{gather*}
\text { 0) }\left\langle v, F^{\prime}\left(u_{0}\right)(v)\right\rangle=\sum_{i, j=0}^{m} \int_{0}^{1} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(x, \zeta\left(u_{0}\right)(x)\right) v^{(j)}(x) v^{(i)}(x) \mathrm{d} x+ \tag{4.20}\\
+\sum_{i, j=0}^{m-1}\left(\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(j)}(0) v^{(i)}(0)+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(1)\right) v^{(j)}(1) v^{(i)}(1)\right) \geqq \\
\geqq \int_{0}^{1}\left(c_{1}\left|v^{(m)}(x)\right|^{2}+c_{2} \sum_{i=0}^{m-1}\left|v^{(i)}(x)\right|^{2}\right) \mathrm{d} x,
\end{gather*}
$$

where $c_{1}>0, c_{2} \geqq 0$ and $c_{2}>0$ in the case $V \neq \dot{W}_{p}^{m}(\langle 0,1\rangle)$. Hence, if $F^{\prime}\left(u_{0}\right)(v)=$ $=0$, then $v=0$. That means, the mapping $F^{\prime}\left(u_{0}\right)(v)$ is one-to-one.

Let $[\tilde{w}, \tilde{y}] \in X_{2}$ be arbitrary. Let us show there exists $v \in X_{1}$ such that

$$
F^{\prime}\left(u_{0}\right)(v)=[\tilde{w}, \tilde{y}] .
$$

This holds if and only if

$$
\begin{gather*}
\int_{0}^{1} \sum_{i, j=0}^{m} \frac{\partial^{2} A}{\partial \zeta_{i} \partial \zeta_{j}}\left(x, \zeta\left(u_{0}\right)(x)\right) v^{(j)}(x) h^{(i)}(x) \mathrm{d} x+ \tag{4.21}\\
+\sum_{i, j=0}^{m-1}\left(\frac{\partial^{2} H_{0}}{\partial \eta_{i} \partial \eta_{j}}\left(\eta\left(u_{0}\right)(0)\right) v^{(j)}(0) h^{(i)}(0)+\frac{\partial^{2} H_{1}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(1)) v^{(j)}(1) h^{(i)}(1)\right)= \\
=\sum_{i=0}^{m} \int_{0}^{1} w_{i}(x) h^{(i)}(x) \mathrm{d} x+\sum_{i=0}^{m-1}\left(y_{i} h^{(i)}(0)+y_{m+i} h^{(i)}(1)\right)
\end{gather*}
$$

for each $h \in X_{1}$.

Introduce a Hilbert space

$$
V_{2}=\left\{z \in W_{2}^{m}(\langle 0,1\rangle): z \text { satisfies }(4.1 \mathrm{a}, \mathrm{~b})\right\}
$$

with the inner product $(., .)_{2, m}$. Let us seek a function $v \in V_{2}$ such that the equation (4.21) holds for each $h \in V_{2}$. The right hand side in (4.21) can be considered as a linear functional on V_{2}, i.e., as an element of V_{2}. The left hand side in (4.21) can be considered as a bilinear form $((v, h))$ on V_{2}. By (4.18) we have

$$
((v, v)) \geqq c\|v\|_{2, m}
$$

where $c>0$.
Thus, there exists v satisfying (4.20) for each $h \in V_{2}$. Further, analogously as in the proof of Lemma 4.1 we can show $v \in X_{1}$ and

$$
\|v\|_{X_{1}} \leqq c\left(u_{0}\right)\|[\tilde{w}, \tilde{y}]\|_{X_{2}} .
$$

We have proved that the mapping $F^{\prime}\left(u_{0}\right)(v)$ for each fixed $u_{0} \in X_{1}$ is an isomorphism of X_{1} onto X_{2}.

For $u \in X_{1}$ set

$$
G(u)=[\tilde{w}, \tilde{y}] \in X_{2},
$$

where

$$
\begin{aligned}
w_{i}(x) & =\frac{\partial B}{\partial \eta_{i}}(x, \eta(u)(x)), \\
y_{i} & =\frac{\partial N_{0}}{\partial \eta_{i}}(\eta(u)(0)), \\
y_{m+i} & =\frac{\partial N_{1}}{\partial \eta_{i}}(\eta(u)(1))
\end{aligned}
$$

for $i=0, \ldots, m-1$ and $w_{m}(x)=0$.
We have

$$
\begin{gathered}
\langle h, G(u)\rangle=\sum_{i=0}^{m-1} \int_{0}^{1} \frac{\partial B}{\partial \eta_{i}}(x, \eta(u)(x)) \mathrm{d} x+\sum_{i=0}^{m-1}\left(\frac{\partial N_{0}}{\partial \eta_{i}}(\eta(u)(0)) h^{(i)}(0)+\right. \\
\left.+\frac{\partial N_{1}}{\partial \eta_{i}}(\eta(u)(1)) h^{(i)}(1)\right)=g^{\prime}(u)(h),
\end{gathered}
$$

$$
\begin{align*}
& \text { (4.22) }\left\langle h, G^{\prime}(u)(v)\right\rangle=\int_{0}^{1} \sum_{i, j=0}^{m-1} \frac{\partial^{2} B}{\partial \eta_{i} \partial \eta_{j}}(x, \eta(u)(x)) v^{(j)}(x) h^{(i)}(x) \mathrm{d} x+ \tag{4.22}\\
& +\sum_{i, j=0}^{m-1}\left(\frac{\partial^{2} N_{0}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(0)) v^{(j)}(0) h^{(i)}(0)+\frac{\partial^{2} N_{1}}{\partial \eta_{i} \partial \eta_{j}}(\eta(u)(1)) v^{(i)}(1) h^{(i)}(1)\right)=g^{\prime \prime}(u)(h, v)
\end{align*}
$$

for each $u, v, h \in X_{1}$.
It is easy to see that for each $u_{0} \in X_{1}$ the mapping $G^{\prime}\left(u_{0}\right)(v)$ of X_{1} into X_{2} is completely continuous. Suppose $\lambda_{0} \neq 0$. Thus the mapping $\lambda_{0} F-G$ is Fredholmian at arbitrary point $u_{0} \in X_{1}$. Lemma 4.2 together with (4.19), (4.22) gives
$N\left(\lambda_{0} F-G, u_{0}\right) \leqq m$. According to Lemma 4.1 all solutions of the problem (4.6) with $\lambda \neq 0$ are the elements of the space X_{1}.
If $\lambda=0$ is an eigenvalue, then

$$
\begin{gathered}
0=g^{\prime}(u)(u)=\sum_{i=0}^{m-1} \int_{0}^{1} \frac{\partial B}{\partial \eta_{i}}(x, \eta(u)(x)) u^{(i)}(x) \mathrm{d} x+ \\
+\sum_{i=0}^{m-1}\left(\frac{\partial N_{0}}{\partial \eta_{i}}(\eta(u)(0)) u^{(i)}(0)+\frac{\partial N_{1}}{\partial \eta_{i}}(\eta(u)(1)) u^{(i)}(1)\right) .
\end{gathered}
$$

With respect to (4.15) and (4.16) it is $u=0$. Hence the set $\left\{g(u): u \in X_{1}, g^{\prime}(u)=0\right\}$ contains only one point $g(0)$. This fact together with the previous considerations and with Theorem 3.2 and Corollary 3.3 gives our assertion.

Remark 4.2. Let the assumptions of Theorem 4.1 be satisfied with exception of conditions (4.15), (4.16). Then the set of all critical levels which correspond to all eigenvalues $\lambda \neq 0$ is $[(m+1) /(k+\alpha)]$-null.

Remark 4.3. The properties of the Hausdorff measure imply that to obtain some reasonalbe result we must suppose $[(m+1) /(k+\alpha)] \leqq 1$.

References

[1] S. Fučik - J. Nečas: Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems, Math. Nachr. 53, 1972, Heft 1-6, 277-289.
[2] S. Fučik - J. Nečas - J. Souček - V. Souček: Upper bound for the number of eigenvalues for nonlinear operators, Ann. Scuola Norm. Sup. Pisa 27, 1973, 53-71.
[3] S. Fučik - J. Nečas - J. Souček - V. Souček: Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear elliptic partial differential operators, Journ. Funct. Analysis 11, 1972, 314-333.
[4] S. Fučik - J. Nečas - J. Souček - V. Souček: New infinite dimensional versions of the MorseSard theorem, Boll. U. Mat. Ital. 6, 1972, 317-322.
[5] R. C. Gunning - R. Rossi: Analytic functions of several complex variables, Prentice Hall, 1965.
[6] T. H. Hildebrandt - L. M. Graves: Implicit function and their differentials in general analysis, Trans. Amer. Math. Soc. 29, 1927, 127-153.
[7] A. Kratochvil - J. Nečas: О дискретности спектра нелинейного уравнения Штурма-Лиувилля четвертого порядка, Comment. Math. Univ. Carolinae 12, 4, 1971, 639-653.
[8] M. Kučera: Hausdorff measures of the set of critical.values of functions from the class $C^{k, \lambda}$, Comment. Math. Univ. Carolinae 13, 2, 1972, 333-350.
[9] I. Kupka: Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 16, 1965, 954-957.
[10] L. A. Ljusternik - L. G. Schnirelmann: Применение топологии к экстремальным задачам, Труды 2. всесоюз. съезда, 1, 1935, 224-237.
[11] L. A. Ljusternik - L. G. Schnirelmann: Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхности, Успехи Мат. наук $I I$, 1947, 166-217.
[12] J. Nečas: О дискретности спектра нелинейного уравнения Штурм-Лиувилля, ДАН СССР 201, 1971, 1045-1048. English translation: Soviet Math. Dokl. 12, 1971, 1779-1783.
[13] S. I. Pochožajev: О множестве критических значений функционалов, Мат. сборник 75, 1968, 106-111.
[14] J. Souček - V. Souček: The Morse-Sard theorem for real-analytic functions, Comment. Math. Univ. Carolinae 13, 1972, 45-51.

Author's addresses: Svatopluk Fučik, Vladimir Souček, Sokolovská 83, 18600 Praha 8, (Matematicko-fyzikální fakulta University Karlovy). Milan Kučera, Jindřich Nečas, Jiří Souček, Žitná 25, 11567 Praha 1, (Matematický ústav ČSAV).

