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THINNESS AND THE HEAT EQUATION 

IVAN NETUKA, Praha 

(Received July 31, 1973) 

Introduction. At the beginning of the century diverse methods for solving the clas
sical Dirichlet problem for the Laplace equation and the heat equation were known. 
In all of these methods, however, some restrictions on the region in question were 
imposed. For a long time it was believed that limitations of generality, in the case 
of Laplace equation, are only caused by special approaches used in that period. 
It was pointed out by ZAREMBA (1910) and LEBESGUE (1912) that there are regions, 
for which the classical Dirichlet problem need not have a solution for all continuous 
boundary conditions, or, in our terminology, these regions are not regular. On the 
other hand, for the heat equation the existence of non-regular domains has belonged 
to the obvious facts. For example, considering a rectangle S in the plane (with sides 
parallel to the axes), the physical reasonings tell us not to prescribe the temperature 
on the top line of S. In the mathematical terms, the points of the upper part of the 
boundary are irregular for the Dirichlet problem. 

Similarly to the Laplace case, given a bounded open set U c Rn+i and a continuous 
function / on the topological boundary dU9 the Perron's construction may be used 
to obtain the generalized solution Hv

f of the Dirichlet problem for the heat equation 
(see [12], [1] or [2]). This solution satisfies the equation 

i=l ox\ ot 

and it remains only to investigate, whether 

(2) HmHv
f{y) = f{x) 

y->x 

holds for a given point x e dU. The point x e dU is said to be regular, if (2) holds 
for any continuous function / defined on dU. The problem is to find connections 
between the geometry of a region and the notion of regularity. For regions with 
a smooth boundary, x e dU is regular provided the outer normal at x is not in +t 
direction, while the matter is rather delicate if the outward pointing normal at x is 
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vertical upward. Although important and fine results on this go back to PETROVSKY 

[11] (1935; see also [7]), complete results were obtained in 1971 by EFFROS and 
KAZDAN [4] (see also [3]). They gave a necessary and sufficient condition for regular
ity of a point lying on the sufficiently smooth (C3 is enough) boundary in nice dif
ferential geometric terms. The key to the proof of their main result is an analogue 
of the Laplace equation "cone condition" on the boundary points. The cone is 
replaced by a parabolic "tusk", the shape of which is suggested by the form of in
variant transformations for the heat equation. In all above mentioned results all 
regular points are also stable for the Dirichlet problem. (Recall that an xedU 
is stable if it is regular for a larger open set, that is, if there is an open set V with 
U c V u {x} such that x is a regular boundary point for V.) A criterion of regularity 
which applies also to non-stable points is due to HANSEN [5] (1971). 

The Wiener's type solution for the parabolic equation is investigated by LANDIS 

[8], [9]. A necessary and sufficient condition of regularity analogous to the clas
sical Wiener's test is proved in [8] (1969) by means of a suitable notion of capacity 
and some criteria of the geometric nature are introduced in [9]. 

This paper sets out to prove a geometric regularity criterion for the heat equation. 
This result enables one to establish in some cases the regularity of a boundary point, 
not necessarily stable, and represents a generalization of the Hansen's result and 
Effros-Kazdan's "tusk condition". In fact, our criterion of regularity is obtained 
as a consequence of an assertion concerning the parabolic thinness. A similar theorem 
(of density type in character) is known for the Laplace equation (see e.g. [6], Corol
lary 10.5). 

Further information on the subject may be found in [3], [4]. 

Notation. It is a known fact that the harmonic measure (corresponding to the heat 
equation) on an (n -f l)-dimensional interval K has a density with respect to the 
area measure on the boundary of K. This density can be expressed in terms of the 
function Qx to be defined below (see also § 3.3 in [2]). 

We denote by Z the set of integers and N = Z n (0, oo). For m e N, the symbol Rm 

will stand for the m-dimensional Euclidean space. We shall write J* instead of JR1. 
Suppose that keN and set I = {1, 2,.. . , k}. Let Fj be the function on R1 x R 

which is equal to 

( x , 0 ^ ( 4 ^ Y A / 2 - e x p ( - i x 2 / 4 0 

on {(x, t)e H* x R; t > 0} and zero elsewhere. For any J c J and any y e R1 

we denote by |J| the number of elements of J and by yJ the point of R1 such that 
yJ = yt for \e* \ J and yJ = -y( for i e J. We denote further for any J a I 
and any I e & t>y rJ/ the function on R1 x R x R1 x R defined by 

(*, t, y, s) i-> rt(x - / + 21, t - s) 
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and set & = ^ K-l)'"/*'. 
leZ* J<=I 

Note that the series defining QJ is convergent and that QT is of class C00 outside the 
set {(x, t, y9 s); t = 5} (see [2], p. 85). 

The point of R1 each of which coordinates equals \ will be denoted by a1. 
The following lemma will be useful below. 

Lemma. If qeR - {0}, n e JV, I = {1,. . . , n}, then 

(3) &(*'- q2, z, 0) > 0 

for any z e (0, l)7. 

Proof. The proof is by induction on jI|. Suppose first that |I| = 1. By definition, 

e(1}(a
fl}, q2, z, 0) = £ (r,.,(i - z + 2/, a2) - T{1)(| + z + 2/, a2)) = 

JeZ 

1 I [exp ( - ( i - iz + /)2/«2) - exp ( - ( i + \z + /)2/a2)] . 
2 N/(7tq2) feZ 

Puttin* , = exp(-.V), r0 = f l ( l - r - ) 
S = l 

and using formulas for #3-function (see [10], pp. 140, 141), the last expression con
taining the sum can be transformed into 

±r0[ fl (1 + 2r2s~1 sin nz + r4s"2) - f[ (1 - 2r2s"1 sin nz + r45"2)] . 
s= l s = l 

If z G (0, 1), then the difference of these products is obviously strictly positive. Con
sequently, 

(4) e{i}(0
{1}, q\ z, 0) > 0 . 

Let us assume that j > 1, K = {1, ..., j — 1} and 

(5) QK(aK, q2, {, 0) > 0 

provided I; e (0, i)K. Put L = {l, ..., j} and for each x = [x1? ..., Xj] e RL denote 

St = [x1?..., xj-1']eRK. Note that XG(0, 1)L implies JCG(0, 1)* and aL = aK. 
By definition of QL we have for any y e (0, 1)L 

Q,(aL, q2,y,0)=Z I ( - 1)"' ri-\a\ q\ y, 0) = 
*eZ-- J c L 

= Z I ( - I f r\*{a\ q\ y, 0). [ £ (r(1>(i - j , + 2m , «2) -
ZeZ« J <=K meZ 

- r { i ) ( i + Jy + 2m, «2))] = QK(aK, q\ j>, 0) . Q{l)(a
(i\ q\ y}, 0) . 

The last product is strictly positive by (5) and (4). 
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The proof is complete. 

Definitions and notation. In what follows, n will be a fixed element of N and / = 
-= {1,. . . , n). For q > 0 we shall denote by Qq the function defined on (-1/2#, l/2g)n 

by 

y «- <f • QiW> <?2, w + i , o) 

and we put 

<6) coq = inf {Qq(y) ; y e < - l/4a, l/4^>n} . 

It follows immediately from the lemma that 

coq > 0 . 

For x = [ j , s] e Rn x R and £ e R set 

#/,(*) = { [z , r] G Kn x K ; r = s - p). 

The n-dimensional outer Hausdorff measure in Rn+1 will be denoted by A* and the 
symbol X will stand for the corresponding measure. Hence for M a Rn the outer 
/i-dimensional Lebesgue measure A* of M coincides with A*(M x {0}). 

Suppose that M c Rn+1 and x e Rn + 1. We say that M lies parabolically below x 
provided there is b > 0 such that 

n 

y„+i - xn+i < - & £ 0 > i - *i)2 

for any y e M . 

Before stating our theorem a few words on the Dirichlet problem for the heat 
equation will be useful. It is well known that the Dirichlet problem for the heat 
equation (l) in Rn+1 can be investigated in the frame of the axiomatic theory of har
monic spaces (see [ l] , Standard-Beispiel (2) or [2], § 3.3). Recall that the set M c 
c: Rn+i is said parabolically thin at xeRn+i if either x £ M (= the closure of M) 
or x e Af and there is a hyperparabolic function u defined on a neighborhood of x 
such that 

u(x) < lim inf u(y) . 
y-*x 

yeM\{x} 

(See [1], III. § 1, § 3, Satz 3.3.3 and Satz 5.3.1 and Beispiel 2 in II, § 8, or [2], § 6.3, 
Corollary 6.3.2, Proposition 6.3.3 and Proposition 5.1.1.) (Hyperparabolic means 
here, of course, hyperharmonic in the corresponding harmonic space.) There is 
a close connection between the notion of thinness and regularity, namely a boundary 
point x of an open bounded subset U of Rn+l is regular for the heat equation if and. 
only if Rn+1 \ U is not parabolically thin at x ([l], Satz 4.3.1 or [2], Theorem 6.3.3). 
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Theorem. Suppose that x e Rn+l and M a R"+1. If M lies parabolically below x 
and M is parabolically thin at x, then 

(7) lim a"nA*(M n Ha2(x)) = 0 . 
<x-+0+ 

Proof. We may assume that x = 0 and 0 e M, the case 0 $ M being trivial. For 
the sake of brevity we shall write Hp instead of Hp(0). According to the hypothesis 
of the theorem there is q > 0 such that 

(8) yeM=>yn+1 < - 1 6 $ 2 £ > ? . 
1=i 

For a > 0 put Fa == ( —a/2g, <xj2q)n, 

Ua = {[y,s]eRn x R; y e Fa, s e ( - a 2 , a 2 ) } 

and denote by \xa the harmonic measure on Ua at 0 ([2], p. 19). Choose e > 0 and 
a hyperparabolic function u defined on a neighborhood of 0 such that 

+ oo > c = lim inf u(y) — u(0) > 0 . 
y - 0 

yeM\{0) 

Putting (for definition of coq see (6)) 

v = 1 + (c . c . co j" 1 [u - u(0)] , 

we obtain the hyperparabolic function such that v(0) = 1 and 

lim inf v(y) > (e . co^)-1 . 
y->0 

yeM\{0} 

Fix now a0 > 0 in such a way that 

(9) v(z)>(s.coq)-
1 

for any z e M n Uao, z =j= 0. 

Let us consider a e (0, a0). Since v is positive and hyperparabolic on a neighborhood 
of Ua we arrive at 

(10) 1 = v(0) = fv d^a = f v dfia = f v([x, - a 2 ] ) . a-we,(x/a) dx . 
J J r/anH«2 J Fa 

The last equality (with the w-dimensional Lebesgue integral on the right-hand side) 
follows from the definition of Qq and from results of § 3.3. in [2] (in particular 
lemma 3). Denote by Ma the set of all y = [yi9..., y„] e Rn such that [y, —a2] e M. 
If yeMa, then (8) yields 

i(*)*< l 
Í\<XJ Í6q2 
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so that y e Fa and yjcx e <-l/4«, l/4^>". Consequently, Qq(yjoc) = coq (cf. (6)). This 
together with (10) and (9) implies 

1 = a"" [ v([x, -a2)]) . Q,(x/a) dx = £-1a~^*(M n Ha2) 

(the asterisk is used to denote the upper Lebesgue integral). We see that 

<x~nk*(M n Ha2) < e 

whenever a e (0, a0) and (7) is established. 
The proof of the theorem is complete. 

Corollary 1. Let U c Rn+1 be an open bounded set, U' = Rn+1\U and xbea bound
ary point ofU. If there is a neighborhood Vof x such that IF n V lies parabolically 
below x and 

lim sup a~M/l(U' nVn Ha2(x)) > 0 
a-»0 + 

holds, then x is regular for U. 

Corollary 2. Let B0 c Rn, 0 4= T c (0, oo), inf T = 0 and f 

B = {[ax, - a 2 ] eRn x R; x e B0 , a e T} . 

If 5 is parabolically thin at 0, then ̂ n(-50) = 0. 

Proof. Suppose that B is parabolically thin at 0. For k e N we shall denote by B0 

the intersection of B0 and the n-dimensional ball with the center 0 and radius k and 

Bk = {[ax, - a 2 ] eRn x R; x e Bk
0 , a e T} . 

Then Bk is parabolically thin at 0 and Bk lies parabolically below 0. By the theorem, 

(11) lim 0L~nX*(Bk n Hjp)) = 0 . 
a-+0 + 

Since k*(Bk n Ha2(0)) = a". An(B0) provided a e T, (11) implies A*(B0) = 0. Con
sequently, Xn(B0) = 0. 

Remarks. In particular, taking in Corollary 2 B0 a ball and T = (0, oo), we obtain 
the "tusk condition" of Effros-Kazdan ([4], lemma 3). 

For the case that the set T in corollary 2 is countable and shrinkable to 0 in the 
sense that a l e T for arbitrarily small a > 0, the assertion of the last corollary 
is included in Satz 4.3 of [5], 

Note that not every countable T cz (0, oo) with inf T = 0 is shrinkable to 0. 
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Choosing e.g. T = {2~"2; n e N n {0}} we see at once that a T c T if and only if 

a = 1. Indeed, a < 1 would imply a = 2~m2 with a suitable m e N and a T cz T 

would yield 2 " 2 m 2 e T Consequently, 2m2 is a square, which is impossible. 
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